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Abstract

The aim of our study was to test the robustness and efficiency of maximum likelihood with respect to different long branch
effects on multiple-taxon trees. We simulated data of different alignment lengths under two different 11-taxon trees and a
broad range of different branch length conditions. The data were analyzed with the true model parameters as well as with
estimated and incorrect assumptions about among-site rate variation. If length differences between connected branches
strongly increase, tree inference with the correct likelihood model assumptions can fail. We found that incorporating
invariant sites together with C distributed site rates in the tree reconstruction (C+I) increases the robustness of maximum
likelihood in comparison with models using only C . The results show that for some topologies and branch lengths the
reconstruction success of maximum likelihood under the correct model is still low for alignments with a length of 100,000
base positions. Altogether, the high confidence that is put in maximum likelihood trees is not always justified under certain
tree shapes even if alignment lengths reach 100,000 base positions.
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Introduction

Maximum likelihood (ML) tree inference has been shown to be

statistically consistent for binary trees with finite branch lengths

under correct model and model parameter assumptions as

sequence length increases to infinity [1–5]. Thus, ML tree

inference will converge on the true tree as more and more data

are accumulated [5,6]. Additionally, ML is said to be robust

against model violations [2,6–11] and thus, even oversimplified

likelihood models are said to find the correct tree in most instances

if branch lengths are well balanced [12].

The ML method is certainly more robust and more efficient

than other methods [2,6–9,13–21]. This has led to a widespread

application and acceptance of ML tree inference. Since its

introduction into phylogenetics, the degree of ML robustness

and efficiency has been assessed using 4-taxon tree simulations.

Setups in which ML methods can potentially fail or become

inefficient on trees with more than four taxa have not been

intensively studied in e.g. Fukami & Tatento [22], Kuhner [23],

Huelsenbeck [24], and Pol & Siddal [25]). Since phenomena like

taxon-slippage in larger trees due to signal erosion (class II long

branch effects sensu Wägele & Mayer [26]) cannot be seen in four-

taxon trees, we address the robustness and efficiency of ML

methods to different long branch effects in an 11-taxon setup. We

show that ML methods indeed reconstruct correct topologies in a

wide parameter range, but we also discovered instances in which

ML methods reconstruct the wrong tree for relatively long

alignments even under correct model assumptions. These effects,

which have not been studied previously, are potentially common

in empirical data.

It is well known that if among-site rate variation (ASRV) is

ignored in tree reconstruction, the ML approach underestimates

substitution rates, and these estimates become progressively worse

with increasing evolutionary distances [27]. Ignoring ASRV makes

ML tree inference susceptible to long branch attraction

[4,6,7,11,13,15,16,19,28–30]. Therefore, ASRV is, apart from

other important advances like the consideration of multiple

substitutions or basing phylogenetic inference on a sound statistical

footing, another powerful improvement brought to model-based

ML reconstruction methods. Three possibilities to account for rate

variation are the ‘‘invariant sites model (I)’’, the ‘‘C distributed

rates model’’ (a shape parameter) and a combination of both

models (C+I). The invariant sites parameter assumes an estimated

fraction of sites to be invariable while remaining sites are assumed

to evolve at an equal rate. Under the C-model, substitution rate

heterogeneity among sites is modelled using a C distribution. A

bell-shaped C distribution caused by an a value greater than 1

implies a more or less constant substitution rate among sites

whereas a reverse-J shaped C distribution caused by a values lower

than 1 means a stronger rate variation [15]. The lower the a value,

the higher the rate heterogeneity among sites.

Early studies argue that combining both models (C+I) into a

mixed-distribution model should lead to a significant improvement

of the heterogeneity estimation in comparison to invariable sites-

or C-model estimates alone [9,16,31–33]. However, recently

published studies relied on the exclusive application of the
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restricted C-model (e.g. [34–38]). One argument is that param-

eters of the C- and invariant sites model cannot be optimized

independently. This can lead to problems during model parameter

optimization due to multiple optima in the likelihood function

[39,40]. The shape parameter of the C distribution and the

invariant sites estimation are indeed strongly correlated and

subject to large sample variance [31,32,41]. The correlation makes

it difficult to distinguish between truly invariable and slowly

evolving sites, especially in the case of alignments with a small

number of sequences. However, if many taxa are included

(N.20), it is said that the mixed-distribution model can be

reliably estimated [32,41]. Erroneous estimates of one parameter

can be compensated by the other. Erroneous estimates of both

together can fit the data such that the likelihood score changes

only marginally [32]. The recent tendency in the literature to

prefer the application of the ASRV C alone mirrors the

uncertainty in the modelling of ASRV. We have addressed the

important question whether C+I models are superior over pure C
models and whether the parameters could be estimated correctly

for a taxon set of just 11 taxa. Furthermore, we investigated how

deviations from the simulated C parameter affects the reconstruc-

tion success.

