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Abstract

Recently the integrated modular avionics (IMA) architecture has been widely adopted by the

avionics industry due to its strong partition mechanism. Although the IMA architecture can

achieve effective cost reduction and reliability enhancement in the development of avionics

systems, it results in a complex allocation and scheduling problem. All partitions in an IMA

system should be integrated together according to a proper schedule such that their dead-

lines will be met even under the worst case situations. In order to help provide a proper

scheduling table for all partitions in IMA systems, we study the schedulability of independent

partitions on a multiprocessor platform in this paper. We firstly present an exact formulation

to calculate the maximum scaling factor and determine whether all partitions are schedul-

able on a limited number of processors. Then with a Game Theory analogy, we design an

approximation algorithm to solve the scheduling problem of partitions, by allowing each par-

tition to optimize its own schedule according to the allocations of the others. Finally, simula-

tion experiments are conducted to show the efficiency and reliability of the approach

proposed in terms of time consumption and acceptance ratio.

Introduction

With the growing complexity of modern aircrafts, avionics systems have to integrate and

manipulate numerous sensors, actuators and controllers while maintaining high quality of

safety and reliability [1]. The traditional federated architecture, which has limited resource

sharing and huge power consumption, becomes inappropriate for the design of large-scale avi-

onics systems [2]. A new approach, known as Integrated Modular Avionics (IMA) architec-

ture, has been widely adopted by the avionics industry.

IMA architecture supports the independent development of the various real-time avionics

applications on a shared computing platform [3], and enables all applications to be executed

within partitions that are spatially and temporally segregated [4]. The spatial segregation

implies that each partition has its own system resources, which cannot be accessed by the tasks

in other partitions. The temporal segregation specifies that each partition uses a pre-allocated

time window to execute all tasks in it. With this partition mechanism, IMA architecture guar-

antees that the tasks running in different partitions would not overlap with each other [5].
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In an IMA system, each partition is a program unit of applications and can be characterized

by a computation time and a period. Partitions are executed periodically and exactly, which

means the time duration between any two successive instances of a partition is the same and

equal to its period. Since a processor may host several partitions running with different peri-

ods, the system designers need to design a proper schedule, according to which all partitions

subject to the non-overlapping constraints: no two partitions’ instances can overlap during

any time period [6]. In other words, the designers have to provide an accurate start time and

processor allocation for each partition, such that there is no overlapping time unit among the

executions of partitions.

Continuous advancements in avionics have been made and the avionics systems become

more and more complex. Faced with the significantly increasing number of partitions, the sys-

tem designers gradually tend to rely on decision-making tools to produce valid scheduling

tables for IMA systems. Meanwhile, for the avionics company, it is preferable to reallocate the

start times and processors for all partitions only, rather than to redesign and rebuild the entire

system [7]. Hence, it is desirable to develop an effective method, which determines whether all

partitions in an IMA system are schedulable and provides valid allocations if they are

schedulable.

The multiprocessor scheduling problem of partitions in an IMA system is very challenging.

Not only the non-preemption property of partitions’ execution gives it a large-scale computa-

tional complexity [8], but also the strict periodicity constraint compounds the difficulty in

obtaining the boundary scheduling conditions. In this paper, in order to simplify the problem,

we assume that all partitions are independent. The communication links, in the form of execu-

tion chains between partitions [1], is not discussed. The main objective of our research is to

address two aspects appearing in the process of system design:

1. How to determine whether all independent partitions in an IMA system are schedulable?

2. If an IMA system composed of independent partitions is schedulable, how to allocate valid

start time and processor to each partition?

Since the partitions can be modeled as non-preemptive tasks with strict periods, the real-

time scheduling problem of independent partitions is classified as non-preemptive and strictly

periodic scheduling problems [1], which have been proved to be NP-Hard in the strong sense

[9] and only have polynomial time approximation algorithms [10].

Real-time scheduling problem is a fundamental issue in providing guarantees for temporal

feasibility of task execution, and widely studied in large-scale systems such as Internet of

Things [11, 12] and Cyber-Physical Systems [13, 14]. Significant efforts have been made to

provide efficient methods to solve the scheduling problem. Based on fuzzy theory and a genetic

algorithm, Shojafar et al. [15, 16] presented a hybrid job scheduling approach to assign jobs

with reducing total execution time and execution cost in cloud computing. Using the gravita-

tional emulation local search algorithm, Hosseinabadi et al. [17] proposed a novel algorithm to

solve the job-shop scheduling problem in Small and Medium Enterprises. However, in all of

those works, the periods of tasks were not strict and some slack time was allowed between suc-

cessive instances of a periodic task. To the best of our knowledge, there are three types of solu-

tions focusing on the scheduling problem of strictly periodic tasks.

