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Snmmsry 
We present evidence for RNA transcripts encoding two forms of human e immunoglobulin 
(Ig) heavy chain that differ significantly from those of other isotypes. We previously demonstrated 
three human e mRNA species, instead of the two, corresponding to membrane and secreted 
proteins, seen with other heavy chain transcripts. In human genomic DNA downstream of the 
Ce gene, we identified sequences homologous to the two putative murine exons M1 (encoding 
a hydrophobic, presumably transmembrane region) and M2 (encoding hydrophilic residues). To 
determine the structures of e transcripts containing these sequences, we amplified e-related RNAs 
with the reverse transcriptase polymerase chain reaction. RNA was examined from fresh human 
B cells stimulated to IgE production by interleukin 4 plus anti-CD40, as well as from the human 
IgE-producing line AF10. Instead of the single CH4-M1-M2 splice product predicted for murine 
membrane IgE, we found two other RNA species. One form has the structure CH4-MI'-M2, 
in which MI' includes the human sequence homologous to the murine M1 as well as a unique 
segment of 52 codons further upstream in the genomic sequence; this RNA species apparently 
encodes the IgE expressed on the membrane of IgE-producing lymphocytes. The other RNA 
has the structure CH4-M2', in which M2' is spliced in an alternative reading frame that includes 
an additional 109 codons downstream of the termination codon of the CH4-MI'-M2 form. Because 
the CH4-M2' mRNA form does not encode a hydrophobic segment, its translated product should 
be secreted. A secreted E protein of approximately the size predicted for this form was identified 
by Western blotting. This novel IgE protein could play a significant and distinctive role in allergic 
disorders. 

I gE was recognized as the antibody mediating immediate 
allergic reactions approximately 25 yr ago (1). The struc- 

ture of the human secreted IgE protein was defined through 
the amino acid sequencing of secreted myeloma proteins (2) 
and through analysis of the genomic gene and cDNAs en- 
coding the human e-secreted heavy chain (3). However, we 
were interested in the structure of membrane-bound e chain 
and the genetic elements encoding this form, both previously 
unknown for human IgE. Furthermore, the nature of the 
membrane and secreted e chains in human polyclonal IgE 
has not been elucidated. 

We previously demonstrated that in RNA isolated from 
human B lymphocytes and from an IgE-secreting myeloma, 
human Ce probes hybridize to three different sizes of mRNA: 
2.1, 3.0, and 3.8 kb (4). Three bands of very similar sizes 
were also reported on Northern blot analysis of RNA from 
a routine IgE-secreting hybridoma (5). Similar analyses of 

RNA species encoding other Ig isotypes generally reveal only 
two bands, corresponding to forms encoding either a 
membrane-bound or secreted protein. These two RNA spe- 
cies result from alternative splicing either including or ex- 
cluding "membrane exons" that in germline DNA lie down- 
stream of the corresponding CH gene. The finding of three 
bands in the Ce system suggested that the splicing of mem- 
brane exons for this isotype might be more complex than 
for other heavy chain RNAs. 

To explore this possibility we began our investigation by 
sequence analysis of the germline DNA encoding exons down- 
stream of the Ce gene. Our sequence data allowed us to de- 
sign oligonucleotides that were used to reverse transcribe and 
amplify the relevant regions of the e-related mRNAs from 
human cells by the PCR. In this paper we report the DNA 
sequence of the two exons of the the human e membrane 
locus and the structure of three mature e mRNAs that uti- 
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lize this coding information. Only one of these mRNAs con- 
tains the sequence for a hydrophobic peptide segment that 
would anchor the protein to the membrane, and this form 
encodes an unusually long stretch of amino acids between 
this transmembrane region and the last Ig domain. The second 
�9 m R N A  is generated by an alternate splice to the second 
membrane exon, a splice that would lead to translation of 
this exon in a second reading frame yielding a secreted pro- 
tein with a 134-amino acid COOH-terminal  addition com- 
pared with the "classical" secreted form. The third R N A  form 
may represent a rare splice variant. The  existence of an un- 
usual membrane protein and a second secreted form of e heavy 
chain would both have potential implications for our under- 
standing of the function of  IgE in allergic reactions. As this 
manuscript was being prepared, results simi]ar in several aspects 
were reported by Peng et al. (6) based on analysis of  two 
IgE-producing cell lines. 

Materials and Methods 
Sequence Anal2/sis of Human �9 Membrane Exons. The membrane 

exons of the human e gene were subcloned from coslgl0 (7), a 
kind gift from T. Rabbitts (MKC Laboratory of Molecular Biology, 
Cambridge, England). The location of the exons was known from 
previous analysis of sequence downstream of the highly homolo- 
gous �9 pseudogene (E. E. Max. and C. Moulding, unpublished 
results). A 10.6-kb BamHI-XhoI subclone (plasmid p20K) of 
coslgl0 was further subdoned into Bluescript (Stratagene, La Jolla, 
CA), and sequence analysis was performed on both strands by the 
dideoxy termination method using "universal" primers from vector 
sequence and several internal primers. Some regions of the sequence 
were consistently difficult to read, probably owing to high GC 
content and secondary structure, requiring dlTP substitution or 
high temperature (TAQuence; U. S. Biochemical Corp., Cleveland, 
OH) for elucidation. Differences between our sequence and a se- 
quence of part of the same region that was published during the 
course of this work (8) were given special scrutiny. 