No model can be assumed to be entirely correct for real data

[19]. Long branch artefacts (LBA) are therefore not only

theoretical concepts, but also real phenomena [24,26,42]. The

‘‘classical long branch case’’ (Figure 1a) which is caused by the

misleading effect of parallel substitutions on long branches [2] is

well studied and affects mainly the maximum parsimony method.

In a topology of more than four taxa, (i) the case when two internal

long branches are separated by a short internal branch in a rooted

tree with more than four taxa (Figure 1a), may lead to

misplacement of the two terminal taxa adjacent to the short inner

branch. We call this phenomenon the class I effect (following

Wägele & Mayer [26]). This effect is mainly produced by

plesiomorphies. Note that these can only be identified in rooted

tree topologies and that they are true homologies, in contrast to

the chance similarities typical for the Felsenstein Zone. (ii) The

case when a single long branch slips down the tree towards the

outgroup or appears elsewhere, mainly due to signal erosion

(Figure 1b), has been coined the class II effect. (iii) Finally, the case

described in detail by Felsenstein [2], namely the attraction of long

terminal branches due to the dominance of chance similarities

over homologies, is named the class III effect. Note that it is

relevant to find out if long terminal branches are also attracted due

to class III effects when they are separated by more than one

internal branch. This can only be tested in multiple taxon tree

topologies (Figure 1c).

Results

Reconstruction Success of Topology A
Topology A (Figure 2a) was designed to test for class II (signal

erosion) and class III effects (attraction due to chance similarities).

If the true proportions of invariant sites (rinv~0:3) and ASRV

(a~1:0) are given or estimated for datasets of Topology A

(Figure 2a) by using a mixed-distribution model of ASRV

(JC+C+I) or if estimated by a C distribution model alone

(JC+C ), ML is able to infer predominantly correct trees under

most of the internal branch lengths (BL1w0:01) even if terminal

branch lengths are extremely long (BL2ƒ1:5) (Figure 3a and

Figure S1). Class II effects, where one single long branch slips

down the tree towards the outgroup or appears elsewhere,

predominate only in the majority of simulations if short internal

branch lengths BL1 are very low (BL1~0:01). This implies weak

signal supporting internal nodes. Under these conditions class II

effects are found even under moderate lengths of long terminal

branches (BL2§0:7) (Figure 3a and Figure 4a). Long branch

attraction of both terminal branches (class III effects) were only

rarely seen if terminal branches are distinctly long (BL2§1:1) and

alignment lengths short (2000 bp), but appear more often if JC is

used for tree inference with a C distribution model alone

(Figure 4a). As expected, ML performs worse if rate heterogeneity

is not considered at all (Figure 3a and S1). In this case, especially

long branch effects due to attraction of long terminal branches

(class III) are present in the majority of simulations except when

internal branch lengths get very large (BL1w0:3, implying better

support for inner nodes). The range in which class III effects

predominate in tree reconstructions without consideration of rate

heterogeneity decreases continuously with increased branch

lengths of the short internal branches BL1 (Figure 3a and Figure

S1).

While the class II effect (signal erosion) predominates tree

inference even under correct model assumptions (a~1:0;

rinv~0:3) and moderate sequence lengths of 10,000 bp when

Figure 1. Long branch effects. (a) class I effect (attraction due to
symplesiomorphies): two short terminal branches (StB), separated by a
short internal branch (SiB) are grouped together due to true
homologies. The true homologies are mainly produced by plesiomor-
phies which can only be identified in rooted topologies. The rest of the
tree is found at the ends of two long internal branches (LiB) on either
side of the two short branches. (b) class II effect: At least one of the two
long teminal branches (LtB) slides down the tree or appears elsewhere
in the resulting tree topology, mainly due to signal erosion along the
corresponding long terminal branch (c) class III effect: Two long
terminal branches (LtB) separated by more than one internal branch are
attracted in direct analogy to the ‘‘Felsenstein’’ case, which is due to
dominance of change similarities over homologies. The two different
tree shapes of the true topologies were transferred onto the two model
topologies which were used in our data simulations (Figure 2).
doi:10.1371/journal.pone.0036593.g001

Long Branch Effects Distort ML Phylogenies
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BL1 is very small (BL1~0:01), ML correctly resolves nearly all

trees under these conditions when sequence lengths are extended

to 100,000 bp under equal ML parameter settings (Figure 5a). In

general, the performance of ML inference in our simulations is

mostly afflicted by large branch length differences, less so by wrong

model assumptions.

