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Terahertz Dispersion 
Characteristics of Super-aligned 
Multi-walled Carbon Nanotubes 
and Enhanced Transmission 
through Subwavelength Apertures
Yue Wang1, Guangwu Duan2, Liying Zhang3, Lihua Ma1, Xiaoguang Zhao2 & Xin Zhang   2

The terahertz (THz) dielectric properties of super-aligned multi-walled carbon nanotube (MWCNT) 
films were characterized in the frequency range from 0.1 to 2.5 THz with terahertz time-domain 
spectroscopy. The refractive index, effective permittivity, and conductivity were retrieved from the 
measured transmission spectra with THz incident wave polarized parallel and perpendicular to the 
orientation of carbon nanotubes (CNTs), and a high degree of polarization dependence was observed. 
The Drude-Lorentz model combined with Maxwell-Garnett effective medium theory was employed 
to explain the experimental results, revealing an obvious metallic behavior of the MWCNT films. 
Moreover, rectangular aperture arrays were patterned on the super-aligned MWCNT films with laser-
machining techniques, and the transmission measurement demonstrated an extraordinarily enhanced 
transmission characteristic of the samples with incident wave polarized parallel to the orientation of the 
CNTs. Surface plasmon polaritons were employed to explain the extraordinarily enhanced transmission 
with high accuracy, and multi-order Fano profile was applied to model the transmission spectra. A high 
degree of agreement was exhibited among the experimental, numerical, and theoretical results.

The discovery of extraordinarily enhanced transmission of incident electromagnetic radiation through periodic 
arrays of subwavelength patterns perforated on metallic films by Ebbesen and co-workers has inspired tremen-
dous interest in exploring the underlying physics and potential applications1–5. Various experimental and the-
oretical studies have been conducted to explain the mechanism of the enhanced transmission phenomenon, 
and it is widely believed that this enhanced transmission is due to the resonant excitation of surface plasmon 
polaritons (SPPs) and waveguide mode resonance6–9. Moreover, various geometries of periodic arrays of subwave-
length apertures have been extensively studied for this enhanced transmission10–14. In this paper, we focused on 
the experimental and theoretical study of the enhancement of radiation transmission through two-dimensional 
asymmetric periodic rectangular aperture arrays in the terahertz (THz) regime.

Besides metals, many other materials such as semiconductors, transparent conducting oxides, and novel 
carbon-based materials can be  consdiered as conductive media to support the formation of THz SPPs15–22. These 
emerging materials enable new possibilities to inspire fundamental research and potential applications in the THz 
regime. Recently, there has been an increasing interest in exploring the optical and electrical properties of aligned 
and non-aligned carbon nanotube (CNT) films in the THz regime23,24. Specifically, compared with non-aligned 
CNTs, super-aligned CNTs exhibit strong THz polarization anisotropy among other characteristic properties25,26.

In this paper, we investigated the anisotropic electric and optical properties of super-aligned multi-walled car-
bon nanotube (MWCNT) films on silicon substrates using the THz time-domain spectroscopy (THz-TDS). The 
transmission field strength was measured with incident THz wave polarized parallel (E//) and perpendicular (E⊥) 
to the orientation of the CNTs. In the entire frequency range of our experiment (0.1–2.5 THz), the measured data 
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agreed well with the theoretical results based on the Maxwell-Garnett (M-G) effective medium theory combined 
Drude-Lorentz (DL) model. In addition, the experimentally extracted refractive index and effective permittivity 
reveal that our MWCNT films possess a prominent anisotropy and metallic behavior. After studying the optical 
properties of the MWCNT films, we present experimental and simulation results of the polarization-dependent 
SPP-enhanced transmission of THz pulses through asymmetric rectangular aperture arrays patterned on 
MWCNT films with two periodicities in the frequency from 0.1 to 2.0 THz. Simulation results of the enhanced 
transmission spectra matched well with the experimental results. While keeping the long axis of the aperture per-
pendicular to the orientation of CNTs, we observed a significant peak in the transmission magnitude in the case 
of THz pulses polarized parallel to the orientation of the CNTs. This result demonstrates that the extraordinary 
enhanced transmission depends on the polarization direction of the incident THz wave.

