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Abstract

We conducted regional scale CO2 simulations using the Weather Research and Forecasting

model (WRF) coupled with the Vegetation Photosynthesis and Respiration Model (VPRM).

We contrasted simulated concentrations with column, ground and aircraft observations dur-

ing the Korea-United States Air Quality (KORUS-AQ) 2016 field campaign. Overall, WRF-

VPRM slightly underestimates CO2 concentrations at ground and column monitoring sites,

but it significantly underestimates at an inland tower measurement site, especially within the

stable (nocturnal) boundary layer in nighttime. The model successfully captures the airborne

vertical profiles but showed a large offset within the planetary boundary layer (PBL) in the

areas surrounding Seoul and around the Taeahn point source emissions in the west coastal

area of the Korean Peninsula. A case study flight intended to capture Chinese influence

observed no clear signals of long-range transport of CO2, due mainly to the much larger

magnitude of background CO2 concentrations. The calculated Net Ecosystem Exchange

(NEE) with flux measurements at a tower site in the South Korean Peninsula has also been

evaluated comparing with CO2 flux measurements at a flux tower site, resulting in the under-

estimation by less than a factor of 1.

Introduction

More than half of the global population resides in urban areas, and by 2050, the urban popula-

tion is expected to increase up to ~ 69% of the world population [1]. As urbanization expands

globally, the emissions of anthropogenic greenhouse gases (GHGs) have also increased. About

30%-40% of GHGs are emitted from urban areas, and these anthropogenic emissions are

related to severe weather phenomena, such as the increase of average atmospheric
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temperature, the increase and/or decrease of precipitation, the higher occurrence, and inten-

sity of serious weather phenomena [2]. Despite its low global warming potential relative to

other GHGs, the relative abundance of carbon dioxide (CO2) emissions make understanding

its emission sources critical [3].

A wide variety of studies have been conducted to better understand the effects of CO2 on

the carbon cycle between the atmosphere and the Earth’s surface, generally using either bot-

tom-up or top-down approaches. A bottom-up approach involves processing information

from surveys from individual base anthropogenic inventories, specifying industrial, residen-

tial, commercial and transport sectors. These individual inventories are then linked with car-

bon contents of each fuel type to produce a large, final emission inventory. Errors in this

approach are about ±5% uncertainty at the global scale [4] and about 50–200% at the urban

scale [5–6]. Upscaling of relations between biospheric CO2 flux measurements and environ-

mental factors, such as air temperature, radiation, water, and vegetation parameter, also belong

to this approach [7,8]. In contrast, a top-down approach is an empirical downscaling method.

For example, in inverse modeling, a predictive atmospheric transport model and a priori initial

estimates of surface CO2 fluxes are used to forecast observed concentrations and to estimate

the terrestrial CO2 exchange while maintaining consistency between observed and simulated

CO2 concentrations. The accuracy of this approach is limited by a priori initial estimates of

CO2 fluxes [9, 10].

For decades, neighborhood-scale (microscale) flux measurement studies have been carried

out to understand CO2 interactions between the surface and the atmosphere. AmeriFlux and

FluxNet have played an important role to quantify the Net Ecosystem Exchange (NEE) of CO2

[11] in primarily biogenic regions, while efforts to conduct flux measurements in urban areas

have been complicated by both anthropogenic emission sources and vegetative uptake [12–

14]. Observed concentrations are also used to retrieve NEE via large (global) scale inverse

modeling [15–17], However the lack of spatially explicit a priori flux estimates (i.e. representa-

tive errors) can cause large uncertainties for the production of posterior gridded emission

data. Between large scale models and flux measurements, the coarse resolution of global

inverse modeling makes it challenging to capture the fine resolution of neighborhood flux

measurements. To fill the significant scale-gap between the microscale flux measurements and

global inverse modeling, finer spatiotemporal resolution modeling is required.

Mesoscale (regional) meteorological models can be used to establish the link across this

scale gap. To this end, a vegetation photosynthesis and respiration model (VPRM) has been

coupled in the Weather Research and Forecast (WRF) model [18] and has been built-in to

WRF-Chem (hereafter WRF-VPRM) since version 3.4. This coupled model has been evaluated

over various vegetation dominated areas, such as croplands and forests and complex moun-

tainous terrain [19–21]. These studies reported significant improvements in capturing the spa-

tiotemporal variation of observed CO2 concentrations and fluxes not exhibited specifically in

global models. Additionally, the coupled model has been evaluated in urban areas where CO2

measurements are complicated by both man-made emission sources and vegetative contribu-

tions. Over the southern California region in the US, a sensitivity study focused on fossil fuel

CO2 emissions revealed that higher resolution input emissions resulted in a better improve-

ment of CO2 concentration simulation [22]. Another study over the same domain reported

significant improvements in NEE simulation after optimization of VPRM biospheric parame-

ters [23].

The rapid rate of development, and the associated increase in carbon emissions, over the

last five decades in East Asia, including China, Taiwan, Japan, and Korea, make it an impor-

tant target for understanding this coupling between global models and local measurements.