Ceil Line and Cell Cultures. The IgE (e/X)-secreting human 
cell line AF-10, a subclone derived from the myeloma U266, was 
maintained as described previously (9). Fresh B cells were isolated 
from tonsil mononuclear cells. Briefly, after tonsil disruption, 
mononuclear cells were prepared by FicoU-Hypaque density cen- 
trifugation. T cells were depleted by two cycles of rosette formation 
with sheep red blood cells treated with 2-aminoethylisothiouronium 
bromide (Sigma Chemical Co., St. Louis, MO); and monocytes/ 
macrophages were then removed by two cycles of adherence to plastic 
dishes in the presence of serum. These methods have been described 
in detail previously (10, 11). The resulting cell populations were 
analyzed by flow cytometry and consisted of 99% of B cells (CD19/ 
CD20 +) and of <1% T cells (CD3 +) or monocytes (CD14+). For 
�9 mRNA induction, purified B cells (10 + cells/ml) were stimulated 
for 5 d in culture in complete RPMI 1640 with II.-4 (200 U/ml; 
Amgen Biologicals, Thousand Oaks, CA) and the anti-CD40 mAb 
G28-5 (0.1 #g/ml; the kind gift of Dr. Ed Clark, University of 
Washington, Seattle, WA). 

RNA Isolation and Reverse Transc@tion. Total cytoplasmic RNA 
was isolated from both AF-10 cells and induced/uninduced B cells. 
Briefly, a pallet was lysed with 0.5% NP-40 lysis buffer at 4~ 
The nuclei were removed by centrifugation, and the lysate was 
treated with proteinase K. The resulting cytoplasmic RNA- 
containing supernatant was extracted with phenol/chloroform fob 

lowed by precipitation of the RNA in EtOH (12). For isolation 
of RNA from B cells, Esckerichia coli rR.NA (2 #g/106 cells; 
Boehringer-Mannheim Co., Indianapolis, IN) was added as car- 
rier. cDNA was reverse transcribed from the isolated RNA using 
oligo(dThs (Boehringer-Mannheim Co.) as primer and mouse 
Moloney leukemia virus reverse transcriptase (Bethesda Research 
Laboratories, Gaithersburg, MD). The cDNA mixture was heated 
to 95~ for 5 min and then immediately used as a PCR substrate. 

Amplification and Analysis of�9 cDNAs. Pairs of PCR primers 
were designed for detecting different forms of e mRNA containing 
membrane exon sequence (Table 1). Primer oligonucleotides were 
synthesized by Genesys Biotechnologies Inc. (The Woodlands, TX). 
Some primers were designed with terminal enzyme restriction sites 
to facilitate cloning and sequencing of PCR products. Table 1 shows 
the oligonucleotide primers and probes used in this study. PCR 
amplifications were performed for 40 cycles in a volume of 100 
~l/reaction. The reaction mixture contained 10% DMSO, 50 mM 
KCI, 20 mM Tris-HC1 (pH 8.4), 2.5 mM MgCI2, and 100/~g/ml 
nuclease-free BSA. The reactions were carried out with 1 min of 
melting at 94~ 1 min of annealing at 65~ and I min of exten- 
sion at 72~ except that PCR was carried out with annealing 
at 72~ when primer D was used. Primer concentration was 50 
pM. Template DNA for each reaction consisted of the total cDNA 
reverse transcribed from 1/~g of RNA. PCR products were digested 
with Cla[ and SalI (to uncover the sticky ends designed into the 
PCR primers), purified by agarose gel electrophoresis, and then 
ligated into a Bluescript (Stratagene) vector that had been prepared 
by ClaI + XhoI digestion and treatment with alkaline phospha- 
tase. Plasmid minipreps were analyzed by restriction digestion and 
the inserts of selected clones were sequenced as described above. 

Southern Blot Analysis of PCR Products. PCR products were ex- 
tracted with phenol/chloroform, and then 15/~1 of each reaction 
mixture was subjected to electrophoresis on a 2% agarose gel 
(NuSieve and Seakem agarose 1:1 mixture; FME Bioproducts, Rock- 
land, ME) in TBE buffer. DNA was transferred to nylon mem- 
branes (Nytran; Schleicher & Schuell, Inc., Keene, NH) in 0.4 M 
NaOH, and blots were analyzed by probing with end-labeled oli- 
gonucleotides corresponding to an internal region of each putative 
�9 membrane exon. Blots were prehybridized for 2 h at 60~ in 
5 x SSPE, 0.5% SDS, and 250 ng/ml of salmon sperm DNA. Hy- 
bridization with kinased oligonucleotide probes was performed over- 
night at 60~ The blots were washed for 20 min at room temper- 
ature with 2x SSC plus 0.1% SDS, and then twice more at 60~ 
with 0.2x SSC plus 0.1% SDS for 20 min. 