Experiments
In this study, the super-aligned MWCNT films, synthesized via low pressure chemical vapor deposition27,28, were 
directly drawn out from the sidewall of super-aligned CNT arrays on a 750-µm-thick silicon substrate. Figure 1(a) 
shows a scanning electron microscope (SEM) image of the MWCNTs indicating the high degree of parallel align-
ment of the CNTs in the film. The inset is the illustration of the incident THz pulses polarized parallel (E//) or 
perpendicular (E⊥) to the orientation of the nanotubes. The two-dimensional asymmetric periodic rectangu-
lar aperture array structures utilized in this experiment were patterned on 3-µm-thick MWCNT films with a 
laser-machining technique. As depicted in Fig. 1(b), the width and length of the single rectangular aperture is 
a and b, respectively, and the periodicities are Px and Py along the x(short) and y(long) axis, respectively. In our 
experiment, while keeping a = 50 µm and b = Px, we modified the periodicity between apertures: Px = 150 µm, 
Py = 225 µm and Px = 250 µm, Py = 375 µm. Figure 1(c) shows the top-down SEM image of a MWCNT film with 
periodic rectangular aperture arrays (Px = 250 µm) indicating that the long axis of the aperture is perpendicular 
to the orientation of the CNTs, and Fig. 1(d) shows the image of a fabricated sample. A standard THz-TDS system 
(CIP-TDS, Daheng New Epoch Technology Inc.) was employed to investigate the THz transmission properties 
of these MWCNT samples. The entire system was sealed in a dry nitrogen gas environment to reduce the signal 
attenuation caused by moisture.

Results and Discussions
It is critical to investigate the dielectric properties of the unpatterned MWCNT films before studying the enhanced 
transmission properties of the patterned MWCNT films. Figure 2(a) plots the reference signal measured with a 
bare silicon substrate and the transmission signals with incident THz pulses polarized parallel and perpendicular 
to the orientation of the CNTs. Subsequently, the time-domain transmission signals were fast Fourier trans-
formed to the frequency domain and they are depicted in Fig. 2(b). Figure 2 shows the high anisotropy in THz 

Figure 1.  (a) SEM image of aligned multi-walled carbon nanotubes (MWCNTs); inset is the illustration of 
the nanotube alignment direction and the THz polarization direction. (b) Schematic drawing of a rectangular 
aperture unit. (c) SEM image of a 3-µm-thick MWCNT film with periodic rectangular aperture arrays with long 
axis perpendicular to the orientation of the CNTs. (d) Optical image of a fabricated sample.
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transmission responses of MWCNT films. The anisotropic properties of the super-aligned MWCNT films arise 
from the unique structure with ultra-high aspect ratio and the super-aligned orientation of the CNTs. The CNTs 
in the sample are featured with a diameter in nanometer scale and length in centimeter scale, enabling its aniso-
tropic electric properties in microscale, which demonstratesd a high conductivity along the longitudinal direc-
tion, while a low conductivity along the transversal direction. Furthermore, the carbon nanotubes were fabricated 
with a super-aligned orientation resulting in the anisotropic properties in the macroscale exhibiting a 6:1 con-
trast ratio in the transmission amplitude of THz pulses with two orthogonal polarizations, as shown in Fig. 2(b). 
Multiple transmission measurements were performed and the spectra was highly repeatable. Subsequently, the 
frequency-domain signals were normalized to the reference signal as shown in29–31:
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nd( ) 2 , the real part (n) and imaginary part (k) of the complex refraction index can be acquired.
In Fig. 2, the measured transmission amplitude is related to the power absorption coefficient α ω( ), which 

depends on the imaginary part of the complex refractive index (k) given by α ω ω= k c( ) 2 / . The diamonds and 
circles in Fig. 3 show the measured power absorption coefficient of the MWCNT films. As can be observed in 
Fig. 3, when the frequency increases from 0.5 to 2.5 THz, the power absorption coefficients in E// and E⊥ direc-
tions are both nearly constant. In addition, the power absorption coefficient in E// direction is much larger than 
that in E⊥ direction. The values approximate 1.35 × 104/cm and 3 × 103/cm in E// and E⊥ directions, respectively, 
which also demonstrate extremely high anisotropy.

In Fig. 4(a) and (b), the diamonds and circles represent the retrieved real and imaginary refractive indices 
as a function of frequency from the measurement results. It indicates that the refractive indices decrease with 
increasing frequency and saturate at high frequencies for both E// and E⊥. The refractive indices approached 5.3 
and 2.2 respectively, corresponding to a real part effective dielectric constant of 5.32 and 2.22 in the two orienta-
tions. Furthermore, the dielectric function for MWCNT films is related to the complex refractive index  with the 
following relationship:

ε ε σ ωε= + = +∞ i n ik/ ( ) (2)0
2

where ε∞ is the dielectric constant of CNT films at infinitely large frequencies, and ε0 is the free-space permittiv-
ity. The retrieved permittivity is plotted in Fig. 4(c) and (d).