Reconstruction Success of Topology B
Topology B was designed to test for class I effects (symplesio-

morphy effect). The major difference to topology A is that the

evolving sequence passes through two long branches, while in

topology A the two long branches are parallel. Even if the correct

proportion of invariant sites (rinv~0:3) and ASRV (a~1:0) are

assumed, ML is not able to infer correct trees of topology B

(Figure 2b) in the majority of simulations if the length of the short

internal branch (BL1) is small (BL1~0:01) and the lengths of the

two long internal branches (BL2) are large (BL2§1:3) (Figure 3b

and Figure 4b). When the mixed-distribution model (JC+C+I) is

used, class I effects (symplesiomorphy effects) start to predominate

in the majority of tree reconstructions of topology B if the lengths

of the long internal branches (BL2) is large (BL2~1:1) except for

the alignment length of 10,000 bp. If BL2§1:3, class I effects are

also found for alignment lengths of 10,000 bp (Figure 3b and

Figure 4b). The frequency of class I effects is even higher if data

stets are analysed with JC and the C distribution model alone

(Figure 3b and Figure 4b). If the short internal branch length

(BL1) is small (BL1~0:01), class I effects already predominate

with JC+C in the majority of repeat steps if both long internal

branches (BL2) §0:7. In contrast to JC+C+I, predomination of

class I effects is additionally found if lengths of the short internal

branch (BL1) are larger than 0.01 (Figure 3b and Figure S1). If

ML is used without consideration of ASRV, tree reconstruction

success for topology B is worse than described for topology A

(Figure 3 and Figure S1). In contrast to topology A, the high

frequency of wrong trees does not disappear in topology B under

correct model assumptions when sequence alignment lengths rise

to 100,000 bp (Figure 5b). This is in agreement with the fact that

the symplesiomorphy 6effect is a systematic error, not only caused

by random variations but inforced by shared homologies. It can be

overcome with a better taxon sampling [26].

Maximum Likelihood Values
Likelihood values of single trees become higher if among-site

rate variation is considered. All trees affected by long branch

artifacts show likelihood scores that are nearly identical to those of

correctly resolved topologies of corresponding sequence lengths

and parameter assumptions. Likelihood values of all reconstructed

trees corresponding to the results of Figure 3 are shown in Figure

S2. It is important for work with empirical data that distinct

differences in likelihood scores between wrong and correct

topologies could not be observed in many cases even if the ML

parameters used for inference were nearly identical to their true

values.

Parameter Estimates of C and I
If C was estimated alone (JC+C ), a was estimated on average to

0.4 under small branch length differences of BL1 and BL2. If

length differences between BL1 and BL2 got larger, the estimated

Figure 2. Two sets of simulations. Given model topology for a)
Topology A: stepwise elongation of two terminal branches (BL2) under
different ancestral branch lengths (BL1) and b) Topology B: stepwise
elongation of two internal branches (BL2) under different lengths of an
intermediate branch (BL1). Topology A was used to identify class II and
III effects (following tree shape of Figure 1b and Figure 1c), Topology B
was used to identify class I effects (following tree shape of Figure 1a).
doi:10.1371/journal.pone.0036593.g002

Figure 3. Selected results of ML reconstuctions for a~1:0 under
the mixed-distribution model (JC+C+I) and the C distributed
model (Jukes-Cantor+C). Class III (‘‘Felsenstein effect’’), Class I
(attraction due to symplesiomorphies), and Class II (random error
probably due to signal erosion) inferred from 100 simulation repeats for
each branch length combination and alignment length. Each individual
plot corresponds to a fixed branch increase of BL1~0:01 (Figure 2) and
fixed reconstruction scheme with the models JC+C (a~0:1) or JC+C+I
(a~0:1; rinv~0:3). Branch length differences increase from left to right
by increasing branch BL2 in discrete elongation steps (0.1–1.5). Four
successive data points (belonging to one cell in the plot) correspond to
four alignment lengths (2,000, 3,000, 4,000, 10,000 base pairs).
Alignment corresponding branch lengths of BL2 are shown above
each subfigure. The y-axis depicts the reconstruction success of the 100
simulation repeats (N) for a) Topology A (Figure 2a) and b) Topology B
(Figure 2b).
doi:10.1371/journal.pone.0036593.g003

Long Branch Effects Distort ML Phylogenies
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a value decreased continiously with increasing branch length

differences until a was estimated on average to 3.5 (Figure S3). If

C+I were estimated together, a was estimated on average slightly

higher as simulated for larger branch length differences (a~1:1).