The first type of solutions evolves from the schedulability analysis of strictly periodic tasks

and has some special constraints that sharply restrict the range of applications. Korst et al. [8]

solved the scheduling problem on two tasks with strict periods, and provided a necessary and

sufficient schedulability condition, which had been proved to be a sufficient condition [18] for

more than two tasks. Eisenbrand et al. [7, 19] considered the problem on a minimum
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processor platform and presented an asymptotic approximation schemes with a constraint

that all periods were harmonic, i.e., for any two tasks, the period of one task is a multiple of

that of the other one. Later, Marouf and Sorel [20] gave a scheduling heuristic based on the

constraint that the period of new task had a multiple relationship with those of the existing

tasks.

The second type of solutions is based on the critical scaling factor, i.e., the largest possible

change for all task computation times [21]. Al Sheikh et al. [1] calculated the critical scaling

factor by a best-response algorithm, and used the value calculated to determine whether all

partitions were schedulable on a limited number of processors. Pira and Artigues [22] did a

similar work and gave a new heuristic to solve the problem with a propagation mechanism for

non-overlapping constraints.

The third type of solutions is using the maximum permissible computation time that a new

task can have when it is schedulable. Chen et al. [23] represented a task by its eigentask (i.e.,

setting its worst case computation time to 1), and proved that the maximum permissible com-

putation time of a new task was the largest length of consecutive scheduling slots for its eigen-

task. If the worst case computation time of the new task was not large than the value

calculated, it was determined schedulable. However, this solution does not take into account

the dynamic change of the offset and processor allocations of all tasks and has a low scheduling

success ratio.

Through schedulability analysis, this paper presents a new approach to solve the schedul-

ability problem of independent partitions in IMA systems. The contributions of our work are

as follows.

First, we model the independent partitions as non-preemptive and strictly periodic tasks,

and present an exact formulation based on Mixed Integer Linear Programming (MILP) [24] to

represent the schedulability constraints of an IMA system and calculate the maximum scaling

factor for partitions. If the maximum scaling factor calculated is not less than 1, the partitions

are schedulable.

Second, with a Game Theory analogy, we design an efficient heuristic to solve the multipro-

cessor scheduling problem, by allowing each partition to optimize its own strategy according

to the current strategies of the others. This heuristic not only determines the schedulability of

an IMA system, but also provides a valid start time and processor allocation for each partition.

The proposed approach has a wide range of applications and can be adapted to partitions

with both harmonic and non-harmonic periods. It not only guides the development of IMA

systems, but also improves the robustness of a design subject to future changes. We compare

our approach with the existing solutions, and show its efficiency and reliability from several

aspects.

An earlier version [25] of this paper was presented at the 2015 IEEE International Confer-

ence on Progress in Informatics and Computing (PIC 2015). This paper improves the previous

conference publication in two aspects:

1. This paper states the multiprocessor scheduling problem of independent partitions, and

proposes an exact resolution based on MILP formulation to calculate the maximum scaling

factor and determine the schedulability of partitions.

2. This paper analyzes the limitations of our approach, and conduct simulation experiments

to compare the performances of our approach, MILP formulation and EMTA algorithm

[23] in terms of time consumption and acceptance ratio.

The rest of the paper is organized as follows. Section 2 gives the notations and the strictly

periodic partition model used in this paper. Section 3 analyzes the schedulability problem of
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independent partitions and proposes its MILP formulation. Section 4 presents a heuristic

inspired from Game Theory to calculate the maximum scaling factor and determine whether

all partitions are schedulable. Section 5 shows the simulation experiments and results. Finally,

Section 6 presents the conclusions of this paper and the directions for future work.

Notations and System Model

In this paper, we consider an IMA system composed of m identical processors on which a set

of n partitions T = {τ1, τ2, . . ., τn} requires to be non-preemptively scheduled. Each partition is

independent and with strict periodicity constraint. We use a quadruple τi = hci, pi, si, aii to

characterize the partition τi. ci and pi are the computation time and the period of τi. si is its off-

set (i.e., start time of the first instance), and ai is its assignment (i.e., the processor to which the

partition is assigned). When the assignment of τi is unknown, a triple τi = hci, pi, sii is used to

denote the partition τi. We assume that the partitions’ attributes (i.e., pi, ci, si and ai) are all

integers. Fig 1 describes an example of a strictly periodic partition used in this paper.

A partition τi generates one instance with the computation time ci at every time unit si + kpi
for all k� 0. Each instance needs to be executed immediately after its generation and finished

before the beginning of si + kpi + ci without any other partitions’ interrupt, which can be char-

acterized by an open time interval [si + kpi, si + kpi+ci). Let Bk
i ðsiÞ characterize the time interval

occupied by the kth (k� 0) instance of τi. According to the strict periodicity constraint, the

kth instance of τi will start at si + kpi and end before the beginning of si + kpi + ci. Therefore, in

the strict periodic partition model, there is: Bk
i ðsiÞ ¼ ½si þ kpi; si þ kpi þ ciÞ. Example 1 shows

the time units used by two partitions.