Northern Blot Analysis. 20 #g of total RNA from AF-10 cells 
was denatured with glyoxal and subjected to electrophoresis on 1% 
agarose gels using 10 mM sodium phosphate running buffer and 
then transferred by capillary transfer to nylon membranes (Nytran). 
The filters were prehybridized for 2 h at 42~ in 50% formamide, 
5 x SSC, 50 mM sodium phosphate, pH 7.0, 5 x Denhardt's solu- 
tion, 250/~g/ml denatured salmon sperm DNA, and 0.1% SDS. 
Three reverse transcription PCR-generated products were used as 
probes, as shown in Fig. 5. The PCR products were excised from 
agarose gels and purified by using a Geneclean kit (Biol01, La Jolla, 
CA). The specificities of the PCR products were verified by hy- 
bridization with a kinased internal oligonucleotide probe specific 
for each amplified fragment. The PCR products were then labeled 
with [32P]c~ATP by random priming and hybridized to the filter- 
bound RNA as described (4). 

Western Blot Analysis. Three protein samples were analyzed: a 
1:200 dilution of serum from a patient (PS) with an IgE myeloma, 
a 10-fold concentrated supernatant of AF-10 cells grown in HD1 
serum-free medium (Ventrex Lab. Inc., Portland ME), and a lysate 
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of AF-10 cells. These samples were subjected to electrophoresis on 
an SDS-PAGE gel (10% acrylamide) under denaturing conditions. 
Transfer to nitrocellulose membranes (S&S NC; Schleicher & 
Schuell, Inc.) was carried out in buffer containing 25 mM Tris, 
192 mM glycine, and 20% (vol/vol) methanol for 2 h at 50 V. 
After blocking, the blot was incubated with mouse human e-specific 
mAb (done CIA-E-7.12, 20/~g/ml) for 2 h followed by incubation 
with alkaline phosphatase-labeled sheep anti-mouse IgG antiserum 
(Sigma Chemical Co.) for >2 h. Color development was performed 
with an AP-conjugate kit (Bio-Rad Laboratories, Richmond, CA) 
as described by manufacturer. 

Results 
Genomic DNA Sequence of Putative Human e Membrane 

Exons. As a basis for understanding alternative e RNA spe- 
cies involving membrane exons, we determined the nudeo- 
tide sequence of human germline genomic DNA containing 
these exons. Initial sequence analysis identified a DNA seg- 
ment, located •1.8 kb downstream from the 3' end of the 
e CH4 domain, that showed strong sequence similarity to 
the e membrane exons previously described in murine DNA 
at a similar location (Fig. 1 A) (5). Of  the 72 amino acid 
residues encoded in the two murine exons M1 and M2, 33 
(46%) are conserved in the homologous human sequence. 
In particular, the hydrophobic residues in M1 that are thought 
to play a role in anchoring the protein to the lipid membrane 
of the B lymphocyte are well conserved. These include the 
LFLLSV segment found in most murine IgH membrane 
regions and the COOH-terminal alanine residue. Although 
deletion/insertion differences are scattered in the intron se- 
quences, in the exons they occur in only two places, both 
with maintenance of reading frame: two compensating dele- 
tions in the human sequence between nucleotides 220 and 
230, and a 9-bp deletion in the human sequence between 

nucleotides 180 and 190. The latter probably resulted from 
an event involving repeated GACCT sequences that in the 
mouse are separated by 9 bp. An additional deletion just up- 
stream in the human sequence may also be related to repeated 
sequences (CCCA). The nudeotide sequence of CH4 and 
3' flanking sequence is shown in Fig. 1 B, while a 1-kb re- 
gion including the human membrane e exons is shown in 
Fig. 1 C. The evidence supporting the exon boundaries 
defining the translated regions is presented below. 

PCR Amplification of RNA Sequence Spanning the Putative 
e Membrane Exons. To define the exon structure of the mem- 
brane regions of e mRNAs from human IgE-secreting cells, 
cDNA copies of extracted IkNA were amplified by PCR. 
As sources of e RNA we used both fresh human B lympho- 
cytes cultured with II,-4 and anti-CD40, and the IgE my- 
eloma cell line AF10. Three primer pairs were used in the 
amplifications. For one set of experiments the cDNA was 
amplified using the primer pair IVm-C (see Fig. 2, bottom). 
When amplification mixtures from the two lkNA samples 
were run on routine TBE agarose gels, both RNAs gave similar 
patterns of four bands (Fig. 2 A). All four bands hybridized 
to an M2 probe, but only the upper two bands hybridized 
to either of two probes for M1. This suggested that some 

RNA (represented by the smaller PCR products) is spliced 
to yield species that contain M2 but not M1 sequence. 

Although we detected four bands in the gels of Fig. 2, 
A and B, evidence from further investigation suggests that 
there are only two PCR products, corresponding to bands 
1 and 4 of these gels. When the DNA was extracted from 
bands 2 and 3 and rerun on TBE agarose, the extracted DNA 
fragments comigrated with bands 1 and 4, respectively (data 
not shown). Furthermore, when DNA corresponding to all 
four bands was subdoned and subjected to sequence analysis, 
material from band 2 always gave subclones identical to those 