The proportion of invariant sites was on average consistently

estimated to 0.3 independent of corresponding branch length

conditions. The tree reconstruction success of both (estimated and

correct values of JC+C+I) settings was found to be nearly identical

(Figure S1). All parameter estimates are presented as Figure S3.

Discussion

For alignment lengths in the range of 2,000–10,000, the

reconstruction success was investigated for i) correct as well as

estimated model parameters (rinv and a) with a mixed-distribution

model (JC+C+I), ii) a C distribution model in which a was

estimated alone (JC+C ), and iii) without considering rate

heterogeneity (JC).

As expected, our results show that incorporating rate hetero-

geneity leads to an increased reconstruction success of ML

(provided that the data includes rate heterogeneity). This has also

been observed in previous studies, e.g. [9,12,24,32,33], and is not

surprising.

The inclusion of a mixed-distribution model (JC+C+I) improves

tree estimation over analyses using a C distribution model alone.

Especially in case of topology B, JC+C+I recovered the correct

topologies under a wider range of branch lengths as JC+C (Figure 3b

and Figure 4b). This supports the results of Sullivan et al. [32] as well

as Anderson & Swofford [9] who showed that ML recovers

topologies best if a C+I model is used and contradicts the

assumptions that exclusive application of the restricted C-model is

sufficient, e.g. [34–38]. Whether the higher tree reconstruction

success of the mixed-distribution model associated with topology B

will also be true with empirical data has to be tested in further studies.

For a combination of very short BL1 and long BL2, ML performs

poorly, even if a mixed-distribution model is used in the tree

reconstruction (Figure 3 and Figure 4). The lower reconstruction

success for the very short length of BL1 (BL1~0:01) cannot be due

to random choice of a most-likely topology when there is no

phylogenetic signal (star topology). In such cases ML is expected to

‘‘choose’’ at random from the set of all plausible topologies [6,8].

This would be the expected behavior of ML when information of

ancestral states is completely lacking. However, this is neither the

case for topology A (Figure 4a) nor for topology B (Figure 4b).

Despite large length differences between ancestral (BL1~0:01) and

terminal branches (BL2§1:1) for Topology A, ML was still able to

infer correct topologies more often than can be attributed to chance.

Similarly, the incorrect trees that place taxon L5 and L6 in a sister

group relationship due to the class I effect (Figure 1a) appear more

often for Topology B than expected by chance. The explanation for

this effect is the systematic bias.

Figure 4. Occurence of long branch artefacts (LBA). Ranges of
branch length differences between BL1 and BL2 (see Figure 2) in
which LBA dominated tree reconstruction with investigated model
assumptions in the majority of repeat steps, summarized over all
alignment lengths. Dominated ranges of long branch artefacts are
shown by bar charts. Single bars correspond to fixed ranges of lengths
for BL1 and BL2 in which lengths of BL2 increase from 0.1–1.5 within
each box (x-axis; lower scale). Length of BL1 increases with each box
from 0.01–0.5 (x-axis; upper scale). a) Domination of class II and class III
effects are found in topology A (Figure 2a). b) Domination of the class I
effect is found in topology B (Figure 2b). Corresponding branch lengths
of BL2 are also shown above each bar plot. Note, that ML delivered
identic tree reconstruction success for estimated and correct model
assumptions of JC+C+I.
doi:10.1371/journal.pone.0036593.g004

Figure 5. Reconstruction success of ML (100,000 base posi-
tions). a) Topology A (Figure 2a) and b) Topology B (Figure 2b) under
alignment lengths of 100,000 base positions if model assumptions are
identical to the simulated parameters (a~1:0; rinv~0:3). Branch length
differences increase from left to right by increasing BL2 in discrete
steps (0.1–1.5) while BL1 is kept constant (0.01). The y-axis depicts the
reconstruction success of the 100 simulation repeats (N).
doi:10.1371/journal.pone.0036593.g005

