
genes
G C A T

T A C G

G C A T

Article

Genome-Wide Signatures of Selection Detection in
Three South China Indigenous Pigs

Shuqi Diao 1 , Shuwen Huang 1, Zitao Chen 1 , Jinyan Teng 1 , Yunlong Ma 2 ,
Xiaolong Yuan 1, Zanmou Chen 1, Hao Zhang 1, Jiaqi Li 1 and Zhe Zhang 1,*

1 Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering
Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural
University, Guangzhou 510642, China; saradiao@126.com (S.D.); 13422048613@163.com (S.H.);
barnettca@outlook.com (Z.C.); kingyan312@live.cn (J.T.); yxl@scau.edu.cn (X.Y.); zmchen@scau.edu.cn (Z.C.);
zhanghao@scau.edu.cn (H.Z.); jqli@scau.edu.cn (J.L.)

2 Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education,
College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China;
Yunlong.Ma@mail.hzau.edu.cn

* Correspondence: zhezhang@scau.edu.cn

Received: 28 February 2019; Accepted: 2 May 2019; Published: 7 May 2019
����������
�������

Abstract: South China indigenous pigs are famous for their superior meat quality and crude feed
tolerance. Saba and Baoshan pigs without saddleback were located in the high-altitude area of
Yunnan Province, while Tunchang and Ding’an pigs with saddleback were located in the low-altitude
area of Hainan Province. Although these pigs are different in appearance, the underlying genetic
differences have not been investigated. In this study, based on the single-nucleotide polymorphism
(SNP) genotypes of 124 samples, both the cross-population extended haplotype homozygosity
(XP-EHH) and the fixation index (FST) statistic were used to identify potential signatures of selection
in these pig breeds. We found nine potential signatures of selection detected simultaneously by
two methods, annotated 22 genes in Hainan pigs, when Baoshan pigs were used as the reference
group. In addition, eleven potential signatures of selection detected simultaneously by two methods,
annotated 24 genes in Hainan pigs compared with Saba pigs. These candidate genes were most
enriched in GO: 0048015~phosphatidylinositol-mediated signaling and ssc00604: Glycosphingolipid
biosynthesis—ganglio series. These selection signatures were likely to overlap with quantitative trait
loci associated with meat quality traits. Furthermore, one potential selection signature, which was
associated with different coat color, was detected in Hainan pigs. These results contribute to a better
understanding of the underlying genetic architecture of South China indigenous pigs.

Keywords: signatures of selection; South China indigenous pigs; SNP; XP-EHH; FST

1. Introduction

Pigs have been domesticated for 9000 years [1]. During their long history of evolution and
breeding, pigs have been selected naturally or artificially for specific traits, such as adaption to high
temperature and humidity in South China, coat color, body length, meat quality, and so forth. Many
genetic footprints, i.e., signatures of selection, remain in the genome [2,3] and have been of interest
for evolutionary biologists and breeders. The study of signatures of selection may provide some
information about selection mechanisms and benefit future pig breeding.

The regions of the genome where the signatures of selection can be detected usually show
long-range linkage disequilibrium (LD) accompanied by a high population frequency [2–4] and these
regions can be detected based on genomic data with the population statistical method. Currently,
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detection approaches for signatures of selection are based on single point frequencies of selected
mutations, LD, and population differentiation. Among these, single point frequencies may produce
high rates of false positives [5]. Cross-population extended haplotype homozygosity (XP-EHH) [6] is
based on the long-range haplotype (LRH) and the integrated haplotype score (iHS) [7], which was
applied to identify signatures of selection in cross-populations. The fixation index (FST) statistic,
which is based on population differentiation, was first defined by Lewontin and Krakauer [8] based
on coefficient F [9] and was then developed by Weir and Cockerham [10], Akey et al. [11], and
Gianola et al. [12].

