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Organocatalytic enantioselective dearomatization
of thiophenes by 1,10-conjugate addition of indole
imine methides
Xingguang Li 1,2,5, Meng Duan 3,4,5, Peiyuan Yu 4, K. N. Houk 3✉ & Jianwei Sun 1,2✉

Catalytic asymmetric dearomatization (CADA) is a powerful tool for the rapid construction of

diverse chiral cyclic molecules from cheap and easily available arenes. This work reports an

organocatalytic enantioselective dearomatization of substituted thiophenes in the context of

a rare remote asymmetric 1,10-conjugate addition. By suitable stabilization of the thiophenyl

carbocation with an indole motif in the form of indole imine methide, excellent remote

chemo-, regio-, and stereocontrol in the nucleophilic addition can be achieved with chiral

phosphoric acid catalysis under mild conditions. This protocol can be successfully extended

to the asymmetric dearomatization of other heteroarenes including selenophenes and furans.

Control experiments and DFT calculations demonstrate a possible pathway in which

hydrogen bonding plays an important role in selectivity control.
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Catalytic asymmetric dearomatization (CADA) reactions
have gained attention in the past few years since they offer
direct and rapid access to enantioenriched functionalized

ring systems and complex heterocyclic skeletons from simple and
readily available arenes1–7. For example, CADA has been a
pivotal step in the syntheses of many natural products and
drugs8–13. Generally, thiophene is less prone to dearomative
transformations than other common heteroarenes (e.g., furan,
pyrrole, pyridine), owing to its relatively high resonance stabili-
zation energy (Fig. 1a)6,14. Consequently, a high energy barrier is
typically encountered, resulting in often harsh conditions for this
type of transformations and imposing formidable challenges in
controlling regioselectivity and stereoselectivity15–18. Beyond that,
the strong coordination ability of the generated sulfur-containing
product may deactivate the metal catalyst or interfere with ste-
reocontrol by competing for binding, thus representing another
important issue to address. These challenges have hampered the
development of CADA of thiophenes. To the best of our
knowledge, the only general example of this type was achieved by
Glorius and coworkers via metal-catalyzed hydrogenation, lead-
ing to enantioenriched tetrahydrothiophenes (Fig. 1b)19. In
contrast, the application of organocatalysis for such processes

would be natural owning to the metal-free nature. However,
challenges still remain in order to overcome the high barrier and
achieve good stereocontrol20. Herein we report an organocatalytic
approach (Fig. 1c).

As depicted in Fig. 1d, we hypothesized that, upon chiral acid
activation, a 2-thiophenyl tertiary alcohol might generate a
benzylic carbocation IP-a, with a chiral counter anion. The
adjacent cation should activate the thiophene ring, for example,
with charge delocalization represented in the resonance form
IP-b. Subsequently, nucleophilic attack might take place in the
fifth position of the thiophene ring. Furthermore, the chiral
counter anion might induce asymmetric control in this step,
leading to enantioenriched dearomatization product 3. Notably,
in addition to the inevitable remote enantiocontrol, this process
will encounter other challenges, including regiocontrol
on the nucleophilic sites and control over the double bond
Z/E-configuration18. Product side reactions, such as
rearomatization21, could provide chemoselectivity challenges.
To address these potential problems, we envisioned that further
stabilization of the positive charge by extended conjugation
(e.g., quinone methide (QM) or indole imine methide) in a rigid
framework might help selectivity control.
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Indole-based imine methides have been demonstrated to be
versatile intermediates in a range of organocatalytic asym-
memtric transformations, particularly in 1,4- or 1,6-conjugate
addition22–29 and cycloaddition30–34, leading to diverse
enantioenriched indole derivatives35–38. Among them, we
have reported an asymmetric 1,6-conjugate addition of such
intermediates for the synthesis of chiral tetraarylmethanes
containing an indole unit29. Recently, Antilla’s group and our
group have developed remote asymmetric 1,8-addition to such
species with chiral phosphoric acid (CPA) catalysis, providing
efficient access to enantioenriched triarylmethanes and
allenes, respectively39,40. Inspired by these studies and in
continuation of our interests in remote stereocontrol, we
envisioned the possibility of achieving further remote stereo-
control with this system. When the thiophene benzylic cation
is adorned with a 2-indolyl group, this cation is stabilized in
the form of highly conjugated indole imine methide IP-b′
(Fig. 1d). Further nucleophilic conjugate addition is expected
to take place at the tenth position based on our preliminary
results, thereby representing not only thiophene dear-
omatization but also remote 1,10-conjugate addition. Notably,
such remote stereocontrol has been rarely observed41–43. In
addition, this dearomative 1,10-addition entails additional
selectivity control, such as regioselectivity (1,6- vs. 1,10-
addition), double bond Z/E selectivity, and axial chirality in
some cases, none of which was a major problem in previous