Table 1. Oligonucleotide Sequences 

Name Sequence (5' to 3')* Position 

IVb ggccatcgatAAGTCTATGCGTTTGCGACGCCGG 19-42 (Fig. 1 b) 
IVm ggccatcgatGACGCCCGGCACAGCACGACGCAG 147-170 (Fig. 1 b) 
A ACAGAGCCTCCTGCTGCTCT 126-107 (Fig. 1 c) 
B ggccgtcI~acTGTAGCTCACGCTCAGCAGG 281-262 (Fig. 1 c) 
C ggccgtcgacGGCTGGAGGACGTTGGTGTA 462-443 (Fig. 1 c) 
D ggccgtcgacTGGGTGCCGGGCCCTCCTTGGC 837-816 (Fig. 1 c) 
G ATTCCAACCCGAGAGGGGTG CH3 domain 
H CTGTCCACTGTTGCAATGACC 401-421 (Fig. 1 b) 
1 TCTGCCACTCCGGACAGCAG 75-94 (Fig. 1 c) 
2 CTGGACGTGTGCGTGGAGGA 185-204 (Fig. 1 c) 
3 TGCAGCGGTTCCTCTCAGCC 390-409 (Fig. 1 c) 
4 CTCCTCGATGACTCTGTTGA 714-733 (Fig. 1 c) 

* Capital letters correspond to genomic sequence while lower case letters represent added nucleotides. Underlined sequences represent introduced 
restriction sites for ClaI (atcgat) or SalI (gtcgac). 
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Figure 1. Nucleotide sequence 
of human genomic done containing 
Ig e membrane exons. (.4) A por- 
tion of the human sequence ob- 
tained in the present investigation 
is compared with the previously 
published murine sequence (5), in 
which exons MI and M2 were 
identified on the basis of homology 
to the membrane exons of other iso- 
types. The amino acid translation 
(one-letter code) is given, with con- 
served residues circled. (B) The 
genomic sequence of human Ce4 (3) 
is presented (translation below) 
along with some downstream se- 
quence. The bold bracket after po- 
sition 324 identifies the splice donor 
site determined for two of the three 
RNA species described here that in- 
clude one or more of the down- 
stream "membrane" exons. The 
dashed brackets define the splice sites 
of the unusual CH4'-I-MI'-M2 
form. The locations of genomic se- 
quences used to design oligonucle- 
otides used in the present study 
(IVb, IVm, and H) are shown; the 
arrow under the sequence indicates 
that the oligo was designed based 
on the strand complementary to that 
shown here. (C) The sequence of 
the human membrane exons is 
presented. Bold brackets identify the 
boundaries of the MI' exon and the 
5' end of the M2 or M2' exon as 
defined by the cDNA structures 
characterized in the present work. 
Amino acid translation is provided 
for the MI'-M2 form (above the 
nudeotide sequence) and the M2' 
reading frame (below the nudeotide 
sequence). The locations ofgenomic 
sequences used to design oligo- 
nudeotides are shown as in B. 
These sequence data are avail- 
able from EMBL/Genbank/DDBJ 
under accession number X63693 
HSIGEHCA. 



Figure 2. Gel electrophoresis of 
RT-PCR products. Size estimates of 
the products were based on compar- 
ison with oligomers of 123-bp 
markers. The products of three 
primer pairs axe shown, along with 
a map that diagrams the position of 
the pairs with respect to the exons. 
The circled numbers identify the 
four oligonucleotide probes used in 
the Southern blots shown. (A) RT- 
PCR bands derived from RNA of 
AF10 cells or from B cells cultured 
with Ib4 and anti-CD40 show a 
nearly identical pattern. Essentially, 
identical patterns were seen with 
RNA from both sources in all the 
PCR experiments shown here. (/3) 
The four bands obtained with AF- 
10 RNA hybridize differentially 
with three oligonucleotide probes 
from the locus. (C) Aliquots of the 
same amplification mixture were 
subjected to electrophoresis on 
agaxose or on a denaturing 8 M 
urea-12 acrylamide gel. The middle 

two bands seen on agarose are absent on the denaturing gel and may represent heteroduplex artifacts. (D) The IVm-D primer pair was used to determine 
the 3' end of the coding exon M2'. Sequence analysis of the PCR products ruled out the possibility of introns interrupting the coding sequence down- 
stream of oligonucleotide C. (E) The IVm-B primer pair generates a single band of "~453 bp, consistent with a CH4-MI' splice. 

from band 1, and similarly, band 3 subclones were identical 
to band 4. It has been reported that some PCR products pro- 
duce anomalous bands on agarose gels because of heteroduplex 
formation (13). This is a likely explanation for the occur- 
rence of bands 2 and 3 because these bands were absent 
when the PCR mixtures were run on a denaturing urea gel 
(Fig. 2 C). 

In another set of experiments, designed to explore the more 
3' region of the e mRNA structure, cDNAs were amplified 
by the primer pair IVm-D. In these experiments two major 
PCR products were observed (Fig. 2 D). Again, the both 
bands hybridized with the M2 probe, but only the larger 

PCR product hybridized with the M1 probe. This observa- 
tion independently confirms the existence of an RNA form 
conta in ing  M2 bu t  no M1 sequence. 

Sequence Analysis of the 6 mRNA Species Containing Mem- 
brane Exon Sequence. To de termine  the exact s t ructure  of  the 
P C R  products ,  P C R  mix tures  amplif ied f rom b o t h  of  the 
ceU sources were  cloned into  a p lasmid  vector  for sequence 
analysis. T h e  t w o  sets o f  p r imer  pairs used were  I V b - C  and 
IVm-D.  