Based on the Global Carbon Atlas database [24], the East Asia area is identified as the biggest
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CO2 emission source: China ranked the 1st largest emission country by 26.3% of the world

total CO2 emissions in 2016, followed by Japan (3.6%), South- and North-Korea (1.9%), and

Taiwan (0.8%). Among fossil-fuel territories, coal (68.8%) was the most dominant emission

source, followed by oil (17.0%), cement (8.9%) and gas (5.1%) [25,26]. The transportation and

industrial processes primarily using fossil-fuel combustion become dominant anthropogenic

CO2 emission sources. The land-use changes also affect the CO2 emissions via the interactions

between the surface and the atmosphere: the East Asia uptake about-552 MtCO2, which is

about 20% of the global emissions 2,488 MtCO2 by land-use changes in 2010 [27,28].

In addition to their own domestic emissions, there are also diplomatic controversies among

the countries in East Asia, because air pollutants can affect other countries regionally. Specifi-

cally, air pollutants emitted from China can move over the West Sea and have been shown to

affect the air quality of other nations downwind, such as Taiwan, Japan, and Korea [29–31].

To investigate the factors contributing to poor air quality in Korea, the Korea-United States

Air Quality Study (KORUS-AQ) campaign was executed by both Korea’s National Institute of

Environmental Research (NIER) and the United States National Aeronautics and Space

Administration (NASA) in 2016 spring. The KORUS-AQ study conducted extensive observa-

tions of trace gases and aerosols in order to identify specific emission sources, and detailed

information can be found at the KORUS-AQ white paper [32].

Among a wide variety of trace gases, in which most of the air pollutants are involved, we

focused on CO2 in this study. We calculated WRF-VPRM over the Korean Peninsula during

the KORUS-AQ 2016 campaign period and evaluated the modeling performance comparing

with the concentration and flux observations as well as the meteorology.

Materials and methods

WRF-VPRM model

In this study, we used VPRM coupled in WRF-Chem (version 3.8.1); more detail can be found

in [18]. We utilized two-way nesting with grids at 10 km and 3.3 km resolution (Fig 1) and 38

vertical layers (with 12 layers below 1.5 km) extending up to 100 hPa. Initial conditions (ICs)

and boundary conditions (BCs) for meteorological fields for the WRF modeling were fed from

the 3-hr GDAS/FNL 0.25 degree global tropospheric analyses and forecast grids data of

National Centers for Environmental Prediction [33] and the 6-hr National Centers for Envi-

ronmental Prediction (NCEP) SST dataset with 8-km horizontal resolution data [34]. The

WRF Single Moment (WSM) 3-class microphysics scheme, New-Grell cumulus scheme (only

for a coarse domain), and Rapid Radiative Transfer Model (RRTMG) short- and long-wave

radiation scheme were used. The Yonsei University scheme [35] with the topo-wind and pbl-

mix options were used for the Planetary Boundary Layer (PBL), which we determined based

on sensitivity tests (S1 Table). The WRF four-dimensional data assimilation (FDDA) was

applied using the grid nudging options. We conducted the numerical simulation during two

periods: (1) from April 26 00:00 UTC to May 11 00:00 UTC, and (2) from May 12 00:00 UTC

to June 10 00:00 UTC, with 5 days spin-up time for each simulation.

Vegetation photosynthesis and respiration model

Biospheric CO2 fluxes were calculated in the VPRM module, using land-use and satellite data,

and simulated air temperature and radiation [18]. In detail, vegetation is classified into 8 land-

use categories, including evergreen forest, deciduous broadleaf forest, mixed forest, shrubs,

savanna, cropland, grassland, and urban/water area, based on the 1-km global Synergetic Land

Cover Product (SYNMAP) data [36]. Each vegetation category has its own biospheric parame-

ters, called VRPM parameters.

Numerical simulation of atmospheric CO2 concentration and flux during Korus-AQ 2016 campaign
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The Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) from the

Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data are used

to generate the scaled temperature (Tscale), physiological index (Pscale), and canopy water con-

tent (Wscale). These scaling factors and the VPRM parameters, including the maximum quan-

tum yield (λ) and the half-saturation value of photosynthetically active radiation (PAR0), are

used to calculate the Gross Ecosystem Exchange (GEE). The simulated shortwave radiation

(SW) is used for the photosynthetically active radiation (PAR), as SW is strongly correlated

with PAR: SW� 0.505 × PAR (units: SW, W m-2; PAR, μmol m-2 s-1) [18]. The respiration

rate (RESP) is calculated from the WRF’s 2-m air temperature (T) along with first order linear

parameters, including a slope (α), and an intercept (β). The summarized equations for the cal-

culation of NEE (GEE + RESP) used in the VPRM module are below:

GEE ¼ l� Tscale �Wscale � Pscale �
1

ð1þ PAR=PAR0Þ
� PAR� EVI ð1Þ

RESP ¼ a� Tþ b ð2Þ

The VPRM parameters should be optimized based on local CO2 flux measurements for

each representative land-use class. However, due to the lack of observations over the study

domain during the study period, we used the default VPRM parameters.