With the rapid developments in high-throughput sequencing and genotyping, many signatures
of selection have recently been detected in the pig genome [13–17]. The study of Rubin et al. [18]
showed strong signatures of selection at three loci which harbor NR6A1, PLAG1, and LCORL genes
and are associated with the elongation of the back and an increased number of vertebrae in European
domestic pigs. Additionally, using the FST statistic, Ai et al. [19] found several genes, including
ADAMTS12, SIMI, and NOS1, which are likely associated with adaption to high altitude in Tibetan
pigs. Furthermore, some potential signatures of selection related to economic traits, such as disease
resistance, pork yield, fertility, tameness, and body length, were found in Berkshire pigs [20]. Compared
with Chinese indigenous breeds and commercial pig breeds, the results showed that 81 candidate
genes are associated with the development of tissues and organs and the immune response [21].

A few studies [13,21–23] have been carried out to detect signatures of selection in Chinese
indigenous pigs. Research into breeding goals in Chinese and European domestic pig breeds showed
that they all concentrated on genes mostly related to muscle development, the nervous system, and
especially to metabolic diseases. The Chinese tend to pay more attention to fat deposits, while
Europeans tend to concentrate more on leanness and body length for modern commercial breeds [24].
South China indigenous pig breeds are distributed in the tropical and subtropical areas of South China.
South China indigenous pig breeds usually have a white coat with black spots, a black head and haunch,
and their body size is usually smaller than other Chinese indigenous pig breeds. Moreover, the backfat
of South China pig breeds is thicker [25,26]. Tunchang pigs (a subpopulation of Hainan pigs [25]),
Ding’an pigs (a subpopulation of Hainan pigs [25]), Baoshan pigs, and Saba pigs were domesticated
in a relatively isolated environment in Hainan Province and Yunnan Province, South China. The
long-term geographical and genetic isolation caused differential appearance and potential genetic
diversity. Saba and Baoshan pigs, located in a high-altitude area of Yunnan Province (>1500 meters
above sea level (a.s.l.)), have a black coat without saddleback. Meanwhile, Hainan pigs, located in a
low-altitude area, have saddleback. Although the difference in appearance between these two types of
pig is easily observed, the underlying genetic differences are yet to be discovered.

The aim of this study was to detect specific signatures of selection associated with the genetic
characteristics within the genomes of three breeds of South China indigenous pigs. The XP-EHH
test and the FST statistic were used to identify the signatures of selection in South China indigenous
pigs using genotype data from the Illumina PorcineSNP60 BeadChip [27] and the GeneSeek Genomic
Profiler (GGP) Porcine Chip (https://genomics.neogen.com/en/ggp-porcine). Our findings revealed
important candidate functional genes that underwent positive selection in South China indigenous pigs.

2. Materials and methods

2.1. Ethics Approval

This study was carried out in accordance with the recommendations of the Animal Care Committee
of the South China Agricultural University (Guangzhou, People’s Republic of China). The protocol was
approved by the Animal Care Committee of the South China Agricultural University (SCAU#2013-10).

https://genomics.neogen.com/en/ggp-porcine
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2.2. DNA Sample Collection

A total of 124 individuals of three pig breeds (four populations) were collected from four locations
in South China. Specifically, 33 Baoshan pigs (BS, 13 males, 20 females, collected from Shidian,
Yunnan Province, 16 July 2015), 23 Saba pigs (SB, nine males, 14 females, collected from Chuxiong
Yi Autonomous Prefecture, Yunnan Province, 22 July 2015), 34 Ding’an pigs (DA, a subpopulation
of the Hainan pig [25], 34 females, collected from Ding’an, Hainan Province, 23 January 2016), and
34 Tunchang pigs (TC, a subpopulation of the Hainan pig [25], 10 males, 24 females, collected from
Tunchang, Hainan Province, 10 March 2016).