Products  co r respond ing  to three types of  R N A  splicing 
were  observed (Fig. 3). O n e  produc t ,  isolated f rom the larger  
o f  the two  P C R  products  f rom each pr imer  set, indudes  bo th  

l~b IV m �9 T~ 

M2' I 
RNA souroe ~ 

ll6AS 25A8, I 
2(~AS CH4-MI'-M2 .As 
~ 3 e .  ~ I V r 

3AS, 1w ~ 

CH4"M2' s.s 
: 108H ~ IIIII 

CH4'-I-MI'-M2 .As ~ k / ~  

CH4-M1-M2 o~erv.n~ (. . . . . . . . . .  ~ . . . .  ~ /  ) 

Figure 3. RNA species defined by PCR prod- 
ucts analyzed in this study. The three species 
demonstrated by PClk amplification and nucleo- 
tide sequence analysis are diagrammed. The names 
of the corresponding clones used for sequence anal- 
ysis are given under the cell source of the IkNA 
(stimulated B cells or AF10). The bold horizontal 
bars represent translated exon sequence. The 
asterisks show the positions of in-frame termina- 
tion codons, with the thinner horizontal lines 
representing 3' untranslated sequence. The fourth 
RNA splice form (CH-M1-M2) was not observed 
in the present experiments. 
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M1 and M2 sequences. However, the 5' end of the human 
M1 defined by this PCR product is 156 bp 5' of the gluta- 
mate residue (at nucleotide 182; Fig. 1, A and C), which 
is homologous to the 5' end of murine M1 exon. We refer 
to this human exon as MI' to distinguish it from the smaller 
murine exon M1. The M2 exon of this splice product en- 
codes 27 amino acids and ends at position 470 in Fig. 1 C. 
The reading frame of this RNA splice product is defined by 
the splice donor site at the 3' end of the e CH4 exon. Our 
sequence analysis of the PCR products defines the end of the 
membrane form of the CH4 exon to be at nucleotide 324 
in Fig. 1 B. This pattern of splicing for membrane e utilizes 
the reading frame that encodes an amino acid sequence ho- 
mologous to that reported for the murine M1 and M2 exons 
(as shown in Fig. 1 A). 

The second RNA form, corresponding to the smaller PCR 
product in each amplification, splices from the same position 
of CH4 directly to the M2 exon (diagramed in Fig. 3). The 
omission of M1 in this form causes the reading frame of M2 
to be shifted from that used in the CH4-MI'-M2 form. The 
position of the first termination codon in the new reading 
frame, at nucleotide 796 in Fig. 1 C, defines a much longer 
coding exon, which we designate M2'. This exon encodes 
136 amino acids in contrast to the 27 residues of M2. This 
RNA form is designated CH4-M2' in Fig. 3. Because the 
conserved hydrophobic region encoded by M1 is absent from 
this RNA, it should encode a secreted protein; this protein 
would be 134 amino acids longer than the conventional e 
heavy chain. To explore whether such a protein could be de- 
tected, Western blot analysis was performed on serum from 
a patient with IgE myeloma and on AF10 cell supernatant 
and lysate (Fig. 4). In each sample, a band of '~97 kD was 
observed after development of the blot with specific anti-e 
antibody. This band likely represents the large ~ IgE coded 
for by the CH4 to M2' exon splice, as that protein should 
be 134 amino acids (,v15 kD) larger than the classic secreted 
form. 

The third RNA form detected in our PCR products is 
represented by a single clone derived from the larger PCR 
band amplified from the RNA of B lymphocytes stimulated 
by I1:4 and anti-CD40. In this RNA a splice occurred from 
a donor site within CH4 (position 218 in Fig. 1 B). The se- 

quence of the clone then jumps to a short segment derived 
from the 3' untranslated region downstream of CH4, repre- 
sented by nucleotides 359-465 in Fig. 1 B. The 3' end of 
the clone includes exons MI' and M2 spliced as in the CH4- 
MI'-M2 form. The translation of the RNA corresponding 
to this clone would be terminated by the TAA at position 
440 of Fig. 1 B, leading to a protein that lacks a membrane 
anchor and is almost identical in size to the classic secreted 
form of t heavy chain. This RNA structure (designated CH4'- 
I-MI'-M2 in Fig. 3) is probably not an RT-PCR artifact in 
that the splice donor and acceptor sites are reasonably consis- 
tent with consensus sites; but it may represent an atypical 
splice product and is not considered further. 