Fig 1. Domains for WRF-VPRM modeling framework. In the fine domain (d02), the DC-8 aircraft 6-min flight tracks marked as dots, and the ground CO2

measurement sites are marked with color circles. Three-digit numbers indicate KMA’s rawinsonde sites, and names in blue indicate the flight group for the vertical profile.

https://doi.org/10.1371/journal.pone.0228106.g001
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Fossil fuel CO2 emissions

In this study, we used the NOAA 2016 CarbonTracker 3D CO2 mole fraction data (version

CT2017 for CO2 lateral boundary and initial conditions. The 3-hr CT2017 data, containing

global background, photosynthesis/respiration by biosphere, fires, combustion of fossil fuels,

and air-sea exchange, covers all globe up to the tropopause, with 2.5˚ × 2.5˚ spatial resolution

[37]. To feed surface boundary conditions for CO2, hourly fossil fuel CO2 emission data for

the year 2015 from the Fossil-Fuel Data Assimilation System (FFDAS) [38], gridded at 10 km,

were used. The FFDAS is a data assimilation system that estimates the fossil fuel CO2 emis-

sions at every grid cell by solving the Kaya identity, which expresses emissions as a product of

population density, per capita economic activity, energy intensity of the economy, and carbon

intensity of energy [39]. A series of spatially explicit observation data are used to constrain

each factor in the Kaya identity. The FFDAS uses remote sensing-based nighttime lights data,

gridded population sector-based fossil fuel CO2 emissions from the International Energy

Agency (IEA), and global power plant CO2 emissions [6]. Natively, the FFDAS estimates fossil

fuel CO2 emissions at 0.1˚ and annual resolutions over the globe. Nasaar et al. [40] derived

scale factors that can apply to global emission data to represent the diurnal and weekly cycles

of fossil fuel CO2 emission variation at 0.25˚ × 0.25˚ resolution, which we used for this study.

Observation data

In order to better understand the factors contributing to poor air quality in Korea, the KORU-

S-AQ campaign was performed by both Korea’s National Institute of Environmental Research

(NIER) and the United States National Aeronautics and Space Administration (NASA) from

May to early June 2016. The KORUS-AQ study conducted extensively spatial and vertical

observations of both trace gases and aerosols using ground sites, aircraft, and vessels in order

to identify specific emission sources and support policymakers to establish air quality mitiga-

tion strategies. Detailed information is available on NASA’s KORUS-AQ webpage [41].

The NASA DC-8 aircraft was instrumented to measure vertical profiles of meteorological

variables and chemical species. Ambient CO2 dry molar ratios were measured using a modi-

fied commercial non-dispersive infrared (NDIR) spectrometer (LI-COR 6252) with a com-

bined precision and accuracy of 0.1 ppm (1σ) at a 1 Hz sampling rate. In addition, we used the

92 Automated Synoptic Observation System (ASOS) data and 6 rawinsonde data of the Korean

Meteorological Administration (KMA) to evaluate the meteorological modeling performance.

In order to estimate simulated column concentrations, we used the Total Carbon Column

Observing Network (TCCON) data [42].

We also evaluated ground level CO2 concentrations using a variety of measurements at dif-

ferent sites, summarized in Table 1. These include the World Meteorological Organization

Global Atmosphere Watch (WMO GAW) data [43] at not only Anmyeondo (AN), Jeju Gosan

(GO) and Uleungdo (UL) but also Boseong (BO). BO is a tall tower site which can measure

vertical profiles of CO2 at 60 m, 140 m and 300 m a.g.l., but only 60-m and 300-m data were

available during the study period. The instrumentation is located in the middle of cropland,

mainly consisting of rice paddies, that opens to a bay area to the south and is surrounded by

hills in the other directions ~ 2–3 km from the tower. Small residential houses and farming

warehouses are located at the mountain base.

Results and discussion

The simulated results for the finest domain (d02) have been evaluated by comparing with col-

umn, ground, aircraft and flux observations from May 1 to June 10, 2016. The basic statistical

measures used mainly here are the Mean Bias (MB), the Root Mean Square Error (RMSE), and

Numerical simulation of atmospheric CO2 concentration and flux during Korus-AQ 2016 campaign
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the Index of Agreement (IOA [44]) The individual equations can be expressed as below:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
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where, Mi and Oi indicate modeling results and observations, respectively, at each grid point

(i). The time used in this manuscript is South Korean Local Standard Time (LST) unless other-

wise specified.

Meteorological evaluation

We compared the simulated meteorological results from WRF-VPRM with 93 ground mea-

surements at ASOS sites run by KMA. The observed, averaged 2-m temperature, which is an

important meteorological factor for the calculation of vegetation respiration in the VPRM

module, was 18.5˚C with the model underestimating by 1.0˚C (IOA = 0.94). The averaged

10-m wind speed was 2.1 m s-1 with the model underestimating by 0.2 m s-1 (IOA = 0.81). The

10-m wind directions ranged from 190–280˚, and the dominant wind direction was SW and

W during the study period, except May 10 and 11 (NE wind direction). The simulated offset in

wind direction was < 15˚in average.