2.3. Single-Nucleotide Polymorphism (SNP) Genotyping and Data Quality Control

Genomic DNA samples from all three breeds of Chinese indigenous pig were extracted from ear
tissue using the E.Z.N.A.®Tissue DNA Kit (D3396-02, Omega Bio-tek, Norcross, GA, USA). The Illumina
PorcineSNP60 BeadChip [27], which contains 61,565 SNPs, was used for the SNP genotyping of Baoshan
pigs and Saba pigs, while the GGP Porcine Chip (https://genomics.neogen.com/en/ggp-porcine),
which contains 68,516 SNPs, was used for the SNP genotyping of Ding’an pigs and Tunchang
pigs. The SNP data of three South China pig breeds are available in the figshare database (https:
//doi.org/10.6084/m9.figshare.7588235.v1)

The quality control criteria for genotypic data were as follows: (1) Retaining the mutual SNPs
between two SNP chips (the alleles of each SNP on two chips were unified according their SNP chip
annotation file while merging the genotype from different chips); (2) removing SNP loci with a call rate
of less than 0.90 and unknown position or located on sex chromosomes; (3) filtering out individuals
with call rates less than 0.90; and (4) removing SNP loci with minor allele frequency (MAF) less
than 0.05. PLINK software [28] was used to perform data quality control. Following quality control,
fastPHASE [29] was used to infer haplotypes for the haplotype-based method (XP-EHH) with the
parameters –KL10, –KU30, and –Ki5.

2.4. Principal Component Analysis

To investigate the pattern of genetic differentiation among breeds, principal component analysis
(PCA) was conducted with GCTA software (Version 1.91.1) [30]. Then, the figure of PCA was plotted
using R base package with plot function [31]. The SNPs used in this analysis were filtered for pairwise
LD (r2 < 0.5) with PLINK software [28] using the command indep-pairwise 50 5 0.5.

2.5. Phylogenetic Tree

In order to better understand the relationship between the three breeds investigated in this
study, a phylogenetic tree based on the pairwise identical by state (IBS) was constructed. The
average proportion of alleles shared among all individuals (denoted as Dst) was calculated as follows:
Dst = (IBS2 + 0.5× IBS1)/N, where IBS1 and IBS2 are the number of loci which share either one or
two alleles IBS of two individuals, respectively, and N is the total number of SNPs. Then, 1- Dst is the
genetic distance between all pairwise combinations of individuals, as in Ai et al. [19]. The Dst was
calculated by PLINK software [28]. A neighbor-joining (N-J) tree [32] based on genetic distance was
constructed by MEGA software (Version 7.0.14) [33].

2.6. Identification of Signatures of Selection

Both the XP-EHH and the FST were used for the detection of signatures of selection in this study.
The XP-EHH was needed to define test groups and reference groups. In this study, XP-EHH [34] was
used to calculate the XP-EHH scores. A chromosome segment of 1 Mb was directly converted as
1 centiMorgan (cM) in Ma et al. [23]. The Genepop R package [35] was used to calculate FST statistics.
The FST statistic indicated the population differentiation; however, it was unable to indicate which
population experienced selection.

https://genomics.neogen.com/en/ggp-porcine
https://doi.org/10.6084/m9.figshare.7588235.v1
https://doi.org/10.6084/m9.figshare.7588235.v1
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In previous research, XP-EHH scores were reported to approximately follow a normal
distribution [6]. In this study, the unstandardized XP-EHH scores were transformed into a normal
distribution. Then, the p-values of standardized XP-EHH scores which were lower than 0.01 were
treated as significant SNPs detected by XP-EHH, as in Li et al. [13]. The distribution of FST approximately
followed a normal distribution after the normalization of the square root of FST, as in Gianola et al. [12].
In this study, the p-values of standardized FST below 0.01 were treated as significant SNPs. FST may
produce high rates of false positives compared with XP-EHH, as suggested by Ma et al. [36]. Therefore,
the significant SNPs detected either both methods or at least one method, which were treated as
potential signatures of selection in this study. In addition, this study focused on the significant SNPs
detected simultaneously by two methods.