Search for a Splice Product Homologous to the Murine CH4- 
M1-M2 Form. Because of the high degree of sequence 
similarity between the human and murine genomic DNA 
sequences in the e membrane region, we initially expected 
to detect evidence of an RNA species similar to the CH4- 
M1-M2 product suggested for the mouse membrane e struc- 
ture. Indeed, another laboratory has described such a form 
for human e mRNA (6). Since no PCR products of the size 
expected for such an RNA form were detected in our experi- 
ments described above, amplification with a third primer set 
was undertaken specifically to look for such an RNA form. 
In this experiment RNA derived from both AF10 ceils and 
II:4 plus CD40-stimulated human B cells was reverse tran- 
scribed and the cDNA amplified with the primer pair IVm-B; 
this pair was chosen to simplify the pattern of PCR products 
by diminating any contribution of the CH4-M2 splice form. 
With these primers the PCR product expected for the CH4- 
MI'-M2 splice form should be 453 bp (including the lengths 
of the primer "tails" containing restriction sites), while the 
product of the corresponding CH4-M1-M2 form should be 
286 bp. The amplification yielded only one band, of "~453 
bp (Fig. 2 E); no 286-bp band was seen even on long ex- 
posure of a Southern blot. Therefore, our data provide no 
evidence for the existence of any RNA splice form that uti- 
lizes the splice acceptor site (position 183) that is homolo- 
gnus to that at the 5' end of the murine M1 exon. 

Identity of e mRNA Species Detected on Northern Blots. To 
determine the relationship between the three RNA species 
detected on Northern blots and the RNA splice forms re- 

Figure 4. Western blot identification of 
a large secreted e protein. The indicated pro- 
tein samples were detected in a Western blot 
developed by binding to a mouse anti-e mAb 
CIA-E-7.12 and a labeled anti-mouse IgG. 
The 80-kD band represents the classic secreted 
IgE protein, which shows some heterogeneity 
probably resulting from alternative glycosy- 
lation. The band marked 97 kD is close to 
the size expected for the large secreted pro- 
tein resulting from the CH4-M2' splice. 
Similar results were obtained using a rabbit 
anti-human IgE antiserum. The size esti- 
mates are approximate. 

Figure 5. Identification of RNA spe- 
cies visualized by Northern blot analysis. 
Total RNA (20 #g) from AF10 calls was 
subjected to electrophoresis and blotted 
in triplicate. The three probes were gener- 
ated by RT-PCR using primer pairs G-H 
(for Ce), 1-B (for MI'), and 3-D (for M2- 
M2'). The 3.8-kb band hybridizes with 
all three probes; but the 3.0 hybridizes 
only with Ce and M2, while the 2.1 hy- 
bridizes with Ce alone. 
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vealed by sequence analysis of our PCR products, a blot of 
RNA from AF-10 cells was hybridized to three different 
probes. As shown in the first lane in Fig. 5, a CE probe 
identifies the three bands previously described in RNA from 
human IgE-secreting cells (4) of 3.8, 3.0 and 2.1 kb. The 
2.1-kb band does not hybridize to either of the two probes 
derived from the membrane locus and therefore should rep- 
resent the mRNA encoding the "classical" secreted e heavy 
chain. The 3.0-kb band hybridizes to the M2 probe but not 
the M1; it therefore corresponds to the CH4-M2' splice form 
that we detected encoding a new, large secreted form of e. 
Finally, the 3.8-kb band, as well as hybridizing to the M2 
probe, is the only band that hybridizes to the M1 probe; this 
would be consistent with its identification with the CH4- 
MI'-M2 form encoding the membrane e heavy chain. Be- 
cause the size differences between these three bands are much 
greater than can be accounted for by the presence or absence 
of exons identified in our PCR products, it is evident that 
other factors (such as differing poly(A) addition sites or 
differing lengths of poly(A) tails) contribute to the length 
of the mature RNAs. 

Discussion 

An Unusual Membrane Ig. Igs exist in two forms (mem- 
brane bound or secreted) depending on alternative splicing 
and polyadenylation patterns of primary tLNA transcripts. 
Indeed, the alternative splicing of the/~ heavy chain (14) was 
one of the early examples of this mechanism by which two 
proteins can be encoded by a single gene. For the secreted 
Ig form, the COOH-terminal amino acids of the heavy chain 
are encoded contiguously with the final Ig domain. For the 
membrane Ig form, ILNA splicing eliminates the COOH- 
terminal residues of the secreted form and joins the remaining 

part of last Ig domain exon to one or two exons that encode 
amino acids characteristic of membrane Ig. The features of 
these membrane peptide segments are shown in Fig. 6, which 
includes the sequences of human and murine Ig membrane 
segments published to date. The most characteristic feature 
is a segment of uncharged, mostly hydrophobic amino acids 
that presumably anchors the protein in the cell membrane 
lipid. With respect to this transmembrane segment, we find 
the human ~ membrane sequence to be typical, including most 
of the consensus amino acid residues found in other isotypes 
as well as a typical number of hydroxyl amino acids and a 
single cysteine. Some of these residues may play a role in in- 
teractions with other membrane-bound proteins that form 
part of the antigen receptor signal transduction machinery 
on the cell surface. Despite conservation of these features of 
the transmembrane region, it is clear that the degree of human- 
murine sequence similarity is lowest for the ~ membrane exons 
as compared with the membrane exons of all other available 
isotypes. The relatively poor sequence conservation between 
human and mouse is also seen in the Ig domains of CE. On 
the COOH-terminal cytoplasmic side of the transmembrane 
region, all of the sequences show at least one positively charged 
residue that is presumably important for establishing the orien- 
tation of the protein in the membrane (15) and may also play 
a role in directing the protein to appropriate posttranslational 
processing pathways (16). The length of the cytoplasmic do- 
main of the human E sequence is identical to that of the mu- 
rine homologue and to all of the published 3' membrane forms 
of both species (27 residues, counting from the conserved 
valine just beyond the transmembrane segment). 