The vertical profiles of simulated meteorology were also evaluated with 6 rawinsonde obser-

vations [45]. The model underestimated the potential temperature by 0.1˚C and wind speeds

by 0.4 m s-1. The simulated PBL height (PBLH) is also critical, because trace gas concentrations

are ultimately determined by the volume of PBL. PBLH was calculated using the bulk Richard-

son number [46]. WRF-VPRM successfully captured the diurnal variation in PBLH, which

Table 1. Description of ground and column CO2 measurements.

Site Latitude, Longitude Elevation

(m a.g.l)

Contributor CO2 Instrument

Ground concentration observation

UL 37˚28’48"N, 130˚54’00"E 10 KMA G2301

(Picarro, USA)

AN 36˚32’19"N, 126˚19’48"E 40 WMO GAW of KMA (AMY) G2301

(Picarro, USA)

GO 33˚10’48"N, 126˚ 7’12"E 12 WMO GAW of KMA (JGS) G1301

(Picarro, USA)

BO 34˚45’47.95”N, 127˚12’49.31”E 60, 300 KMA Li-7500 (Licor, USA)

Column concentration observation

AN 36˚32’19"N,

126˚19’48"E

25 WMO GAW of KMA (AMY) IFS-125HR (Bruker, Germany)

The Picarro ground instruments were calibrated weekly.

https://doi.org/10.1371/journal.pone.0228106.t001
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began to increase at ~ 06:00 LST, reached a peak at ~ 15:00 LST, and then decreased until ~

20:00 LST. The model underestimated by ~ 73 m in average.

Comparison with ground observations

Horizontal spatiotemporal distribution. Spatiotemporal variations in atmospheric CO2

concentrations are typically associated with the spatial distribution of emission sources and

biosphere combined with the temporal variations in PBLH. Fig 2 shows the horizontal distri-

bution of land cover retrieved from SYNMAP and emissions from FFDAS in the study

domain. The significant point sources are mainly located in the west side of mid-Korea, mostly

in and near the Taeahn peninsula, in which Yeongheung and Boryeong power plants and Dae-

san and Dangjin industrial complexes exist. Gwangyang and Yeosu industrial areas are also

identified as large point sources in the south. Among several major cities of Korea, Seoul Met-

ropolitan Area and its vicinity (SMA, a capital area) showed the largest area emissions, fol-

lowed by Ulsan (Korean largest petrochemical industrial city), and Busan (Korean largest

harbor city). The ranges of emissions are reported by color code in S1 Fig.

The highest CO2 concentrations appeared in the early morning (06:00–09:00 LST), associ-

ated with the lowest PBLH and the morning rush-hour vehicle emissions (not shown). Around

noon, when the PBL fully developed and vegetation uptake thoroughly increased, the CO2

concentration remained low until late afternoon. After that, the concentration began to

Fig 2. Spatial distribution of (a) land cover retrieved from SYNMAP and (b) anthropogenic emission from FDDA emission data in the finest domain. The ranges of

anthropogenic emissions are displayed in S1 Fig. Names in square boxes indicate top 9 highest emission areas in Korea.

https://doi.org/10.1371/journal.pone.0228106.g002
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gradually increase again by the start of evening rush-hour while PBLH decreased. The

increased concentration remained high through the night until early next morning.

Column and ground concentrations. Before the further comparison of the simulated

results with the ground and vertical observations, it is necessary to confirm the total mass con-

sistency in the modeling domain. A total column concentration of CO2 simulated can be com-

pared with the observed column CO2 concentration (xCO2) data acquired from the TCCON

site at AN. The averaged xCO2 showed 405.4±0.7 ppm, and the vertical accumulated concen-

tration of WRF-VPRM was underestimated by approximately 0.3 ppm, which is comparable

to the resolution of TCCON (0.25 ppm).

At the Korean CO2 background monitoring sites at AN, GO and UL observed mean con-

centrations of 414.1±2.9 ppm, 411.9±4.4 ppm, and 410.5±3.9 ppm, respectively, during the

study period. Assuming that the UL mean is the background concentration of our study

domain (Korea), it was about 2–7 ppm higher than the global CO2 background measured at

Mauna Loa (408±1 ppm) in May 2016 [47]. At each CO2 monitoring site, WRF-VPRM under-

estimated the CO2 concentration at AN by 2.4 ppm (RMSE = 3.6) and at GO by 0.4 ppm

(RMSE = 4.7) and overestimated at UL by 0.7 ppm (RMSE = 4.6), on average. The larger MB

at AN is likely from the relatively more sparse observations (only four days) compared with

the other two sites.

Besides the uncertainties from simulated meteorology, the impact of the temporal scaling

factors in the FFDAS emission data, which enables annual global emission data to have a diur-

nal and weekly cycle, can introduce uncertainty in our simulations. Based on sensitivity tests

using GEOS-Chem [40], the impact of the scaling factor on the surface atmospheric CO2 was

negligible for areas far from sources and ranged approximately from 1.5 to 8 ppm over large

urban areas. Its effect on the xCO2 was as high as 0.1–0.5 ppm over the major urban areas.