2.7. Genome Annotation and Quantitative Trait Loci (QTL) Overlapping with Potential Signatures of Selection

The potential selection regions were defined by extending 200 kb both upstream and downstream
of the potential signatures of selection in Liu et al. [37]. Genome annotation was based on the Sus scrofa
10.2 (https://www.animalgenome.org/blast/). Genes harbored in these potential selection regions were
treated as candidate genes and RNAs and unconfirmed genes were filtered out. Additionally, the
Animal Quantitative Trait Loci (QTL) Database [38] was used to annotate potential traits related to the
potential selection regions based on QTL physical position intervals downloaded from the Animal
QTL database [38].

2.8. Gene Ontology (GO) Terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway
Enrichment Analysis

To further explore the function of these candidate genes, Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway [39] and Gene Ontology (GO) [40] were used for enrichment analyses
through the Database for Annotation, Visualization, and Integrated Discovery (DAVID) Version 6.8
(https://david.ncifcrf.gov/) [41,42]. The GO terms and KEGG pathways with p-values > 0.05 were
filtered out.

3. Results

3.1. Genotypes and Population Structure

A total of 34,815 SNPs located on autosomes were common in the two SNP chips. In quality
control, 1833 and 9444 SNPs were filtered out for the SNP call rate and MAF, respectively. The average
individual call rate was 0.9781 and no individual was removed. After quality control, 124 individuals
and 23,538 SNPs were retained for further study.

A subset of 23,538 SNPs (18,994 LD-pruned SNPs) were retained to conduct PCA. PCA1 and PCA2
explained 13.52% and 5.05% of the total variation, respectively (Figure 1). Individuals of two Hainan
pig subpopulations were clustered together, as also shown by the N-J tree (Figure 2). Baoshan and Saba
appeared as two separate groups. The average genetic distance between Baoshan pigs (0.2775 ± 0.0042)
was the highest among the four pig populations (Saba: 0.2213 ± 0.0056; Ding’an: 0.2209 ± 0.0067;
Tunchang: 0.2345 ± 0.0062). More details are shown in Table S1.

https://www.animalgenome.org/blast/
https://david.ncifcrf.gov/
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Figure 1. Principal component analysis of 33 Baoshan pigs (red triangles), 23 Saba pigs (blue squares), 

34 Ding’an pigs (purple triangles), and 34 Tunchang pigs (green targets). The principal component 

analysis was conducted by GCTA software (Version 1.91.1) [30], plotted with R base package plot 

function [31]. 

 

Figure 2. Phylogenetic tree based on four pig populations. The polygenetic tree was constructed based 

on data collected from 33 Baoshan pigs, 23 Saba pigs, 34 Ding’an pigs, and 34 Tunchang pigs. Different 

colors represent different pig populations. The phylogenetic tree was constructed by MEGA software 

(Version 7.0.14) [33]. 

  

Figure 1. Principal component analysis of 33 Baoshan pigs (red triangles), 23 Saba pigs (blue squares),
34 Ding’an pigs (purple triangles), and 34 Tunchang pigs (green targets). The principal component
analysis was conducted by GCTA software (Version 1.91.1) [30], plotted with R base package plot
function [31].
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Figure 2. Phylogenetic tree based on four pig populations. The polygenetic tree was constructed based
on data collected from 33 Baoshan pigs, 23 Saba pigs, 34 Ding’an pigs, and 34 Tunchang pigs. Different
colors represent different pig populations. The phylogenetic tree was constructed by MEGA software
(Version 7.0.14) [33].
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3.2. Identification of Signatures of Selection

According to the result of the PCA (Figure 1) and the N-J tree (Figure 2), the two subpopulations
of Hainan pigs (Ding’an pigs and Tunchang pigs) were treated as test groups, while the Baoshan and
Saba populations were used as reference groups, respectively.

The distribution of unstandardized XP-EHH scores and standardized XP-EHH scores are shown
in Figures 3b and 4b. The distribution of FST statistics and standardized FST statistics are shown in
Figures 5b and 6b. In the Ding’an and Tunchang/Baoshan groups, 174 SNPs and 71 SNPs were treated
as significant through XP-EHH in Hainan pigs and Baoshan pigs (Table S2). Meanwhile, 445 SNPs
were treated as significant using FST (Table S2). Similarly, in the Ding’an and Tunchang/Saba groups,
110 SNPs and 125 SNPs were treated as significant through XP-EHH in Hainan pigs and Baoshan pigs
(Table S3). Meanwhile, 445 SNPs were treated as significant using FST (Table S3).