Example 1. Consider a partition set T = {τ1, τ2}, τ1 = h1, 3, 0i and τ2 = h1, 6, s2i. From Fig 2
(a) and 2(b), we know s2 = 2 or s2 = 4 ensures that partitions τ1 and τ2 would not overlap in a
time interval [0, 17], which is their recycle time units. To be more exact, 8s2 2 {1, 2, 4, 5}, τ1 and
τ2 can be executed on the same processor without overlapping. Fig 2(c) shows the two partitions’
execution when s2 = 1, and now Bk

2
ðs2Þ ¼ ½6� kþ 1; 6� kþ 2Þ.

We use m to denote the number of identical processors in the IMA system. In this paper,

partitions can be allocated to any processor as long as their instances do not overlap in time.

We use Tp to represent the partitions allocated to the processor p (1� p�m), and use T � ip to

denote all partitions in Tp except τi, i.e., T � ip ¼ Tp n ftig. Meanwhile, we use gi,j to represent

the greatest common divisor of the periods of any two partitions τi and τi, i.e., gi,j = GCD(pi,
pj). Table 1 summarizes the basic notations used in this paper.

Fig 1. Partition model with strict period.

doi:10.1371/journal.pone.0168064.g001
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Schedulability Problem and Its MILP Formulation

In this section, we analyze the schedulability of partitions in a multiprocessor IMA system. We

firstly introduce a schedulability condition for two partitions allocated to the same processor.

Then we state the schedulability problem of independent partitions and investigate an exact

MILP formulation to provide a determination of whether all partitions are schedulable on a

limited number of processors.

3.1 Schedulability Analysis for Two Partitions

As we pointed out in Section 2, the kth instance of τi is executed in the time interval

Bk
i ðsiÞ ¼ ½si þ pi; si þ kpi þ ciÞ ð1Þ

Fig 2. Non-overlapping execution of two periodic partitions on the same processor.

doi:10.1371/journal.pone.0168064.g002

Table 1. Notations used in this paper.

Symbol Description

T the partition set to be scheduled

n the number of partitions in T

τi the ith partition in T

ci the computation time of τi

pi the period of τi

si the offset of τi

ai the assignment of τi

Bki ðsiÞ the time interval used by the kth instance of τi

m the number of identical processors in the system

Tp the partitions allocated to the processor p

T � ip the partitions allocated to the processor p except τi

gi,j the greatest common divisor of the periods of τi and τj

doi:10.1371/journal.pone.0168064.t001

Scheduling Independent Partitions in IMA Systems

PLOS ONE | DOI:10.1371/journal.pone.0168064 December 12, 2016 5 / 18



If two partitions τi and τj are schedulable on the same processor, there is no overlapping

time unit among their instances. This can be expressed as:

8k; l � 0;Bk
i ðsiÞ \ Bl

jðsjÞ ¼ ;: ð2Þ

Although Condition (2) is a necessary and sufficient condition, it could not be applied

directly in solving the schedulability problem of two partitions. This is because Condition (2)

requires calculating the time intervals occupied by all instances. However, the instances of a

partition will be regenerated in every cycle and their number is infinite. The following theorem

which gives a more efficient condition, was first proposed by Korst et al. [8] and also had been

proven in Al Sheikh et al. [26] and in Chen et al. [23].

Theorem 1. Two partitions τi = hci, pi, sii and τj = hcj, pj, sji are schedulable on the same pro-
cessor if and only if

ci � ðsj � siÞmodðgi;jÞ � gi;j � cj ð3Þ

We can observe that Condition (3) works for two partitions at a time and cannot be used

for multiple partitions. It is difficult to directly give a determination of whether all partitions

are schedulable. We solve this problem by adopting the concept of scaling factor [21], which

represents the possible change for the computation times of all partitions.

The scaling factor λ is an easily recognized sign of the schedulable state of an IMA system.

For example, Al Sheikh et al. [1] calculated the scaling factor based on game theoretic

approach, and used it to determine whether all partitions in a set were schedulable. If λ� 1,

the partition set was considered to be schedulable upon a limited number of processors; other-

wise, more processors were required.

3.2 Exact Formulation

In this section, we propose an MILP formulation for calculating the maximum scaling factor

on a multiprocessor platform, and use the scaling factor calculated to determine whether the

system is schedulable.

We firstly analyze the extension process of partition computation times when they are

scaled. Fig 3 illustrates the impact of λ on the computation times of two partitions assigned to

the same processor. Hashed rectangles represent the initial time units occupied by the first

instances of the two partitions, whereas the larger filled ones represent the scaled time budgets.

Fig 3(a) extends the computation times of two partitions according to the method proposed by

Al Sheikh et al. [1], in which the start times of the instances remain the same but the end times

change in accordance with the scaling factor. However, as shown in Fig 3(b), the extension

process discussed in this paper is different. The computation time of each instance is equally

extended from the center to both the left and right side. This means that the centers of the

computation time units remain the same; but the start times and end times of the instances are

changed when the scaling factor λ is not equal to 1.