Judging on the locations of the three CO2 monitoring sites, which are set up among the areas

far-from and nearby sources, our simulation MB is tolerable.

The model captured the clear diurnal variations: dominant peaks appeared at 06:00–07:00

LST due to the CO2 emitted on the early morning and/or carried-over from the previous day

when PBLHs were still low. In spring, as the vegetation starts to grow, it is expected that the

CO2 concentration will gradually decrease as biospheric uptake increases. The variation of

daily minimum CO2 observations, which can minimize the influence of erratic anthropogenic

CO2, can be a good tool to check the temporal trend. Fig 3 shows the 5-day moving average of

observed and simulated daily minimum CO2 concentrations, indicating that our model suc-

cessfully captured the CO2 decreasing trend as summer comes.

In addition to evaluation using ground CO2 monitoring sites, we estimated the modeling

performance with a tall tower observation at BO (Fig 1) at both 60 m and 300 m a.g.l. Note

that vertical CO2 concentrations provided by tower sites were only available at BO during the

study period. Fig 4 shows the averaged diurnal variation of the observed and simulated CO2

concentrations, temperature and winds at each level. The observations at 60 m and 300 m

showed a peak at ~06:00 LST and ~09:00 LST, respectively, then both concentrations gradually

decreased until ~ 18:00 LST and then increased through the night. The concentrations at the

lower level showed 3.8 ppm and 9.7 ppm higher than that at the upper level in day- and night-

time, respectively. The larger difference at night can be interpreted at the point of view of

micrometeorology. At night, the 60 m level was within the stable (nocturnal) boundary layer,

while the 300 m level was located in the residual layer. The nighttime inversion was observed

in temperature as well, and the averaged PBLH calculated by WRF was ~100m under the

assumption that we can treat the nighttime PBLH as the top of the stable boundary layer. Inter-

estingly, the inversion appeared unique to the study period, as it was not observed in the other

spring (S2 Fig). During mid-day, in contrast, there was much less difference in concentrations

Numerical simulation of atmospheric CO2 concentration and flux during Korus-AQ 2016 campaign
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(~ 2 ppm) because the two levels were together within the mixed layer. Overall, the observa-

tions showed a typical diurnal variation of CO2 concentration within PBL.

Our model successfully captured the diurnal variation of CO2 concentrations at 300m, and

the simulated results underestimated by approximately 3.9 ppm (RMSE = 9.6) and 0.5 ppm

(RMSE = 18.8) in day- and nighttime, respectively. At 60 m, on the other hand, the model

failed to capture the amplitude of temporal variations and significantly underestimated night-

time concentrations by 10.3 ppm (RMSE = 14.3). The uncertainties of WRF-VPRM can be

caused by vertical mixing, advection, initial fields, emissions and VPRM parameters, described

in previous WRF-VPRM studies [19,21]. Considering the model’s reliable simulation perfor-

mance in micrometeorology, as previously described, the significant offset of CO2 concentra-

tion at 60 m was likely due to the uncertainty of emissions around BO. The prevailing winds

were from the south, where the local emission sources, such as fishery boats, vehicles, small

factories and residential houses in the bay area, are located. These small emission sources are

not mandatory to report, so they are not likely fully represented in the relatively coarser resolu-

tion of emission inventories. In sum, due to the underestimated nighttime emissions at each

grid in model, the model failed to capture the accumulated concentrations within the stable

(nocturnal) boundary layer, at least around BO during the study period.

We also evaluated the vertical gradient in CO2 concentrations, using the daily minimum

values at two levels, resulting in that the model underestimated by about a factor of 2, due to

the significant underestimation of CO2 concentration as described above. It is not clear

whether this relatively poorer performance can be also shown in other areas, due to the sparser

tower observations. Instead, aircraft observations are helpful for estimating the vertical gradi-

ent at higher levels.

Comparison with aircraft measurements

In this section, we evaluated WRF-VPRM’s performance with the NASA DC-8 aircraft obser-

vations. The 4-D fields of simulated CO2 concentrations were collocated with flight tracks in

Fig 3. 5-day moving average of observed and simulated daily minimum CO2 concentrations at GO and UL.

https://doi.org/10.1371/journal.pone.0228106.g003
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space and time at each hourly simulation output. The averaged offset of pressure between the

simulated results and the DC-8 observations was ~10±15 hPa in total 18-flight days. In each

day of observations, DC-8 took off and flew along planned routes (Fig 1). For the clarity, we

divided the aircraft observations into four groups, based on the land cover below the flight

tracks and the type of emission sources: SMA, the West (Yellow) Sea, and two main domestic

airways in Korea. The SMA represents air quality over the Korean capital city, in which

anthropogenic combustion emissions are dominant. The flight tracks over the West (Yellow)

Sea were intended to detect the long-range transport of air pollutants from China, where the

DC-8 took meridional tracks over the ocean forming a “wall” between China and the Korean

Peninsula. The two domestic airways, connecting Seoul to Jeju (J-route) and Busan (B-route),

which are the most frequent observation routes that DC-8 took during the study period. The J-

Fig 4. Diurnal variation of CO2 concentrations and meteorology, observed and simulated, at the flux tower site (BO) at 60 m

and 300 m a.g.l. Vertical gray lines indicate 1- σ of observations.

https://doi.org/10.1371/journal.pone.0228106.g004
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route was designed to sample the air over local point sources, transported air from the West

Sea, and croplands. In contrast, the B-route was designed to capture the biospheric activity

mostly over mountains and the Busan urban emission.