On one hand, nine and eleven potential signatures of selection were detected simultaneously
by two methods in Hainan pigs using Baoshan and Saba pigs as the reference groups, respectively.
Moreover, compared to the reference group, three significant SNPs were detected simultaneously
by two methods in both of the two comparisons (Ding’an and Tunchang/Baoshan, Ding’an and
Tunchang/Saba), which were located on Sus scrofa chromosome 2 (SSC2) (rs81360002) and SSC14
(rs81223780 and rs80838751), respectively. Furthermore, rs81280567 was the only significant SNP
detected simultaneously by two methods in both Baoshan and Saba pigs (Tables 1 and 2). On the other
hand, a total of 680 potential signatures of selection were detected by at least one method in Hainan
pigs and Baoshan pigs (Table S2). In addition, the mean LD degree between pairs of significant SNPs
detected by at least one method was 0.1626; furthermore, a total of 35 pairs of significant SNPs detected
by at least one method (a majority of SNPs located in SSC14) were in high LD (r2 > 0.8) (Table S2 and
Figure S1). A total of 668 potential signatures of selection were detected by at least one method in
Hainan pigs and Saba pigs (Table S3). In addition, the mean LD degree between pairs of significant
SNPs detected by at least one method was 0.1665; furthermore, a total of 31 pairs of significant SNPs
detected by at least one method (a majority of SNPs located in SSC14) were in high LD (r2 > 0.8)
(Table S3 and Figure S2).
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Figure 3. Cross-population extended haplotype homozygosity (XP-EHH) scores across all autosomes
in the Ding’an and Tunchang/Baoshan groups. (a) Genome-wide distribution of signatures of selection
detected by XP-EHH across all autosomes in the Ding’an and Tunchang/Baoshan groups. The SNPs
shown as diamonds are the significant SNPs detected simultaneously by two methods. The red
lines show the threshold p-value (0.01). (b) The distribution of unstandardized XP-EHH scores and
standardized XP-EHH scores across all autosomes in the Ding’an and Tunchang/Baoshan groups.
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Figure 4. XP-EHH scores across all autosomes in the Ding’an and Tunchang/Saba groups.
(a) Genome-wide distribution of signatures of selection detected by XP-EHH across all autosomes
in the Ding’an and Tunchang/Saba groups. The SNPs shown as diamonds are the significant SNPs
detected simultaneously by two methods. The red lines show the threshold p-value (0.01). (b) The
distribution of unstandardized XP-EHH scores and standardized XP-EHH scores across all autosomes
in the Ding’an and Tunchang/Saba groups.
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Figure 5. FST statistics across all autosomes in the Ding’an and Tunchang/Baoshan groups.
(a) Genome-wide distribution of signatures of selection detected by FST statistics across all autosomes
in the Ding’an and Tunchang/Baoshan groups. The SNPs shown as diamonds are the significant SNPs
detected simultaneously by two methods. The red line shows the threshold p-value (0.01). (b) The
distribution of unstandardized FST statistics and standardized FST statistics across all autosomes in the
Ding’an and Tunchang/Baoshan groups.
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Figure 6. FST statistics across all autosomes in the Ding’an and Tunchang/Saba groups. (a) Genome-wide distribution of signatures of selection detected by FST

statistics across all autosomes in the Ding’an and Tunchang/Saba groups. The SNPs shown as diamonds are the significant SNPs detected simultaneously by two
methods. The red line shows the threshold p-value (0.01). (b) The distribution of unstandardized FST statistics and standardized FST statistics across all autosomes in
the Ding’an and Tunchang/Saba groups.
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Table 1. Summary of significant single-nucleotide polymorphisms (SNPs) detected simultaneously by two methods in the Ding’an and Tunchang/Baoshan pig groups.