Since all computation times are scaled by λ proportionally, for any partition τi (1� i� n),

the value of its computation time is changed to λci. We use s0i to denote the start time of τi after

its computation time has been scaled. From Fig 3(b) we know, 2ðsi � s0iÞ þ ci ¼ lci, which

yields s0i ¼ si � ðl � 1Þci=2. Condition (3), which is used to determine whether two original

partitions are schedulable on the same processor, should be updated to

lci � ðs0j � s0iÞmodðgi;jÞ � gi;j � lcj ð4Þ
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Now we analyze the non-overlapping constraints on a multiprocessor platform. When all

partitions in the set T are schedulable on m processors, there are two constraints: (1) Each par-

tition should be allocated to one and only one processor; (2) The instances of any two parti-

tions allocated to the same processor cannot overlap during any time period.

We use a n-row m-column vector~a ¼ ðai;kÞ (1� i� n and 1� k�m) to represent the allo-

cations of all partitions. Each variable ai,k has a Boolean value and denotes whether the parti-

tion i is allocated to the processor k. If the partition i is allocated to the processor k, ai,k = 1;

otherwise, ai,j = 0, i.e.,

ai;k ¼

(
1 if ti is assigned to the processor k

0 otherwise

The first non-overlapping constraint requires allocating each partition to one and only one

processor. That is to say, the sum of every row of the vector~a is equal to 1, i.e.,

8i 2 ½1; n�;
X

1�k�m

ai;k ¼ 1

When two partitions τi and τj are allocated to the same processor k, their offsets should sat-

isfy Condition (4). Hence, the second non-overlapping constraint can be expressed as:

8i; j 2 ½1; n�; 8k 2 ½1;m�; ai;k ¼ aj;k ¼ 1; i 6¼ j

lci � ðs0j � s0iÞmodðgi;jÞ � gi;j � lcj
ð5Þ

The modulo operation (mod) in Condition (5) is not linear. In order to use it in linear pro-

gramming, the modulo operation should be transformed to

ðs0j � s0iÞmodðgi;jÞ ¼ ðs0j � s0iÞ � gi;j � ei;j ð6Þ

where ei;j ¼ b
s0j � s

0
i

gi;j
c. The factor ei,j is a new integer variable representing the quotient from the

Fig 3. Impact of the scaling factor λ on the computation times of two partitions.

doi:10.1371/journal.pone.0168064.g003
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modulo operation mod. Since 0 � s0i � pi � lci and 0 � s0j � pj � lcj, the value of ei,j ranges

from
lci� pi
gi;j

to
pj � lcj
gi;j

. Therefore, Condition (5) becomes

8i; j 2 ½1; n�; 8k 2 ½1;m�; ai;k ¼ aj;k ¼ 1; i 6¼ j

lci � ðs0j � s0iÞ � gi;j � ei;j � gi;j � lcj
lci � pi

gi;j
� ei;j �

pj � lcj
gi;j

The calculation of the maximum scaling factor is seeking optimal offset and assignment

allocations for all partitions, such that the largest possible change in the partition computation

times can be affordable to satisfy the non-overlapping constraints. The exact formulation can

be written as the following program:

maximum l

subject to

8i 2 ½1; n�;8k 2 ½1;m�; ai;k 2 f0; 1g

ð7Þ

8i 2 ½1; n�; s0i 2 ½0; pi � lci� ð8Þ

8i 2 ½1; n�;
X

1�k�m

ai;k ¼ 1 ð9Þ

8i; j 2 ½1; n�; 8k 2 ½1;m�; ai;k ¼ aj;k ¼ 1; i 6¼ j

lci � ðs0j � s0iÞ � gi;j � ei;j � gi;j � lcj
lci � pi

gi;j
� ei;j �

pj � lcj
gi;j

ð10Þ

Constraints Eqs (7) and (8) show the range restrictions of the offsets and assignments of the

partitions. Condition (9) represents the allocation constraint that concerns assigning each par-

tition to one and only one processor. Condition (10) is the non-overlapping constraint of each

two partitions assigned to the same processor.

The exact MILP formulation discussed above seeks the maximum scaling factor by search-

ing all possible offset and assignment allocations for the partitions, which is exceedingly labori-

ous and time-consuming. Inspired from Game Theory [27], a highly efficient heuristic is

proposed in the following section.