On the extracellular side near the transmembrane segment, 
the human e sequence is typical in having a high density of 
negatively charged residues. These are also thought to play 
a role in orienting the protein with respect to the membrane 
topology. 
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Amino acid sequences encoded by membrane exons. The available human and murine sequences are aligned to highlight conserved features, 
including the hydrophobic transmembrane region, flanked by acidic (extracellular) residues and basic (intracellular) residues. Within each isotype a 
human sequence was chosen as prototype, and other human and murine sequences are shown below by listing the residues that differ from the prototype. 
The six residues of human c~ that are listed in lower case letters represent the translation from an ahemative P,.NA splice acceptor site. Consensus 
residues listed include those that appear in all aligned sequences (underlined) or all except one sequence (not underlined). References for the sequences 
are as follows: (a) 22; (b) 23; (c) 24; (d) 25; (e) 26; (f) 27; (g) 28; (h) 29; (i) 30; (1') this paper; (k) 31. 
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Howev~, the human e membrane sequence is unique among 
all the currently described routine and human membrane Igs 
in the length of the peptide segment between the membrane 
and the nearest extracellular Ig domain. The number of 
residues in this proximal extracellular region is characteristic 
for each isotype and well conserved between species, ranging 
from a minimum of 14 in # (counting to the conserved tryp- 
tophan that begins the transmembrane segment) to 33 in the 
long form of human o~1 and o~2 heavy chains. A shorter 27- 
residue form of the human c~ isotypes is also produced by 
an alternative splice (17), and the latter form matches the length 
of the murine homologue. In contrast to the 20-residue length 
of this region in murine e, the corresponding human seg- 
ment is 68 amino acids long. Although the available sequence 
data in the murine sequence are limiting, from the sequence 
similarity between the two species upstream of the murine 
M1 exon (Fig. 1 C), it is tempting to speculate that the longer 
MI' sequence in humans was derived from the conversion 
of intron to exon sequence as a consequence of mutations 
affecting splice acceptor sites. As a hypothetical example of 
such a mechanism, the 9-bp deletion in the human sequence 
between nucleotides 177 and 178 (Fig. 1 A) and the A at 
position 172 may combine to "weaken" the splice acceptor 
activity of the AG dinucleotide at positions 181-182, since 
these sequence differences (vs. the murine gene) bring an- 
other AG dinucleotide (positions 172-173) too close for the 
optimum sequence configuration of a splice acceptor site (18). 
As a result, the more upstream splice acceptor site at posi- 
tion 28 (Fig. 1 C) may be used preferentially. Alternatively, 
it is possible that a long exon in the common ancestor of 
mice and humans was shortened in the mouse line by a con- 
verse mechanism. 

The amino acid sequence of this long proximal extracel- 
lular region reveals a proline-rich peptide that contains four 
cysteine residues, two of which are separated by only a single 
amino acid. The biologic function of this extracellular seg- 
ment of membrane-bound IgE remains to be determined. Be- 
sides potentially serving as a site for inter-e chain binding, 
it could play a role in binding to specific ligands. It is now 
appreciated that membrane Ig serves as only the "core" of 
a signal transducing complex (19). In this perspective one 
attractive possibility for the function of this new peptide seg- 
ment may be to bind to other B cell surface molecules (e.g., 
CD45 in its various isoforms) important in the mlgE signal 
transducing complex. If this peptide does play a significant 
functional role, it could potentially serve as a target for ma- 
nipulation of IgE expression in clinical situations. 

Do human e RNA transcripts ever splice at the position 
homologous to the routine splice acceptor? This question 
arose because of a preliminary account from Davis et al. (20) 
reporting such an RNA form and suggesting the existence 
of a corresponding translated protein. Our PCR experiments 
using mRNA from both the AF10 cell line and human lym- 
phocytes did not detect this form using three different primer 
pairs, including one pair specifically designed to search for 
this form. It is possible that the difference in results may be 
accounted for by our use of fresh human B lymphocytes and 

the AF10 clone rather than the cells lines used by Davis et 
al. (20). Alternatively, the CH4-M1-M2 short splice product 
may exist in stimulated normal B cells but at such a low con- 
centration that our PCR amplifications were unable to de- 
tect it. The very recent report of Peng et al. (6) indicated 
that indeed the CH4-M1-M2 product may be present in <1% 
of the concentration of the species containing the longer MI' 
exon. Furthermore, no protein product corresponding to the 
shorter splice form could be detected by those investigators. 
Thus, our results and those of Peng et al. (6) support the 
view that the CH4-MI'-M2 RNA species encodes the over- 
whelmingly dominant form of membrane IgE. 