Chr. 1 ID Detected in iHH 2 in Test 3 iHH in Ref 4 Standardized
XP-EHH 5 Score FST Genes QTL 6 (Counts)

2 rs81360002 Test 3.2266 0.7763 2.7056 0.4685 BTF3, ANKRA2, UTP15,
ARHGEF28

Actinobacillus pleuropneumoniae
susceptibility (7)

6 rs339432830 Test 3.9553 0.9181 2.8027 0.4726 MC5R, RNMT, FAM210A,
LDLRAD4, CEP192 Backfat at last rib (11)

6 rs81391982 Test 1.0048 0.1885 3.3794 0.5273 PIK3C3 Backfat at last rib (9)
6 rs81392000 Test 0.9475 0.2324 2.6532 0.4930 – Backfat at last rib (9)

7 rs80899633 Test 1.3000 0.2568 3.2394 0.5677 GRM4, HMGA1, NUDT3,
RPS10, PACSIN1, SPDEF Average backfat thickness (20)

9 rs81224033 Test 1.7863 0.4160 2.7937 0.5233 PLEKHA6, PPP1R15B,
PIK3C2B, MDM4, LRRN2 Shoulder weight (3)

14 rs81223780 Test 2.4569 0.4583 3.3948 0.5498 NRG3 Fat androstenone level (4)
14 rs80838751 Test 2.6767 0.5997 2.8987 0.5129 NRG3 Fat androstenone level (4)

18 rs81470716 Test 0.7901 0.1880 2.7350 0.5564 – Actinobacillus pleuropneumoniae
susceptibility (3)

10 rs81280567 Ref 0.1573 0.3664 –3.4439 0.5492 FRMD3, RASEF Average daily gain (4)
1 Chromosome; 2 the integrated haplotype score; 3 test group (Ding’an and Tunchang pigs); 4 reference group (Baoshan pigs); 5 cross-population extended haplotype homozygosity
(XP-EHH); 6 QTL: Quantitative trait loci—the traits with the highest QTL count are shown here and all QTLs can be seen in Tables S4 and S5.
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Table 2. Summary of significant SNPs detected simultaneously by two methods in the Ding’an and Tunchang/Saba pig groups.

Chr. 1 ID Detected in iHH 2 in Test 3 iHH in Ref 4 Standardized
XP-EHH 5 Score FST Genes QTL 6 (Counts)

1 rs80792171 Test 1.3676 0.5713 2.7257 0.5956

LRSAM1, FAM129B, STXBP1,
CFAP157, PTRH1, TTC16,

TOR2A, SH2D3C, CDK9, FPGS,
ENG, AK1, ST6GALNAC6,

ST6GALNAC4

Drip loss (15)

1 rs80943372 Test 4.5343 1.6659 3.1073 0.4985 – Drip loss (16)
1 rs80858349 Test 2.2043 0.9644 2.5884 0.5304 – Drip loss (16)
1 rs80819792 Test 0.9818 0.4111 2.7187 0.4975 – Drip loss (16)

2 rs81360002 Test 3.2297 1.0560 3.4540 0.4685 BTF3, ANKRA2, UTP15,
ARHGEF28

Actinobacillus pleuropneumoniae
susceptibility (7)

3 rs81251364 Test 1.8817 0.7229 2.9747 0.5172 UXS1, C3H2orf40, NCK2 Average daily gain (6)
3 rs81251441 Test 1.8762 0.6455 3.3025 0.5333 UXS1, C3H2orf40, NCK2 Average daily gain (6)

12 rs81433573 Test 0.9817 0.4227 2.6354 0.5630 ANKFN1, NOG Muscle moisture percentage (4)
13 rs80782255 Test 1.0648 0.4471 2.7108 0.4731 – Body weight (5 weeks) (1)
14 rs81223780 Test 2.5220 0.9360 3.0773 0.5498 NRG3 Fat androstenone level (4)
14 rs80838751 Test 2.7541 1.1181 2.8106 0.5129 NRG3 Fat androstenone level (4)
10 rs81280567 Ref 0.1720 0.4522 –2.7414 0.5492 FRMD3, RASEF Average daily gain (4)