Best Response Algorithm

In this section, we propose an approximation algorithm to calculate the maximum scaling fac-

tor, determine the schedulability of all partitions, and provide valid allocations if the partitions

are schedulable. This algorithm is inspired from Game Theory, which is the study of strategic

decision making. In a game, each player should make the best action according to the current

known strategies of the other players. All players take turns in fixed order to adapt their strate-

gies until no better action can be made. Think of partitions as players and their strategies are

the changes of their offsets and assignments. All partitions take turns to select their offsets and

assignments such that their computation times can be scaled as much as possible. This kind of

solution is called the best response solution, which was firstly introduced by Al Sheikh et al. [1,

26], and also studied by Pira and Artigues [6, 22].
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We firstly optimize the center (i.e., the middle time point of the first instance) of one parti-

tion τi on a given processor p such that τi has the largest common scaling factor with all parti-

tions allocated to the processor p. Then on a multiprocessor platform, we try to find the best

assignment besides the best center for τi to ensure that τi has the largest scaling factor λi, by

which the computation times of τi and all partitions assigned to the same processor with τi can

be multiplied. Finally, partitions take turns to optimize their centers and assignments accord-

ing to mostly known allocations until an equilibrium is reached. When this calculation stops,

the maximum scaling factor is the minimum value of the factors of all partitions, i.e., λ =

min1 � i � n λi. With this scaling factor calculated, this algorithm gives a determination of

whether all partitions are schedulable and provides valid offset and assignment allocations for

partitions if they are schedulable.

4.1 Best Center Procedure on a Given Processor

For each partition τi (1� i� n), we design a best center procedure BC(i, p) to find an optimal

center oi such that the computation times of τi and all other partitions can be scaled by the larg-

est factor. The offsets, assignments and centers of other partitions remain the same.

Since oi is the center of τi, oi ¼ si þ
ci
2
¼ s0i þ

lci
2

. Meanwhile, ei,j is the quotient from the

modulo operation in Condition (4), i.e., ei;j ¼ b
s0j � s

0
i

gi;j
c. Putting the variables oi and ei,j into

Condition (4), we get

lci � ðs0j � s0iÞmodðgi;jÞ � gi;j � lcj
) lci � ðs0j � s0iÞ � gi;j � ei;j � gi;j � lcj

) lci � oj �
lcj
2
� oi þ

lci
2

� �

� gi;jei;j � gi;j � lcj

) lci �
lci
2
þ

lcj
2
� oj � oi � gi;jei;j � gi;j � lcj �

lci
2
þ

lcj
2

)
lðci þ cjÞ

2
� oj � oi � gi;jei;j � gi;j �

lðci þ cjÞ
2

)
lðci þ cjÞ

2
� ðoj � oiÞmodðgi;jÞ � gi;j �

lðci þ cjÞ
2

) l � min
2ðoi � ojÞmodðgi;jÞ

ci þ cj
;
2ðgi;j � ðoi � ojÞmodðgi;jÞÞ

ci þ cj

 !

We use l
p
i;j to denote the largest scaling factor for τi and any partition τj assigned to the pro-

cessor p. Therefore,

l
p
i;j ¼ min

2ðoi � ojÞmodðgi;jÞ
ci þ cj

;
2ðgi;j � ðoi � ojÞmodðgi;jÞÞ

ci þ cj

 !

l
p
i;j represents the factor by which the computation times of τi and any other τj can be scaled

without violating the schedulability constraint. Now we extend τj to all the partitions assigned

to the processor p except τi (i.e., tj 2 T � ip ), and use l
p
i to denote the largest scaling factor that
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the computation times of all partitions can be multiplied by. Hence,

l
p
i ¼ min

tj2T � ip

l
p
i;j ð11Þ

For each valid value of oi, there is a corresponding factor l
p
i for the partitions assigned to

the processor p while keeping τi schedulable with all other partitions. We use ml
p
i to denote

the largest permissible scaling factor when only τi can change its center freely on the processor

p. There is:

ml
p
i ¼ max

0�oi�pi
l
p
i ¼ max

0�oi�pi
min
tj2T � ip

l
p
i;j ð12Þ

Now we analyze the upper bound on the largest permissible scaling factor ml
p
i such that the

best center procedure can stop when the calculated value reaches this upper bound. We can

observe that the value of l
p
i;j only changes with oi. Only when ðoi � ojÞmodðgi;jÞ ¼

gi;j
2

, l
p
i;j reaches

its maximum value, which means l
p
i;j �

gi;j
ciþcj

. Putting this condition into Eq (12), we get an

upper bound on ml
p
i :

ml
p
i � min

tj2T � ip

gi;j
ci þ cj

ð13Þ

The best center procedure BC(i, p) performs this calculation and stops after all valid values

of oi have been considered or the scaling factor calculated reaches the upper bound. Its

pseudo-code is shown in Algorithm 1.