The real and imaginary parts of the conductivity can be acquired from σ ω ε= nk2real 0 and σ ωε=imag 0
ε − −∞ n k[ ( )]2 2 , as shown in Fig. 4(e) and (f). Importantly, Fig. 4(c) reveals that the real part of the effective 
permittivity ε = −n kreal

2 2 in the two cases is negative over a wide frequency range from 0.2 to 2.5 THz, which 
is a critical condition for a medium to support propagating SPPs. In order to understand the effective complex 
dielectric constant, the M-G model was introduced32:
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where εi is the background permittivity constant, εm is the effective permittivity constant of MWCNT films, and f 
and N are the filling factor and geometrical factor of the M-G model, respectively. In this study, we assume that 

Figure 2.  (a) Transmitted THz pulses in the time domain from the reference silicon substrate (green curve) and 
from the MWCNT films with the incident THz pulses polarized parallel (blue curve) and perpendicular (red 
curve) to the orientation of the CNTs. (b) The corresponding amplitude spectra in frequency domain.
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the background is filled with air. Therefore, using M-G effective medium model to explain this composite system 
is necessary. When the orientation of the MWCNTs to the THz polarization changes, the geometrical factor N  
(Table 1) has different values.

To better evaluate the effective dielectric constant of MWCNTs, i.e., εm, we used a combined Drude and 
Lorentz oscillation model:
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where ε∞ is the dielectric constant of MWCNT films at infinity, γ is the damping rate, ωp and ωj represent the 
plasma and phonon frequency, respectively, and ωpj and γj represent the center frequency and damping frequency 
of the Lorentz oscillator, respectively. The theoretical curves were fitted to the measurement data with parameters 
listed in Table 1.

The theoretical effective permittivity and conductivity of the MWCNT films from Eqs (2–4) with parameters 
in Table 1 are plotted in Fig. 4(c–f) with the blue lines and red lines for the case of E// and E⊥. As shown in 
Fig. 4(e) and (f), similar to the refractive indices, the conductivity decreases with increasing frequencies in both 
E// and E⊥ directions.  Importantly, the conductivity in E// direction is much larger than that in E⊥ direction, 
demonstrating a prominent anisotropy and metallic behavior in our MWCNT films. In addition, the anisotropic 
attribute of the MWCNT was also supported by the extracted material properties in Fig. 4(a–d). The value of 
plasma frequency of the MWCNT films is = .

ω

π
13 1

2
p  THz and 39.3 THz in E⊥ and E// directions, respectively, 

falling between doped semiconductors and perfect metals. Furthermore, in terms of the carrier density, the higher 
plasma frequency in E// direction indicates a larger free electron density and conductivity along the CNTs. Due to 
the atomic arrangement with high aspect ratio, the electromagnetic properties of the MWCNT films are not only 
depended on the atomic arrangement but also on the orientation of the CNTs. The orientation of carbon nano-
tubes presented in both directions in the MWCNT films (even very minors along one direction, it still cannot be 
eliminated), and the MWCNT films were filled with air. It was difficult to measure the apparent density of the 
film. Therefore, the samples reported in this work have to be treated as composite material, which caused the 
difference between the experimental results and theoretical results. The difference can be decreased by improving 
the fabrication process to eliminate the carbon nanotube orientated along the minor direction.

We fabricated rectangular aperture arrays with two different periodicities (px = 150 μm and py = 250 μm; 
px = 250 μm and py = 375 μm) on the MWCNT films, as schematically shown in Fig. 1(b). Numerical simulations 
of the transmissions spectra of those samples were performed using the commercial software CST Microwave 
Studio with modeled permittivity in Fig. 4(c) and (d). A plane wave THz pulse was normally incident on a unit 
cell of a rectangular aperture to simulate the transmission spectrum. Periodic boundary conditions were applied 
along x and y axes perpendicular to the pulse propagation direction. The transmission signal was fast Fourier 
transformed to the frequency domain and normalized to the reference signal, which was obtained as the trans-
mission through unpatterned films. The results are shown in Fig. 5.