1 Chromosome; 2 the integrated haplotype score; 3 test group (Dign’an and Tunchang pigs); 4 reference group (Saba pigs); 5 cross-population extended haplotype homozygosity (XP-EHH);
6 the traits with the highest QTL count are shown here and all QTLs can be seen in Tables S6 and S7.
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3.3. Genome Annotation and QTL Overlapping with Potential Signatures of Selection

Within the potential selection regions detected simultaneously by two methods in the Ding’an and
Tunchang groups, 22 and 24 candidate genes were annotated in the National Coalition Building Institute
database, respectively. QTL overlapping with the potential selection regions detected simultaneously
by two methods was associated with backfat at last rib, average backfat thickness, drip loss, and so on, as
shown in Tables 1 and 2 and Tables S4 and S6. More details for each QTL trait are described in the animal
QTL database (https://www.animalgenome.org/QTLdb/). Two candidate genes were annotated in the
two reference groups (Baoshan and Saba). The one potential selection region detected simultaneously
by two methods overlapped with QTLs related to average daily gain, dressing percentage, percentage
type I fibers, and so on (see Tables 1 and 2 and Tables S5 and S7).

In addition, a total of 1349 candidate genes annotated in 680 significant SNPs detected by at least
one method in Hainan pigs and Baoshan pigs and the QTLs overlapping with these significant SNPs
were associated with meat quality, average backfat thickness, and so on (Table S2), while 1267 candidate
genes annotated in 668 significant SNPs detected by at least one method in Hainan pigs and Saba
pigs totally and the QTLs overlapping with these significant SNPs were associated with meat quality,
average daily gain, and so on (Table S3).

3.4. GO Terms and KEGG Pathway Enrichment Analysis

Within the potential selection regions detected simultaneously by two methods in the Ding’an
and Tunchang groups, 41 candidate genes were annotated in total (Tables 1 and 2). One GO term and
one KEGG pathway were enriched and targeted, both of which involved two candidate genes (Table 3).
The enriched KEGG pathway was ssc00604 (glycosphingolipid biosynthesis—ganglio series) and the
enriched GO term was GO: 0048015 (phosphatidylinositol-mediated signaling). However, no GO term
or KEGG pathway was enriched in the reference group (Baoshan, Saba).

The 1349 candidate genes annotated in 680 significant SNPs detected by at least one method
in Hainan pigs and Baoshan pigs involved 22 GO terms and 12 KEGG pathways (Table S2) and
1267 candidate genes annotated in 668 significant SNPs detected by at least one method in Hainan pigs
and Saba pigs involved 13 GO terms and 17 KEGG pathways (Table S3).

Table 3. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
enriched with candidate genes in Hainan pig populations.

GO Terms and KEGG Pathways Count Genes p-Value Test/Ref 1

GO: 0048015~phosphatidylinositol-mediated signaling 2 PIK3C2B,
PIK3C3 0.0215 Ding’an and

Tunchang/Baoshan

ssc00604: Glycosphingolipid biosynthesis—ganglio series 2 ST6GALNAC6,
ST6GALNAC4 0.0198 Ding’an and

Tunchang/Saba
1 test/ reference group.

4. Discussion

In this study, the potential signatures of selection in South China indigenous pig populations
were identified using two approaches. Nine and eleven potential signatures of selection were detected
simultaneously by two methods in Hainan pigs with Baoshan and Saba pigs as reference groups,
respectively. Moreover, 22 and 24 candidate genes were found to be enriched in Hainan pigs with
Baoshan and Saba pigs as reference groups, respectively. These selection regions were overlapping
with QTLs associated with meat quality, disease resistance, and growth. In Baoshan and Saba pigs,
only one potential signature of selection was detected simultaneously by two methods was identified,
which overlapped with growth and meat quality traits. These results together suggest the potential
utility of the findings from the present study.