Algorithm 1: Best center procedure BC(i, p)

Input:τi and a processorp
Output:the permissiblescalingfactorml

p
i , and the best centerboi for τi

1 ml
p
i  � 1; boi −1;

2 T � ip  Tp n ftig;

3 up
i  mintj2T � ip

gi;j
ciþcj

;

4 for k = 0 to pi do
5 oi k; t pi/ci;
6 foreach tj 2 T � ip do

7 l
p
i;j ¼ min 2ðoi � ojÞmodðgi;jÞ

ciþcj
;

2ðgi;j � ðoi � ojÞmodðgi;jÞÞ
ciþcj

� �
;

8 if l
p
i;j < t then

9 t  l
p
i;j;

10 end
11 end
12 if t > ml

p
i then

13 ml
p
i  t; boi k;

14 end
15 ifml

p
i � up

i then
16 break;
17 end
18 end
19 return(ml

p
i ; boi);

Now we analyze the computational complexity of Algorithm 1. The main computation part

of Algorithm 1 is from line 4 to 18, which has a structure of double closed loops. The inner

loop (from line 6 to 11) at most repeats n times, where n is the number of partitions in the
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system. Given the outer loop at most repeats pi times, the total running time of Algorithm 1 is

O(npi). If we use Pmax to denote the maximum period of all partitions, the running time com-

plexity of Algorithm 1 is O(nPmax).

4.2 Best Response Procedure on a Multiprocessor Platform

In this section, we extend the best center procedure BC(i, p) to a multiprocessor platform, and

present a best response procedure BR(r) to find the best assignment besides the best center for

a given partition τi. The best assignment and the best center guarantee that τi has the largest

scaling factor according to the current allocations.

From Section 4.1 we know, when τi is assigned to the processor p, the permissible factor by

which the computation times of all partitions can be multiplied, is ml
p
i and can be calculated

by the best center procedure BC(i, r). In order to choose the best assignment, we need to com-

pute the permissible factor on each processor and select the largest one. We use λi to denote

the maximum permissible scaling factor for τi when only the center and assignment of τi
change on a multiprocessor platform, hence:

li ¼ max
1�p�m

ml
p
i ð14Þ

According to Condition (13), the scaling factor when τi optimizes its center on a given pro-

cessor p is not larger than mintj2T � ip

gi;j
ciþcj

, which means li � mintj2T;j6¼i
gi;j
ciþcj

. When the calculated

value reaches this upper bound, the processors left can be skipped and the best response proce-

dure stops. The pseudo-code for this best response procedure is given in Algorithm 2. Since

the best center procedure BC(i, p) has a complexity of O(nPmax), the complexity of the best

response procedure BR(i) is O(mnPmax).

Algorithm 2: Best response procedure BR(i)

Input:τi in a partitionset T
Output:the largestfactorλi for τi, the correspondingcenterboi and

assignmentbai
1 λi 0; boi −1; bai −1;
2 u mintj2T;j6¼i

gi;j
ciþcj

;

3 for p = 1 to m do
4 (t, toi) BC(i,p);
5 if t > λi then
6 λi t; boi toi; bai p;
7 end
8 if λi� u then
9 break;
10 end
11 end
12 return(λi, boi, bai);

4.3 Equilibrium-Based Heuristic

Now we present a heuristic to calculate the maximum scaling factor for the computation times

of all partitions based on Game Theory. We think of partitions as players and their strategies

are the modification of their centers and assignments. All partitions take turns to use the best

response procedure BR(i) to update their strategies such that their computation times can be

scaled as much as possible. When no partition in the set T can improve its center or assign-

ment using the best response procedure, an equilibrium state is reached and the iterative pro-

cess stops. At this time, the maximum scaling factor λ is the minimum value of the permissible
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factors of all partitions, i.e., λ = min1�i�n λi. If λ� 1, the partitions are schedulable on this

multiprocessor platform; otherwise, more processors are required. When λ� 1, the values of

centers and assignments are valid allocations for all partitions.

We use l
k
i , o

k
i and ak

i to denote the permissible scaling factor, the corresponding center and

assignment obtained from the best response procedure BR(i) when τi updates its allocation in

the kth iteration. As the authors did in Al Sheikh et al. [1] and in Pira and Artigues [22], we

assume that τi does not change its center or assignment if the best response procedure does

not improve its current scaling factor. That is to say: if l
k
i � l

k� 1

i , oki ¼ ok� 1
i and ak

i ¼ ak� 1
i . The

pseudo-code for this equilibrium-based heuristic is given in Algorithm 3.

Algorithm 3: Equilibrium-based heuristic

Input:Partitionset T and the numberof processorn
Output:The maximumscalingfactorλ for all partitions

1 k 1;
2 repeat
3 for i = 1 to n do
4 ðl

k
i ; boi; baiÞ  BRðiÞ;

5 if l
k
i > l

k� 1

i then
6 oi boi; ai bai;
7 end
8 else
9 oki  ok� 1

i ; ak
i  ak� 1

i ;
10 end
11 end
12 k k + 1;
13 untilTk = Tk−1

14 l min1�i�n l
k
i;

15 if λ� 1 then
16 The partitionsin T are schedulable on this m-processorplatform;
17 end
18 else
19 The partitionsin T are not schedulable on this m-processor platform;
20 end

According to the Proposition 4 presented in Al Sheikh et al. [26], this heuristic converges

and reaches one or more fixed points in at most nþh
h

� �
n iterations where h = dαmax Δ

−1e, amax ¼

maxi minj6¼i
gi;j

ciþcj
and D ¼ minj;k

1

lcmðcj;ckÞ
. In each iteration, the best response procedure BR(i) is

used to select the best offset and assignment. As we pointed out in Sect. 4.2, the best response

procedure BR(i) runs in O(mnPmax). Hence, the running time complexity of the heuristic is

O mn2Pmax
nþh
h

� �� �
.