In Fig. 5, the simulated transmission characteristics demonstrate a similar trend with the experimental results 
at the resonant frequencies. We note that there are differences between the experimental and simulated results 
at high frequencies. We consider the disagreement is due to the bulk approximation of the dielectric properties 
of the MWCNT films in simulations. In the simulation model, the CNT film has been considered as macro-
scopic bulk material rather than nanotubes with specific shapes and orientations. In reality, however, the CNT 
shape and orientation produce clear anisotropic conductivities. Furthermore, the unit cell in the simulation lim-
its the accessible spatial extent of impedance-matched electrical pathways, which are thought to be responsible 
for the multiple-oscillation of the transmission spectra at higher frequencies. At the perpendicular polarization, 
the transmission remains almost unchanged at frequencies over 0.2 THz in both simulation and experimental 

Figure 3.  Power absorption coefficient spectra for MWCNT films. Diamonds represent the experimental data 
in the parallel case, while circles represent experimental data in the perpendicular case.
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results. However, we note that the transmitted signal in experimental results is slightly stronger than that of the 
simulation results at frequencies lower than 0.2 THz. This discrepancy could be attributed to the superposition 
effect of noise and the weak THz transmission energy at the low-frequency range shown in Fig. 2(b). It is worth 
noting that, the spectral transmissions are clearly affected by the incident THz polarization. In E// polarization, the 
samples exhibit an obvious transmission enhancement phenomenon and the resonance peaks occur at 0.38 THz 
and 0.22 THz, while the transmission is almost completely suppressed in E⊥ polarization. Importantly, the ampli-
tude enhancement ratio between patterned and unpatterned MWCNT films at 0.38 THz and 0.22 THz can reach 

Figure 4.  Comparison of measurement results (diamonds and circles) with theoretical results (solid lines), 
(a) Real part of the refractive index, (b) imaginary part of the refractive index, (c) real part of the effective 
permittivity (d) imaginary part of the effective permittivity, (e) real part of the conductivity, and (f) imaginary 
part of the conductivity. Diamonds and blue lines indicate the parallel direction, while circles and red lines 
indicate the perpendicular direction.

Parameter ω/2π (THz) γ/2π (THz) ωpj/2π (THz) ωj/2π (THz) γj/2π (THz) f N ε∞

Parallel 39.30 0.18 785.75 6.21 532.90 0.80 9.99 × 10−6 28.09

Perpendicular 13.13 0.13 463.97 8.91 1477.50 0.80 1.99 × 10−4 4.84

Table 1.  Best-fit parameters used in combined M-G and DL model for the theoretical curves presented in 
Fig. 4(a–f).
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12 and 9, respectively. In addition, the transmission minima appear at 0.72 THz and 0.44 THz in the spectra due 
to Wood’s anomaly for the case of E//

33,34. The extraordinarily enhanced transmission can be explained in terms of 
SPPs excited at the interfaces of the rectangular aperture arrays and the silicon substrate. For normal incidence, 
the dispersion relation is approximately given by2:

ε ε

ε ε
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+
k k

(5)
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where k0 = 2πf/c is the free-space wave vector, ε1 and εeff are the permittivity of dielectric medium and MWCNT 
films, respectively. For the 2D rectangular aperture array with periodicity along x-axis (Px), the SPPs wave vector 
is calculated as1:

θ= ± ±k k G Gsin m n (6)sp x y0

where m and n are integers, Gx and Gy are the reciprocal lattice vectors with |Gx| = 2π/px and |Gy| = 2π/py. When 
THz wave is incident normally, θ=sin 0. By solving Eqs (5) and (6), the complex resonance frequency based on 
SPPs modes is given by:
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The real part of f corresponds to the resonance frequency, and the imaginary part of f is related to the internal 
damping corresponding to the coupling between the CNT’s absorption loss and the surface plasmon. The cal-
culated resonant frequencies of the samples with two different periodicities along x-axis (Px = 150 µm, 250 µm) 
based on SPPs for the MWCNTs/Si interface are 0.38 THz [0, ±1] and 0.22 THz [0, ±1], respectively, which agrees 
well with the experimental results.

Figure 5.  Experimental (a and c) and simulated (b and d) transmission spectra for two different periodicities 
along x-direction for the 3-µm-thick MWCNT film: Px = 150 µm in (a) and (b), Px = 250 µm in (c) and (d). 
Diamonds and blue lines represent the transmission for polarizations parallel to the short axis of the rectangular 
apertures, while circles and red lines represent the transmission for perpendicular polarizations.
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To further understand the enhanced resonance transmission, we simulated the electric field distribution of 
each resonant mode. The electric field distributions at 0.38 THz and 0.22 THz of those asymmetric rectangular 
apertures with periodicities of 150 µm and 250 µm along short axis are shown in Fig. 6. In the case of the rectan-
gular aperture, a distinct electric field enhancement occurs inside the rectangle at the resonant frequencies, which 
reflects the fact that the enhancement transmission arose from the resonance of SPPs.