Fig 5 displays DC-8 flight tracks with observed CO2 concentrations on representative flight

days: May 25 mainly over the West Sea, June 3 for the domestic airways, and June 5 near the

Taeahn peninsula. We evaluated the model’s performance based on the analysis of time series

and vertical profiles of each group (Fig 6 and Fig 7). The full set of time series for 18 individual

flights is provided in S3 Fig and S4 Fig. During the study period, the aircraft flew over various

land-cover and land-use types, maneuvering in and out of the PBL. Overall, as expected, the

lower concentrations appeared at higher altitudes and/or over the ocean, while the higher con-

centrations emerged over urban areas and/or within the PBL. In the vertical profiles in Fig 7,

observed CO2 concentrations exhibited the maximum concentrations at< 1 km and gradually

decreased along with the height up to 7–10 km, showing the minima at about 2–3 km. Overall,

the averaged concentration observed was 410.2±5.2 ppm across all flights. WRF-VPRM under-

estimated concentrations by 1.7 ppm (RMSE = 6.9, IOA = 0.6), and the averaged CO2 concen-

trations above the PBL ranged from 407.1 ppm to 409.7 ppm, while those within the PBL

showed the largest biases mainly from SMA.

The Seoul metropolitan area (SMA). About 55% of the measurements were taken below

~1.5 km by the DC-8 when it flew over the SMA. Within the PBL, this group showed the high-

est averaged concentration of 420.6 ppm compared with other groups. This high value is most

likely to be driven by Seoul populated local emissions. WRF-VPRM captured the CO2 vertical

profile over the SMA like other groups, except near the ground (Fig 7). The simulated results

underestimate concentrations by 7.3 ppm and 0.4 ppm within and above the PBL, respectively.

The large bias in the PBL concentrations may be caused by the simulated deficiency from

both/either the vertical gradient CO2 near the ground and/or the incompletely established

emissions over the SMA. We roughly assumed that the vertical gradient of CO2 concentration

within the PBL can be calculated by the difference in concentration between the ground and

the 2-km level. The model underestimated the vertical gradient by ~ 30%. This implies that

densely populated emissions in Seoul are not fully resolved in our model and it causes the

underestimation. Tang et al. [48] also reported a similar poor result in the same study domain

and period, using a different model, the Copernicus Atmosphere Monitoring Service (CAMS),

and pointed out the limit of the model’s resolution.

The West (Yellow) Sea. The effects on CO2 concentrations from long-range advection

from the outside of the Korean Peninsula should be also considered. Legs of DC-8 flight tracks

on May 4, 18, 25, 30, and 31 (LST) were designed to detect outflow plumes from China, flying

along the “wall” tracks over the West Sea. We displayed the simulated results over East Asia on

May 25, for example, in Fig 8. The polluted air plumes starting from highly populated cities,

such as Shanghai, Tianjin, and Hangzhou in China, flew in westerlies and arrived to the “wall”

within a day. The averaged observed CO2 concentration was 410.9 ppm and was underesti-

mated by WRF-VPRM by ~2.3 ppm (RMSE = 5.5) for the five days of flight tracks along the

wall. In order to quantify the magnitude of China’s outflow, we conducted additional numeri-

cal experiments in which we used the same simulation configurations, described in Sect. 2, but

enabling only China’s FFDAS emissions in order to to detect the simulated advection of CO2

originating from China. It was expected that the concentration difference between the two

cases under westerly wind conditions would help quantify the effects of long-range CO2 trans-

port at the “wall”. However, the averaged difference was ~0.2 ppm (RMSE = 0.6; IOA = 0.99),

which is too low to clearly quantify the effects of China’s outflow compared with the atmo-

spheric background CO2 concentration. It also agrees to the results of Tang et al. [48].
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Seoul-Jeju and Seoul-Busan airways. Among several domestic commercial airways in

Korea, two routes (J- and B-route) were chosen for the investigation by DC-8 aircraft observa-

tions. The J-route is close to the western coastal areas of the Korean Peninsula and has more

anthropogenic emission sources and croplands, while the B-route is located over more forested

inland areas. In May 2016, the J- and B-route had 8,176 and 1,646 flights in total, respectively,

including both passenger and freight flights, based on statistics from Korea Airports Corpora-

tion [49]. However, the effects of this number of domestic aircraft on CO2 concentrations is

minor compared with the surface anthropogenic emissions below the flight tracks. In the

South Korean Peninsula, there are a lot of huge point sources, such as fossil-fuel power plants

and industrial areas. About 30% of the total 39 fossil-fuel power plants of Korea in 2016 were

located in the western part of Korea, and they generated energy of ~ 16 GW out of ~ 32 GW of

all Korean fossil-fuel power plants, reported by the electric power statistics information system

[50]. Overall, the averaged concentrations on J- and B-route were 410.3 ppm and 408.1 ppm,

respectively.