In general, the signatures of selection revealed by the methods based on population differentiation
were associated with phenotypic changes in morphology and behavior. Interestingly, there was a

https://www.animalgenome.org/QTLdb/
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significant difference in coat color between Hainan pigs and the reference populations. Furthermore,
a potential signature of selection on SSC14 (rs81223780) was detected in Hainan pigs with either
Baoshan or Saba pigs as the reference population. This region was reported by Wilkinson et al. [43]
when black and partially black coat breeds (Large Black, Berkshire, Hampshire, British Saddleback)
were compared against red coat breeds (Duroc). The results from the present study, together with
those of Wilkinson et al. [43], suggest that a promising functional candidate region for pig coat color
has been identified and that this region could be of research interest in the future. Additionally, one
candidate gene associated with coat color (melanocortin 5 receptor, MC5R) was detected in this study.
The MC5R gene, a member of the melanocortin receptor gene family, has been reported to create a
ligand-dependent signal modulation with MC1R, which may participate in physiological color change
in flounder [44]. Moreover, another study reported that the MC5R gene polymorphism (A303G) may
affect the feed intake, feed conversion, and other physicochemical characteristics in Large White x
Landrace crossbred pigs [45].

The phenotypes of each individual were not included in most of the signatures of selection
detection analysis, hence the functional explanation of significant signals was usually less conclusive.
Although a new methodology for the detection of signature of selection for specific complex traits was
recently proposed by Beissinger et al. [46], the phenotypic values were not always available in such
research. The reported QTLs could serve as a reference or potential clue to understand the identified
signatures of selection. In this study, the Animal QTL database [38] and enrichment analysis were
used to enhance our understanding of the detected signature of selection. The QTLs overlapping
with potential selection regions were mainly related to traits of meat quality, disease resistance, and
growth. It is known that the meat quality of most Chinese indigenous pigs is superior, especially for
Ding’an and Tunchang pigs [25,26]. Traditionally, the priorities of pig domestication in China were
fat deposit and reproduction, which was confirmed by Wang et al. [24]. From this perspective, the
signatures of selection detected in this study would be related to those traits annotated from the above
analysis. However, we should be sufficiently cautious to conduct further specific functional research
based solely on the findings from signature detection. Pavlidis et al. [47] reported that annotation term
enrichment is known to not perform well when applied to selective sweeps.

Although some interesting findings were reported here, the limitations of the present study
should not be neglected. These include: (1) The low density of markers. The average distance between
adjacent SNPs is 100 kb and the average LD degree between pairs of SNPs with a distance within
200 kb of each population is 0.201, 0.168, 0.151, and 0.188 in Ding’an, Tunchang, Baoshan, and Saba
pigs, respectively. This indicates that the SNPs were not dense enough in the present study, although
similar SNP chips were used in other studies [23]; (2) the effectiveness of the two detection methods
used in this study. The FST method may bring a higher false positive rate compared with XP-EHH,
as suggested by Ma et al. [23]. Furthermore, the FST is suitable for the detection of genome regions
that are differentially fixed in different breeds, while XP-EHH is used in detecting variants which are
still segregating in populations and are a subject of ongoing selection. In addition, focusing on SNPs
detected by both methods, some potential signatures of selection among breeds might be neglected
and the combination of significant SNPs detected by one method might cause false positive results. To
provide comprehensive and balanced results, the significant SNPs detected by either two methods or
at least one method were provided and analyzed simultaneously in this study; (3) the small size of
the effective population of the three breeds might affect the FST statistic; and (4) the contrast between
Yunnan and Hainan pigs was insufficient. Although geographic isolation exists, the direction of
Chinese pig domestication was similar in different regions. These limitations together might impact
the observations of this study and should be overcome in further investigations.

In conclusion, some potential signatures of selection that might be functionally associated with
meat quality, disease resistance, and growth were detected in Hainan pig genomes. Moreover, potential
signatures of selection and two candidate genes were detected in Saba and Baoshan pig populations.
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This study may provide knowledge for the genetic foundation of adaptive evolution in three breeds of
South China indigenous pigs.
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