From Fig. 5, it can be seen that the resonance exhibits a distinctly asymmetric line shape. This phenomenon 
is related to the interfering in the transmission process and agrees well with the Fano profile35,36. Fano resonance 
has been found in a number of metallic films, photonic crystals, plasmonics nano structures37,38, and so on, but 
seldom in CNT films. Herein, we prove that Fano resonance can also provide useful insight in treating the trans-
mission of THz pulses through patterned MWCNT films. Such Fano-like resonance can be attributed to the 
interference between non-resonant and resonant scattering in the periodic aperture arrays. The classical Fano 
model is defined by11,35:

ω = +
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where ω0, ω, and γ are the resonance frequency, signal frequency and the spectra linewidth, respectively. f is 
the asymmetric parameter that defines the degree of asymmetry, indicating a ratio of the transition probabili-
ties to the discrete state and to the continuum state. t0 and ti are slowly varying transmission and background 

Figure 6.  Simulated electric field distribution in the xy plane through the rectangular aperture for periodicities 
along x-axis of (a) 150 µm, and (c) 250 µm at peak frequencies. (b) and (d) are the simulated electric field 
distribution in the yz plane corresponding to (a) and (c).
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transmission, respectively. In our case, considering the resonant state associated with surface plasmons from the 
CNT films, the entire transmission of the periodic aperture arrays can be expressed by the modified multi-order 
Fano profile39, given by:

ω = +
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where ai (i = 1, 2, and 3) is a weighting factor for each resonant mode. It also modifies the intensity of the 
transmission.

Our results show that the Fano profiles are fully determined by the resonance frequency, spectral lineshape, 
weighting factor and asymmetry factor. Figure 7 shows the normalized measurement transmission data (dia-
monds and circles) for our two samples with different periodicities. It is noteworthy to mention that the reso-
nance behavior observed in the experimental results can be well reproduced with the Fano profiles (solid lines), 
which confirms that enhanced transmission in the resonant peak results from the coupling between surface plas-
mons (resonant state) and localized surface plasmons (non-resonant state)38.

Conclusions
In summary, we found that super-aligned MWCNT films exhibited a strong anisotropic response in the frequency 
range from 0.1 to 2.5 THz. By utilizing THz-TDS, the refractive indices, permittivity, and conductivity for both 
E// and E⊥ polarization were retrieved, demonstrating decreasing amplitude with increasing frequency and satu-
ration at high frequency. A combination of the M-G and DL models was introduced to theoretically describe the 
experimental results, and the measurement was fitted by the M-G model in high frequencies. However, there is 
some small discrepancy for the perpendicular case in lower frequencies. One possible reason is the deficiency of 
the power of the transmitted THz pulse at low frequency, which may introduce large error in retrieving material 
properties. Both experimental and theoretical results reveal that our MWCNT films possess a prominent ani-
sotropy and metallic behavior. Subsequently, periodic rectangular aperture arrays were patterned on the films 
with the long axis of the apertures perpendicular to the orientation of the CNTs, and showed an extraordinarily 
enhanced transmission with incident pulses polarized parallel to the orientation of the CNTs, while no obvi-
ous transmission was observed in the perpendicular case. The SPPs resonance frequencies at normal incidence 
were calculated based on the geometries of the aperture arrays exhibiting high agreement with the experiment 
and simulation results. Furthermore, the electric field distributions at the resonant frequencies were simulated, 
revealing that SPPs were excited and caused the extraordinary transmission response. Moreover, we found that 
the asymmetric transmission spectra line shape can be well fitted with the Fano model. These findings may enable 
new possibilities for realizing novel THz devices such as switches, polarizers, modulators and sensors with pat-
terned super-aligned MWCNT films.

Figure 7.  Normalized transmission spectra fitted by Fano model with various parameters. (a) Sample 
with px = 150 μm. The Fano model parameters: t0 = 0.01, ω1/2π = 0.351 THz, ω2/2π = 0.885 THz, 
and ω3/2π = 1.356 THz; f1 = 5.78, f2 = 4.24, and f3 = 5.19; γ1/2π = 0.385 THz, γ2/2π = 0.37 THz, and 
γ3/2π = 1.19 THz; a1 = 2.76×10−2, a2 = 1.22×10−2, and a3 = 2.62×10−2. (b) Sample with px = 250 μm. The Fano 
model parameters: t0 = 0. 1, ω1/2π = 0.196 THz, ω2/2π = 0.645 THz, and ω3/2π = 1.256 THz; f1 = 5.77, f2 = 4.36, 
and f3 = 4.49; γ1/2π = 0.223 THz, γ2/2π = 0.46 THz, and γ3/2π = 0.99 THz; a1 = 2.68×10−2, a2 = 1.56×10−2, and 
a3 = 1.79×10−2.
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Data availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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