The effects of the point sources on the simulated results were also very apparent. On June 2

and 3 (Fig 5), for example, the flight tracks were designed to cover both J- and B-routes. DC-8

detected hot spots (up to ~ 450 ppm) for two consecutive days, when the aircraft made a slight

detour from the direct J-route to the northern tip of the Taeahn peninsula. The uncertainty

caused by the point sources can be clearer by removing these hot spots in DC-8 observations.

After removing the peaks, the MB in the simulated results was significantly reduced by a factor

of ~ 5. On June 5 (Fig 5), the flight track was specifically designed for a more intense survey of

point sources around the Taeahn peninsula. Comparing with other aircraft observations, the

simulated results failed to capture these huge peaks and significantly underestimated CO2 by

4.6 ppm (RMSE = 11.5). The poorer statistics are due mainly to the scattered point sources

that are not fully resolved and/or that are blended in coarser grids compared with the spatial

scale of aircraft observations. That is, while the aircraft observed air pollutants at the subgrid

scale, the model was not able to fully detect them within its lower resolution (3.3 km). Regional

scale inverse modeling can help us better estimate the locations of these local sources using air-

craft-based prior observations, as shown by Brioude et al. [51]. However, this is outside of the

scope of this study.

CO2 fluxes

Although CO2 is chemically inert in the atmosphere, it continuously interacts with the bio-

sphere, so CO2 flux simulation is necessary to estimate atmospheric CO2. The interactions can

be represented by NEE. VPRM provides the NEE as the sum of GEE and RESP (Sect. 2.2). The

simulated NEE can be evaluated by comparing with measured CO2 fluxes for each vegetation

type. Under the assumption of that the simulated NEE equals to the measured CO2 flux as sug-

gested by Park et al. [23], we compared the observed flux data at the ground level with the NEE

at BO during the study period (Fig 9). The simulated results showed the clear diurnal effects of

vegetation: the daytime negative values due to photosynthesis and the nighttime positive values

driven by biospheric respiration. The time series of NEE showed increased intensity in sum-

mer, which is inversely correlated with decreasing of CO2 concentrations (Sect. 4.2). Median

values of observed fluxes were -0.20 μmol m-2 s-1 and 0.84 μmol m-2 s-1, and our model showed

approximately +98% and -52% offset in day- and night-time, respectively.

Fig 5. Flight time and CO2 concentrations observed along the DC-8 flight tracks on May 25, and June 3 and 5. The colored

arrows indicate the peaks marked in Fig 6.

https://doi.org/10.1371/journal.pone.0228106.g005
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Fig 6. Time series of CO2 concentrations, simulated (red solid lines) and observed (black dots), in each upper panel; and DC-8 flight altitude

(black dashed line) and simulated PBLH (purple solid line) over the land use with color code in each bottom panel. Land-cover types at the

aircraft locations are represented by color codes as Fig 1. The colored arrows indicate the dominant peaks and their flight locations are marked

in Fig 5.

https://doi.org/10.1371/journal.pone.0228106.g006
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The uncertainty in the simulated NEE can be influenced by several factors. First, errors in

simulated 2-m air temperature can generate biased NEE, as pointed out in previous studies

[18,20]. Our validation statistics showed the simulated 2-m temperature was quite close to

observations, so the meteorological uncertainty can likely be neglected. Second, direct compar-

ison of simulated NEEs with measured CO2 fluxes can also cause large uncertainties, because

the flux measurement naturally includes a CO2 storage term within the canopy [52]. The big-

ger the storage term of CO2 fluxes, the larger offset in NEEs. The canopy within the fetch of

the flux site at BO dominantly consists of short rice fields, which would minimize the uncer-

tainty from the storage term bias compared with tall and large-bodied tree canopies. Third,

VPRM parameters can add uncertainty to the NEE. As described in Sect. 3, the VPRM param-

eters represent vegetation characteristics, such as light efficiency, photosynthetic active rate,

and respiration, which should be optimized based on the flux measurement data. A few studies

applying this optimization have been conducted: Jamroensan [20] improved CO2 modeling

performance by adding a new category of vegetation such as soybean over the Midwestern US;

Park et al. [23] also improved the NEE simulation results, optimizing VPRM parameters over

the Southern California basin.

The VPRM parameters should ideally be optimized at flux measurement sites in various

vegetation types. We could not conduct this optimization due to the lack of flux measurement

data during this study domain and period. In another study period, where the abundance of

long-term (> 1yr) flux observations is available, future studies could suggest improved param-

eters for the Korean Peninsula.