precedents of 1,6- and 1,8-addition of indole imine-methides.
With the powerful bifunctional activation with CPA catalysis
for remote control44–55, herein we have realized such an
efficient asymmetric process.

Results and discussion
Reaction development. Our initial studies took advantage of QM
intermediates for the asymmetric conjugate addition (see the SI for
details)50–55. Unfortunately, these proved to be rather difficult to
control regarding enantioselectivity and/or Z/E ratio. Subsequently,
we employed indole-substituted tertiary alcohol 1a as the substrate
and 2-phenylpyrrole 2a as the nucleophile (Table 1). With different
CPA catalysts, the reaction in DCM proceeded successfully at room
temperature to form the desired dearomatization product 3a
(entries 1–10). Among these catalysts, the [H8]BINOL-derived (R)-
B2 was identified as the best, resulting in 91% yield, 85% e.e., and
>20:1 E/Z ratio. While comparable results could be obtained with
catalysts A3, A4, and B1 (entries 3–5), B2 was used for further
optimization on other parameters, which indicated that PhCl served
as the superior solvent (entry 13). Finally, when the temperature
was decreased to −40 oC, 3a was obtained in 99% yield, 96% e.e.,
and >20:1 E/Z (entry 14).

Substrates scope exploration. Having identified the suitable
directing group and optimal conditions, next we examined the

Table 1 Optimization of the reaction conditionsa.

Entry Catalyst Solvent Time (h) Conv (%) Yield (%)b e.e. (%)c E/Z

1 (S)-A1 DCM 0.5 98 88 −11 6:1
2 (R)-A2 DCM 0.5 100 80 34 18:1
3 (R)-A3 DCM 0.5 100 85 83 20:1
4 (R)-A4 DCM 0.5 100 92 79 >20:1
5 (R)-B1 DCM 0.5 98 94 84 >20:1
6 (R)-B2 DCM 0.5 93 91 85 >20:1
7 (R)-C1 DCM 0.5 100 82 −26 20:1
8 (S)-C2 DCM 0.5 100 82 72 18:1
9 (R)-C3 DCM 0.5 37 32 −77 6:1
10 (S)-C4 DCM 0.5 18 17 44 4:1
11 (R)-B2 DCE 1 87 88 76 >20:1
12 (R)-B2 EA 1 24 26 86 >20:1
13 (R)-B2 PhCl 1 100 99 89 >20:1
14d (R)-B2 PhCl 6 100 99 96 >20:1

aReaction conditions: 1 (0.20mmol), 2 (0.24 mmol), catalyst (0.02 mmol), solvent (0.5 mL), RT. bDetermined by 1H NMR spectrum of the crude mixture using 1,3,5-iPr3C6H3 as an internal standard.
cDetermined by chiral HPLC.
d−40 oC.
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substrate scope of this asymmetric process (Table 2). A wide
range of 2-thiophenyl tertiary alcohols 1 and pyrroles 2 reacted to
form the dearomatization products. In most cases, good yields
E/Z ratios, and enantioselectivities were obtained. Electronically
different phenyl substituents bearing various functional groups at
the ortho, meta, and para positions showed good performance
(3a–h, 87–97% yields, 92–99% e.e., and >20/1 E/Z). Moreover,
polycyclic and heterocyclic aryl substituents were also well tol-
erated (3i–k). Notably, substrates 1j and 1k have two thiophenyl
groups, but only one thiophene ring was dearomatized with high
efficiency and chemoselectivity. Particularly, the case of 1k also
represented an efficient enantioselective desymmetrization. An
alkyl-substituent could also be engaged in this process with
excellent stereoselectivity, but in low yield. The low efficiency was
caused by a competitive 1,6-addition pathway leading to chiral
triarylethane 3l′ due to lower steric hindrance of this pathway (see
the SI for details). Next, alcohols bearing differently-substituted