4.4 Limitation Analysis

Even though this equilibrium-based heuristic can determine whether all partitions are schedul-

able upon a limited number of processors and provide a proper offset and processor allocation

for each partition, it is not an optimal method and the scaling factor calculated by this heuristic

is not the maximum one. This is because our approach is based on Game Theory and stops

when equilibrium states are reached. It does not completely search the solution space and

some valid allocations would be skipped by our approach. Some partition sets that are actually

schedulable on the limited number of processors would be rejected and thrown away by our
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approach. This is one of the reasons why our algorithm has a lower scheduling success ratio

than the exact solutions.

Simulation Results

In this section we conduct simulation experiments to analyze the performance of our approach

proposed in Section 4. We compare the experimental results with those of MILP formulation

and the assignment algorithm based on eigentask and mapping function (EMTA) proposed in

Chen et al. [23]. The machine used has an Intel(R) Core(TM) i5-3320M CPU 2.60GHz and

4.00GB of system memory.

MILP is an exact framework for the linear programs in which some or all variables are

required to take integer values. It is solved with the CPLEX Optimizer [28] from IBM ILOG

and can completely find a feasible solution for periodic scheduling problem if no time limit is

set. EMTA is a first fit algorithm to allocate the partitions one by one and obtain the numbers

of processors required by the partition sets.

The generation procedure of partition sets is the same as that described in Chen et al. [23].

First the UUnifast-Discard algorithm [29] was adopted to generate the utilization ui (1� i
� N) for each task. Then, a random value p0 was chosen from 5 to 9 as a base integer, i.e., p0 =

U[5, 9]. Next, for non-harmonic partitions, periods were chosen uniformly from the set

{2x3y5z p0: x, y, z 2 [0, 4]}, as was derived from Eisenbrand et al. [19]. For harmonic partition,

a period ratio ki (1� i� N) was selected randomly from [1, 6], and periods were constructed

as pi = ki pi−1. Finally, the computation time of each task was given by ci = dpi uie. We analyze

the performance of our approach in terms of time consumption and acceptance ratio.

5.1 Time Consumption Evaluation

With a logarithmic scale, Fig 4 shows the execution times required to determine whether the

partition sets are schedulable. The partition sets were generated when the system utilization

was 1.0. The fields of “MILP_H”, “MILP_NH”, “NEW_H”, “NEW_NH”, “EMTA_H” and

“EMTA_NH” represent the average execution times required by MILP formulation, our

approach and EMTA algorithm when partitions were generated with harmonic and non-

Fig 4. Execution times required by MILP formulation, our approach and EMTA algorithm to determine

the schedulability of the partitions.

doi:10.1371/journal.pone.0168064.g004
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harmonic periods. Each point in Fig 4 (also in all figures used in Sect. 5) represents the average

value of the experimental results of 100 instances.

We can see that the time consumption of the three solutions has a similar changing ten-

dency that it grows gradually along with the increase of the number of partitions. This is

because that the more partitions are tested on, the more possible offset and assignment alloca-

tions should be considered to find an optimal solution. When the number of partitions is the

same, the time consumption of our approach is a little higher than that of EMTA. This is

because EMTA algorithm does not consider the modification of all partitions and has a lower

scheduling success ratio. Relatively, our approach requires less time than MILP formulation.

When the number of partitions is 10, the execution times required by our approach for har-

monic and non-harmonic partitions are 0.6 and 1.1 seconds, which are 30 and 41 times less

than those required by the MILP formulation respectively. This demonstrates that our method

is faster in analyzing the schedulability of the partitions.

Fig 5 shows the effects of system utilization on the performance of our approach when the

partitions are chosen from harmonic periods. We can see that when the number of partitions

is fixed, the execution time of our approach decreases along with the increase of the system uti-

lization. The reason is that lower system utilization means shorter partition computation time

is constructed, and there are more available time units left for a new partition. More valid off-

set and assignment allocations for partitions need to be considered to determine the schedul-

ability of the partitions. Hence, lower system utilization means longer time is required when

the number of partitions is fixed.

5.2 Acceptance Ratio Evaluation

In this section, we compare the performances of MILP formulation, EMTA algorithm and our

approach in terms of acceptance ratio, i.e., the percentage of partition sets determined schedul-

able on a limited number of processors [30]. There exist some partition sets that are rejected

by one method, but can be determined schedulable according to other methods. We perform

the experiments on the same partition sets, and record the number of partition sets that are

successfully scheduled by each method. A more accurate method would have a higher accep-

tance ratio.