Conclusions

Over a study domain, the South Korean Peninsula, we conducted numerical simulations of

atmospheric CO2, using a coupled WRF-VPRM model. The model’s performance was evalu-

ated by comparing with observations acquired from ground CO2 monitoring sites, a TCCON

spectrometer, a CO2 flux site, and NASA DC-8 aircraft observations during the KORUS-AQ

2016 field campaign. WRF-VPRM successfully captured the spatiotemporal variation of CO2

concentrations over the South Korean Peninsula, strongly associated with the temporal varia-

tions of PBL and the spatial distribution of emission sources and biosphere.

Fig 7. Vertical profile of CO2 concentrations for each section, including SMA, J- and B-route and the West Sea as well as all

flights during the study period. Red and black dot-lines indicate WRF-VPRM results and NASA DC-8 aircraft observations,

respectively.

https://doi.org/10.1371/journal.pone.0228106.g007

Numerical simulation of atmospheric CO2 concentration and flux during Korus-AQ 2016 campaign

PLOS ONE | https://doi.org/10.1371/journal.pone.0228106 January 24, 2020 15 / 21

https://doi.org/10.1371/journal.pone.0228106.g007
https://doi.org/10.1371/journal.pone.0228106


The simulated results were comparable with the ground CO2 concentrations observed at

two CO2 monitoring sites, GO (MB ~ -0.4 ppm) and UL (MB ~ -0.7 ppm), and with the CO2

column concentration from the TCCON spectrometer at AN (MB ~ -0.3 ppm). Beside the

monitoring sites, we also compared simulations with tower observations at BO. The model sig-

nificantly underestimated the concentration at 60 m at night and the vertical gradient of CO2

Fig 8. Spatiotemporal variations of CO2 concentrations over the coarse domain at the ground level on May 24

(upper panel) and 25 (bottom panel) at 09:00 LST.

https://doi.org/10.1371/journal.pone.0228106.g008
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from tower observations (BO). This large uncertainty was likely due to the unresolved local

emission sources in the model.

Our model successfully captured the diurnal variation of CO2 concentrations at 300m, and

the simulated results underestimated CO2 by approximately 3.9 ppm (RMSE = 9.6) and

0.5 ppm (RMSE = 18.8) in day- and nighttime. At 60 m, on the other hand, the model failed to

capture the amplitude of temporal variations and significantly underestimated nighttime con-

centrations by 10.3 ppm (RMSE = 14.3).

Besides the monitoring sites, the model’s performance was also evaluated at an inland

tower site at BO. WRF-VPRM underestimated the CO2 concentration by ~3 ppm at 300 m

and ~9 ppm at 60 m. The largest bias occurred in nighttime at 60 m. During the study period,

there was a nighttime inversion layer, the height of which was located between 60 m and 300

m. Considering the model’s successful simulated results of the nighttime stable (nocturnal)

boundary layer, the main culprit of the significant underestimation likely resides with the fact

that the relatively coarser emission data FFDAS could not fully resolve the local sources around

BO (Sect. 3.2).

At higher altitudes, the simulated results were evaluated with the NASA DC-8 aircraft

observations, separated into four flight groups: SMA, the West Sea, and the J- and B-route.

The model captured variations in CO2 concentrations along the DC-8 flight tracks, depending

on horizontal and vertical locations. However, it failed to capture large concentrations spikes

appearing in the PBL, especially over the SMA where Seoul urban emissions are dominant,

and over the Taeahn Peninsula, where power plants and industrial complexes are densely

located. Overall, the western part of Korea contains the dominant emission sources in the

study domain.

The influence of long-range transport of CO2 from China was also investigated on May 25,

when the DC-8 aircraft flew along the “wall” flight track over the West Sea. The model cap-

tured the time series of CO2 concentrations. To investigate the effect of plume transported

from China, we conducted additional simulations in which only Chinese emissions were estab-

lished. Unexpectedly, the magnitude of concentrations transported from China was very low

Fig 9. Averaged diurnal variation of simulated NEEs and observed CO2 fluxes at BO (60 m). Vertical gray lines

indicate 1-σ of observations.

https://doi.org/10.1371/journal.pone.0228106.g009
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compared to the background CO2 concentration. Therefore, we were not able to quantify any

significant CO2 advection from China from this particular case.

In addition to the evaluation of CO2 concentrations, we also compared the simulated NEE

with measured CO2 fluxes at a flux tower to evaluate the modeling performance for the CO2

exchange between the biosphere and the atmosphere. Although the model captured the tem-

poral variability in the fluxes: negative and positive values during day- and night-time, respec-

tively, it showed a significant offset compared with the observed fluxes. VPRM parameters are

variable season by season and region by region, so they should be optimized at each vegetation

type. Further optimization of VPRM parameters could lead to better performance, as sug-

gested in previous studies, but was not possible for this study due to the lack of available suffi-

cient flux data at various vegetation types over a long time period (> 1 yr).

The output of this modeling work can be used to validate remote sensing instruments, such

as GOSAT and OCO-2. The results are also useful to support environmental mitigation policy

of the Ministry of Environment, especially for the fossil-fuel carbon emission controls, and/or

biospheric management in Korean Government.
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