indolyl groups were examined. All these reactions produced the
desired products 3m–r with satisfactory results, including the
3-unsubstituted indolyl one (3r). Substitution on the thiophene
ring also led to the desired product 3s, albeit with compromised
efficiency and stereoselectivity. Finally, various pyrroles success-
fully served as nucleophiles, giving the corresponding enan-
tioenriched sulfur heterocycles with respectable efficiency and
selectivity (3t–w). Other electron-rich arenes, such as indole,
naphthol, furan, thiophene, and 1,3,5-trimethoxybenzene, were
also examined. Among them, indole reacted to form the desired
product in good yield, but with a low Z/E selectivity and enan-
tioselectivity. Other nucleophiles were not successful (see the SI
for details).

We also applied this strategy to the asymmetric dearomatiza-
tion of other heteroarenes, such as selenophenes (Table 3). After
slight modification of the conditions (see the SI for details), the
analogous selenophene substrates 4 reacted efficiently to form the

Table 2 Scope study on asymmetric dearomatization of thiophenesa.

aCondition A: 1 (0.20mmol), 2 (0.24mmol), (R)-B2 (10mol%), PhCl (4 mL), −40 oC, 12 h. Condition B: 1 (0.20mmol), 2 (2 mmol), (R)-B2 (10mol%), toluene (4mL), −20 oC, 24 h. Isolated yields. The e.
e. values were determined by chiral HPLC.
b30 h.
c−40 oC.
d48 h, yield in parentheses is based on recovered starting material.
e−20 oC, 48 h.
fRun in 0.4-mmol scale.
gRun with 2 equiv of 2, 48 h.
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corresponding chiral Se-heterocycles 5 with excellent stereose-
lectivity. The free alcohol functional group was also compatible
with this catalytic system.

Mechanistic studies and synthetic applications. This process
could also be directly extended to the dearomatization of the furan
ring. At −40 oC, the reaction between furan carbinol 6 with pyrrole
proceeded smoothly to form the desired product 7 in 92% yield with
92% e.e. and 6.7:1 E/Z ratio (Fig. 2, Eq. 1). The practicality was
further demonstrated by a 1-mmol-scale reaction of 1a and 2a,
resulting in comparably excellent results to the small-scale one (Eq.
2). Moreover, the double bond in the sulfur heterocycle of product 3t
could be further reduced to form enantioenriched tetra-
hydrothiophene 8 (Eq. 3). It is worth noting that enantioenriched
tetrahydrothiophenes and tetrahydroselenophenes are useful mole-
cules in organic synthesis and medicinal chemistry56–62. For example,
they are known chiral ligands or organocatalysts for asymmetric
synthesis 56–59.

Control experiments were carried out to gain some insights into
the mechanism (see the SI for details). First, we examined the N-
methylated pyrroles 2a′ and 2b′, which are more nucleophilic than
2a and 2b, respectively. However, their reactivity was found to be
lower, requiring a much higher temperature (RT vs. −40 oC under
the standard conditions). The corresponding products 3a′ and 3t′
were obtained in only moderate yields with slightly decreased
enantioselectivities (Eq. 4). The results indicated that hydrogen
bonding with N−H motif of the nucleophile is not necessary for
good stereocontrol, but this interaction might help reduce the
barrier of the nucleophilic addition. In contrast, N-methylation in
the substrate indole motif (1a′) led to dramatic changes in both
reactivity and stereoselectivity. At room temperature, the reaction
with 2b produced a mixture of diastereomers in 2:1 dr and 1:1 E/Z

(Eq. 5). The presence of so many isomers made the enantioselec-
tivity determination difficult. This observation strongly suggested
that the N−H motif in the indole unit plays a crucial role in
stereocontrol, which is likely to facilitate the key imine methide
intermediate generation and allow subsequent hydrogen-bonding
interaction with the catalyst. Notably, other nucleophiles were also
examined (Supplementary Table 12), and it was found that N-
methyl indole performed well in this system to furnish the desired
product 10 in moderate yield and excellent stereoselectivity (44%
yield, 95% e.e., E/Z >20:1, Eq. 6).