Fig 5. Time consumption of our approach on harmonic partitions generated with different system

utilization.

doi:10.1371/journal.pone.0168064.g005
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In the experiment of Fig 6, partitions are generated when the system utilization is 1.0 and

the number of processors in the system is limited to 4. It demonstrates that the acceptance

ratios of the three solutions have a similar changing tendency that they gradually decrease

from 100 percent to less than 70 percent along with the increase of the number of partitions

from 5 to 30. MILP which is an exact method, has the highest acceptance ratio on a given num-

ber of partitions, and our approach has the second highest acceptance ratio. When the number

of harmonic partitions is 15, the acceptance ratio of our approach is 8% less than that of MILP

but one time more than that of EMTA algorithm.

In the experiment of Fig 7, partitions are chosen from harmonic periods, and we evaluate

the acceptance ratios of our approach by tuning the system utilization from 0.5 to 2.0. As can

be seen that the acceptance ratios decrease along with the increase of the number of partitions.

Meanwhile, when the number of partitions is fixed, the acceptance ratios drop with the system

utilization increases. The reason is that with larger system utilization, larger computation

Fig 6. Acceptance ratios of MILP formulation, our approach and EMTA algorithm on partitions with

harmonic and non-harmonic periods.

doi:10.1371/journal.pone.0168064.g006

Fig 7. Acceptance ratios of our approach on partitions with harmonic periods.

doi:10.1371/journal.pone.0168064.g007
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times are generated, and less partition sets are determined to be schedulable on a limited num-

ber of processors. Hence, larger system utilization leads to a lower acceptance ratio.

From Section 5.1 and 5.2 we can find that the heuristic proposed in this paper is a reason-

able compromise between time consumption and acceptance ratio, to solve the scheduling

problem of partitions. It is true that the acceptance ratio of the heuristic may be less than that

of the exact MILP formulation, but the relative error can be accepted when taking the time

cost into account. For example, when the number of harmonic partitions is 15, the acceptance

ratio of the heuristic is 88%, and the relative error is 8%. At the same time, the time consump-

tion of MILP is 101 seconds, which is almost 7 times more than that of the heuristic. This heu-

ristic purchases a high speed at the cost of a little of acceptance ratio.

Conclusions and Further Work

In this paper, we studied the schedulability problem of partitions in IMA systems. The parti-

tions are independent and with strict periods, which means that the time duration between

two successive instances of a partition is fixed and no lag is allowed once the partition’s offset

and assignment is defined. Through schedulability analysis, this paper proposes an efficient

approach to solve the non-preemptive scheduling problem of independent partitions in multi-

processor IMA systems.

We firstly modeled the independent partitions as non-preemptive tasks with strict periods,

and used a quadruple to represent the attributes (computation time, period, offset and assign-

ment) of a given partition. Then based on MILP formulation, we proposed an exact approach

to incorporates the constraints of an IMA system, and got the maximum scaling factor, by

which the computation times of all partitions can be multiplied before the system became

unschedulable. Finally, with a Game Theory analogy, we presented an efficient heuristic to cal-

culate the maximum scaling factor and provided a determination of whether the partitions

were schedulable. In this heuristic, partitions took turns in selecting the best offsets and assign-

ments according to the most recent known allocations of other ones until an equilibrium state

was reached.

The proposed equilibrium-based heuristic has a wide range of applications in IMA systems

and can be applicable across partitions with both harmonic and non-harmonic periods. With

the maximum scaling factor calculated, this heuristic not only determines whether the parti-

tions are schedulable, but also provides valid allocations for all partitions if they are schedul-

able upon a multiprocessor real-time platform. It helps the system designers in developing the

IMA systems and improves the robustness of a design subject to future changes.

Compared with the exact MILP formulation, this heuristic can achieve feasible solutions

with small relative errors in a short amount of time, which means that the heuristic is more

efficient in terms of speed. The quality of the heuristic is also shown to handle large scale IMA

systems composed of tens of processors and hundreds of partitions, where the MILP formula-

tion cannot find feasible solutions if time limit is set. Meanwhile, since the partitions are mod-

eled as non-preemptive tasks with strict periods, the schedulability analysis proposed in this

work can be used to solve the scheduling problem of a strictly periodic task model, which is

one of the most frequently models studied in the real-time system area. Hence, the results and

heuristic presented in this paper can be used in other application areas and would find applica-

bility in a wide variety of real-time systems.

Although our approach can obtain solutions in a relatively short amount of time, we would

like to consider some aggressive notions of approximation to reduce the search space and

improve its performance. Meanwhile, we are interested in studying the schedulability of
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partitions under the constraints of communications, and would like to see whether some

results proposed here can be adapted to dependent partitions.
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