Long Branch Effects Distort ML Phylogenies
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ML is not able to recover the true tree for Topology B with

large length differences between short (BL1) and long branches

(BL2), even if the correct model is specified (Figure 5b). This

class of topologies has not been investigated before and

constitutes a new example for which ML efficiency is low even

for long alignments (100,000 bp). With increased sequence

length, the class I effect (symplesiomorphy effect) becomes even

stronger beyond a certain point of branch length differences of

short internal branches (BL1) and long internal branches (BL2)

(Figure 4b). However, the proofs of ML consistency mean that

there is always some k large enough that having k or more sites

will allow the true tree to be inferred with high probability

assuming correct model parameters. For the case of 4 taxa, the

‘‘inverse Felsenstein zone’’ is a well known example of reduced

ML efficiency where alignment lengths of 100,000 bp are

required for an 85% chance to recover the correct topology

[6]. It can be expected that our topology and setup yields, what

we call, an ‘‘inefficient valley of death’’, which is similar to the

effect found for the ‘‘inverse Felsenstein zone’’ by Swofford et al.

[6] where the performance of likelihood declines initially and

then improves as sequence length increases. Figure 5b suggests

that alignment lengths may need to be in the millions or even

higher, meaning the LBA class I problem couldn’t be resolved

yet, even in principle for many bacterial genomes. Since we can

soon regularly expect data sets of the size of complete genomes,

it would be interesting to investigate the extent of this valley, i.e.

the necessary alignment length for which ML will reliably find

the correct tree. For the topology A which can produce the

Felsenstein effect (Figure 2a), ML recovers the true tree efficiently

even with large branch length differences of short ancestral

branches BL1 (BL1~0:01) and long terminal branches BL2
(BL2§0:7) if model assumptions are correct and alignment

lengths long (Figure 5a). Our results for this topology are

consistent with those found by Swofford et al. [6].

One possible explanation why Topology A and B yield different

reconstruction efficiencies could be that the reconstruction of

Topology B is in fact more difficult than the reconstruction of

Topology A. Because both internal taxa L5 and L6 are separated

by a short branch and separated from all other taxa by long

branches they will share characters unique for their last common

ancestor more often than expected by chance. This will likewise be

true for other taxa connected via short branches. Therefore

topology B is naturally much harder to reconstruct and given long

branch length differences will yield a biased reconstruction error

which we see in fact in our simulations.

It is also interesting to note that estimates of a and the invariant

sites proportion are very accurately estimated for the C+I models

used in the reconstruction. This high accuracy is found for all

branch lengths and topologies even in those cases for which the

reconstruction success is low (Figure S3). This excludes model

misspecification as the source of phylogenetic inaccuracy in

analyses in which the tree was inferred using the same parameters

as were used to generate the dataset. In those cases, (e.g. Figure 5b)

ML consistency implies that the phylogenetic inaccuracy is caused

by sampling error. Another possibility is that the heuristic ML

searches got stuck in local optima, but this seems rather unlikely

for just 11 taxa and JC+C+I. Sullivan et al. [32] argued that the

number of taxa is important for the correct estimate of the shape

parameter and the number of invariable sites, mainly due to

stochastic errors in small samples. The observation that 11 taxa

already allow us to find good estimates of the parameters in

question could be explained by longer alignments in this study.

Further, Sullivan et al. [43] demonstrated on 4-taxon trees that

estimates of the C distribution can be strongly influenced by

topologies which involve long internal branches. This correlation

was not found in our analyses.

As shown in our analyses, the appearance of long branch

artefacts, especially of class I effects (symplesiomorphy effect), is

not a particular problem of mixed-distribution models. If no

invariant sites are estimated in the reconstruction, this model

deficiency is partially compensated by a lower estimated value of

the a shape parameter (a~0:4{3:5), which results in an increased

estimate of sites with low and very low substitution rates. Since this

compensation is only partial and leads to an overestimation of

substitution rates for a certain number of sites, the reconstruction

success is lower compared with the application of a C+I model.

Our results show that the risk of obtaining a wrong topology

using ML is dependent on the arrangement of the edges

(corresponding to which LBA classes the tree is susceptible to).