Density functional theory studies. To better understand the
mechanism and origins of selectivity, density functional theory (DFT)
calculations were conducted on the reaction of tertiary alcohol 1a and
2-phenylpyrrole 2a by dimethyl phosphoric acid (Fig. 3) or chiral
phosphoric acid (R)-B2 (Fig. 4) using Gaussian 1663. Geometry
optimizations were performed at B3LYP-D3BJ/6-31G(d) the level of
theory64,65, and single-point energies were computed with M06-2X/
6-311+G(d,p)-CPCM(chlorobenzene)66–69. The calculated potential
energy profile is given in Fig. 3. The binding of substrate CP2 to
catalyst CP1 affords relatively stable complex CP3. Then inter-
mediate CP3 undergoes acid-catalyzed dehydration via transition
states TS1-E and TS1-Z to obtain the imine methide intermediates
CP4-E and CP4-Z, with activation free energies of 18.5 and 18.3 kcal/
mol, respectively. Subsequently, the nucleophilic attack of
2-phenylpyrrole CP5 to the Z-isomer CP4-Z via TS2-Z-Z and TS2-
Z-E lead to CP6-Z and CP6-E. The difference in energy between
these two transition states is 5.1 kcal/mol, showing great stereo-
selectivity (>20/1, E/Z). The subsequent intermolecular hydrogen
shift forms the final product CP7 and regenerates the free catalyst via
TS3-E and TS3-Z. However, the formation of the preferred product
CP7-E through the nucleophile 2-phenylpyrrole CP5 attacks the E-

Table 3 Enantioselective dearomatization of selenophenesa.

a4 (0.20mmol), 2 (0.24mmol), (R)-B2 (10 mol%), toluene (4mL), 0 oC, 36 h. Isolated yields. The e.e. values were determined by chiral HPLC.
bRun in 2-mmol scale, 24 h.
cRun with 4 (0.21 mmol) and 2 (0.20mmol), 30 h.
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isomer CP4-E via TS2-E-E and TS2-E-Z is very difficult, and has an
overall barrier of 20.7 and 19.6 kcal/mol with respect to the stable
intermediate CP3, respectively. The enantio-determining step for this
reaction is the nucleophilic attack of 2-phenylpyrrole on the indole
imine methide CP4-Z, TS2.

We first investigated the dearomative transformations from
different configurations of imine methide CP4. As depicted in
Fig. 3a, the transition states TS2-E-E and TS2-E-Z from the E-isomer
are higher in energy than TS2-Z-E by 6.9 and 5.8 kcal/mol,
respectively. To gain further insight into the energy difference, the
non-covalent interaction (NCI) analysis was performed70,71. Figure 3b
shows color-filled NCI isosurfaces for all non-covalent interactions in
the transition states. The crucial difference between these competing
transition structures is the location of the phenyl group of thiophene,
which is orientated toward the catalyst in unfavored TS2-E-E and
TS2-E-Z. To accommodate the phenyl group, it is hard for transition
states TS2-E-E and TS2-E-Z to form additional stabilizing hydrogen-
bonding interactions. In contrast, TS2-Z-E enjoys additional
favorable C–H···O–P interaction (shown in light blue). Therefore,
E-isomer CP4-E is less prone to dearomative transformations than Z-
isomer CP4-Z, basically owing to the weaker hydrogen-bonding
interactions.

To elucidate the origins of stereoselectivity, we explored the
structures of dimethyl phosphoric acid-catalyzed transition states
TS2-Z-Z and TS2-Z-E, which generate Z-selectivity product CP7-
Z and E-selectivity product CP7-E, respectively. The 5.1 kcal/mol
difference in energy between TS2-Z-Z and TS2-Z-E corresponds
to the excellent stereoselectivity (>20:1 ratio). The primary
difference between these two transitions states (Fig. 3b) is the
orientation of the electron-deficient sulfur center of the thiophene
relative to the electron-rich pyrrole ring. In minor TS2-Z-Z, the
electron-deficient sulfur center is far away from the electron-rich
pyrrole ring, while it points toward the center of the electron-rich
pyrrole ring in major TS2-Z-E (shown in light blue), suggesting
the presence of attractive chalcogen-bonding interaction in TS2-
Z-E72,73. In addition, the π–π interactions between the phenyl
rings in TS2-Z-Z are weaker than those in TS2-Z-E (shown as
large green disks). Therefore, the favorable chalcogen-bonding
and π–π interactions are the main contributions to the 5.1 kcal/
mol preference for forming an E-selectivity product.

We also studied chiral phosphoric acid (R)-B2 catalyzed
enantioselective addition of the 2-phenylpyrrole to the imine
methide. The calculated si-face attack in TS2-R-E is found to be
2.2 kcal/mol lower in free energy than the re-face attack in TS2-S-
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E, which is consistent with the 96% e.e. observed experimentally.
To better recognize the factors that impact the enantioselectivity,
optimized structures of transition states TS2-R-E and TS2-S-E
were compared (Fig. 4). Apparently, transition state TS2-R-E
enjoys additional stabilizing C–H···O–P interaction compared to
TS2-S-E. Such favorable hydrogen-bonding interactions decrease
the energies of transition state TS2-R-E. In contrast, there is a
lack of C–H···O–P interaction in unfavored TS2-S-E. Further
calculations by removing the substituents of the catalyst with
methyl groups, then computed the single-point ΔΔE‡ without
optimization, show a 2.3 kcal/mol advance for the transition state
TS2-R-E. The energetics provide reasonable agreement with
experimental observations. Consequently, hydrogen-bonding
interactions play a leading role in determining high
enantioselectivity.

In summary, we have developed an efficient organocatalytic
enantioselective dearomatization of thiophenes in the context of
asymmetric 1,10-conjugate addition. It is also a rare example of
excellent remote stereocontrol. By suitable stabilization of
2-thiophenyl carbocation with an indole motif in the form of
an extended indole imine methide, chiral phosphoric acid serves
as a superior bifunctional catalyst to promote intermolecular C
−C bond formation with excellent chemo-, regio- and enantios-
electivity as well as the product double bond Z/E ratio. This
protocol can be extended to the asymmetric dearomatization of
selenophenes and furans. Control experiments and DFT calcula-
tions illustrated a possible pathway in which multiple hydrogen-
bonding interactions play a crucial role in achieving excellent
stereocontrol.

Methods
General procedure for the catalytic asymmetric dearomatization of
thiophenes
Condition A. At −40 oC, to an oven-dried 8-mL vial charged with a solution of the
tertiary alcohol 1 (0.2 mmol) and pyrrole 2 (0.24 mmol) in PhCl (3.6 mL) was
slowly added a solution of catalyst (R)-B2 (20 mg, 0.015 mmol, 10 mol%) in PhCl
(0.4 mL). The reaction mixture was stirred at the same temperature for 12 h. After
that, triethylamine (two drops) was added to quench the reaction. The mixture was
concentrated under reduced pressure and purified by silica gel (deactivated by
triethylamine) flash chromatography to afford the desired product 3.

Condition B. At −20 oC, to an oven-dried 8-mL vial charged with a solution of the
tertiary alcohol 1 (0.2mmol) and pyrrole 2 (2.0 mmol) in toluene (3.6 mL) was
slowly added a solution of catalyst (R)-B2 (20mg, 0.015 mmol, 10mol%) in toluene
(0.4 mL). The reaction mixture was stirred at the same temperature for 24 h. After
that, triethylamine (two drops) was added to quench the reaction. The mixture was
concentrated under reduced pressure and purified by silica gel (deactivated by
triethylamine) flash chromatography to afford the desired product 3.

Data availability
All data generated and analyzed during this study are included in this article and its
Supplementary Information, or also available from the authors upon reasonable request.
The X-ray crystallographic coordinate for structure 5a has been deposited at the
Cambridge Crystallographic Data Centre under deposition numbers CCDC 2022226,
respectively, and can be obtained free of charge from the CCDC via http://www.ccdc.
cam.ac.uk/data_request/cif.
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