Although our results depend on simulated nucleotid data it can be

expected that amino acid sequences are also prone to long branch

effects if branch lengths combinations of BL1 and BL2 differ

strongly from each other, even though the possibility of obtaining

long branch effects increase with a decreasing alphabet of

character states. It is also clear that good ‘‘support values’’ are

no guarantee for the correctness of the tree topology. Also, we

have to keep in mind that empirical data can evolve in a much

more heterogeneous way than in our simulations. Although we

show that ML is not immune to different long branch artefacts, we

hope that our work will not be taken as evidence for the continued

use of Maximum Parsimony for molecular data. Maximum

Parsimony has been shown to be seriously affected by long branch

attraction [2,6,8,15–17,19], therefore we consider Maximum

Parsimony as entirely inappropriate for molecular data.

Materials and Methods

Simulations
We designed two sets of data simulations under different

topologies (Figure 2) to detect effects related to long terminal

branches (Topology A) and of long internal branches (Topology

B). The first set used topology A, which was characterized by a

stepwise elongation of two terminal non-neighboring branches

(BL2). Internal branch lengths (BL1) were kept short, but also

varied in length (Figure 2a). This setup can potentially produce

cases of class II and class III. The second set used topology B,

which was characterized by a stepwise elongation of two internal

branches (BL2) for different lengths of an intermediate internal

branch (BL1) (Figure 2b). This tree topology was used to produce

mainly class I effects rather than class II effects. Trees consisted of

11 taxa in which lengths of all remaining branches (RB) are kept

constant (LRB~0:1). Branch lengths reflect the amount of

expected substitution rates per site for corresponding lineages.

For each length of BL1 (0.01, 0.05, 0.1, 0.3, 0.5), we increased the

length of BL2 from 0.1 to 1.5 in steps of 0.2. Thus, branch length

ratios BL2/BL1 ranged from one-fifth to 150. All alignments were

generated with INDELible v.1.01 [44] using the Jukes-Cantor

model (JC) of sequence evolution and a mixed-distribution model

of C+I for ASRV. All data were simulated with ASRV, shape

parameter a~1:0, and a proportion of invariant sites rinv~0:3.

ASRV was modelled using a continuous C-rate distribution while

indel events were not simulated. For each branch length-

combination of BL1 and BL2, we simulated the evolution of

100 data replicates for each sequence length (2,000, 3,000, 4,000,

10,000 and 100,000 bp). The JC model has been chosen for the

simulations (i) since it is better understood than any other model of

sequence evolution and (ii) to keep the model parameter space as

small as possible. Due to the simple assumptions of the JC-model

Long Branch Effects Distort ML Phylogenies
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(each base in the sequence has an equal probability of changing

which results in equal frequency of the four bases), the

reconstruction success of ML is directly linked to the simulated

branch length conditions, sequence lengths, and the ASRV

conditions used in each ML analysis.

Maximum Likelihood Analyses
Trees were inferred with the Jukes-Cantor (JC) model under

different parameter settings using PhyML-3.0-linux64 [45,46]

(Table 1). We analyzed the data either (i) with a mixed-distribution

model (JC+C+I) or (ii) with C distributed rates, but without

estimating the fraction of invariant sites (JC+C ). Using the mixed-

distribution model (JC+C+I), the C shape parameter a and the

fraction of invariant sites were either estimated or set equal to the

simulated values (a~1:0 and rinv~0:3). Using the C distribution

model (JC+C ), the shape parameter of the C distribution (a) was

always estimated from the data. As approximation to non-ASRV

(JC), a was set to 100 (a~100). For the alignment length of

100,000 bp, tree reconstruction was only performed under the

correct model parameters (a~1:0 and rinv~0:3). With the

discrete gamma model, the number of relative substitution rate

categories was set to four (c = 4) and tree topologies and branch

lengths were optimized (heuristic search). Maximum likelihood

analyses were performed and evaluated with a Perl pipeline, and

ran for three months on a Linux Cluster with HP ProLiant DL380

G5 blades (Dual quad core Intel Xeon E5345, 2.33 GHz, 26
4 MB L2-cache, 1333 MHz Bus, 32 GB RAM).

Scoring
Wrong topologies were classified into LBA class I, II and III

effects (Figure 2). Wrong topologies for which we found a

paraphyletic grouping of the two terminal ‘‘non-long branches’’

in topology B were summarized as class I effects. Wrong topologies

which showed an attraction of the two long terminal branches in

topology A are sampled as class III effects. Wrong topologies for

which only one long branch had been misplaced in Topology A

and B (probably due to signal erosion) were collectively classified

as class II effects. Topologies that did not fit any of these categories

like incorrect placements of ‘‘background’’ taxa have not been

found in our analyses.

Supporting Information

Figure S1 ML reconstruction success of simulated paramter and
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