~ansc~pts Encoding a New Secreted Form of lgE. The second 
RNA form we have identified results from a splice that ex- 
cludes the MI' exon entirely. The MI' exon (like the murine 
M1 exon) has the unusual feature that its length is not a mul- 
tiple of three; thus, it begins after the first nucleotide of one 
codon but ends after the third nucleotide of another. There- 
fore, with its omission, the direct splicing of CH4 to M2 
leads to a shift in the reading frame of the latter exon. This 
means that the nudeotide sequence from positions 389 to 
469 (Fig. 1 C) has the unusual feature of being used in more 
than one reading frame. The coding sequence of the shifted 
reading frame, which we designate M2', includes 136 amino 
acids before the stop codon at position 797. Clearly, this splice 
form lacks the conserved transmembrane segment encoded 
in exon MI'. To see whether the sequence might contain a 
hydrophobic region that could serve as an alternative lipid 
anchor, the sequence was examined using the Kyte-Doolittle 
algorithm (implemented for the Macintosh in the MacVector 
software package). As shown in Fig. 7, while the protein 
encoded by the CH4-MI'-M2 splice form shows a clear hy- 
drophobic peak representing the transmembrane segment 
(around residue 500), such a hydrophobic peak is lacking from 
the translated CH4-M2' form as well as from the classical 
secreted form. This suggests that the product encoded by 
the CH4-M2' form is likely to be a second form of secreted 
e heavy chain, 134 amino acids larger than the "classical" 
secreted protein. On the basis of the relative intensities of 
the Northern blot bands representing this CH4-M2' form 
(3.0 kb) and the "classical" secreted form (2.1 kb), it would 
appear that the KNAs encoding the two forms are present 
in a ratio of '~1:2 (4). 

We have detected a form of secreted ~ protein of about 
the size expected for the translated product of the CH4-M2' 
RNA. In Western blots of AF10 cell line supernatant and 
of serum from an IgE myeloma patient, a protein was ob- 
served that reacted with the anti-human-6 mAb CIA-E-7.12 
(9) (as well as with rabbit anti-human e antiserum) and that 
is "~17 kD larger than the major secreted ~ protein band (Fig. 
4). The latter band corresponds in size to the e protein en- 
coded by the 2.1-kb classic secreted mKNA while the larger 
protein is likely the translation product of the 3.0-kb RNA. 
While the relative amounts of the two protein species seen 
in the AF-10 supernatant are not the 1:2 predicted from the 
mKNA levels, the supernatant for the Western blot experi- 
ment was generated by growing the cells under the very 
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Figure 7. Hyd~ophilicity plots for three human e 
amino acid sequences. Plots of the Kyte-Doolittle 
hydrophilicity parameter are shown for the Ce se- 
quences cora~sponding to the 427-z~sid~ secreted form 
(CH4-S), the 545-residue membrane form translated 
from the CH4-MI'-M2 RNA spedes described here, 
and the putative second secreted form (561 residues) 
transhted from the CH4-M2' RNA species. Only the 
membrane form shows a dear hydrophobic segment, 
around codon 500. 

difficult conditions of serum-free medium for 7 d; these cul- 
ture conditions may have altered the relative amounts of the 
two proteins. 

In an experiment reported in abstract form, Kim et al. (21) 
found evidence for a protein larger than the classical secreted 
e chain using an antiserum against a synthetic peptide de- 
rived from the M2' reading frame. However, it should be 
noted that the nucleotide sequence initially reported by that 
group differs from ours by omitting a G at position 473 in 
Fig. 1 C (as well as by several other differences further down- 
stream); the one-nucleotide omission would throw their re- 
maining downstream sequence out of frame, including some 
residues incorporated into their peptide antigen. Thus, ff our 
sequence is correct (and it is in fact confirmed by the recent 
paper of Peng et el. [6]), part of the peptide antigen used 
by Kim et el. (21) would not correspond to the correct se- 
quence of this protein. Nevertheless, their antiserum may con- 
tain enough antibodies against the part of their peptide 
representing the correct sequence that their identification of 
this new protein is valid. Additional experiments are under 
way in our laboratory to clarify this point. 

The existence of a second form of circulating IgE could 
have important implications for our understanding of im- 
mediate hypersensitivity reactions. One can speculate that the 
addition of 134 amino acids to the "classical" secreted form 
might have significant effects on the ability of the protein 
to bind to the high- and low-af~nity Fce receptors. Further- 
more, if the new secreted form has a function, one might 
expect the RNA splicing pathways leading to the synthesis 
of these two e chains to be tightly regulated. Indeed, we have 
reported that suppression of IgE production by an anti-CD23 
monoclonal is associated with decreases in both the 2.1- and 
3.0-kb RNAs, while the 3.8-kb species encoding the mem- 
brane form is unaffected (5). Abnormalities in the regulation 
of the alternative splice pathways might be associated with 
disease states. Further work will be necessary to explore these 
possibilities. It is interesting to note that Northern blots of 
routine RNA were also reported too show three bands (2.2, 
3.15 and 3.7 kb) similar to those we have found in humans 
(4). Thus, it is possible that the existence of three RNA splice 
pathways is a general feature of the e locus. 
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Note added in proof We have now confirmed the existence of the rare CH4-M1-M2 splice form reported 
by Peng et al. (6). In our hands this form was detectable by PCR when a new upstream primer near 
the Y end of CH4 (AGGCAGCGAGCCCCTCACAGACCG, corresponding to positions 274-297 of Fig. 
1 B) was used with downstream primer B. With these primers the CH4-M1-M2 form appeared as a very 
minor band on Southern blots of RT-PCR samples derived from both AF10 cells and B cells treated with 
IL-4 plus CD40. The identity of the band was established by cloning and sequence analysis. This result 
does not change the conclusion from our paper that this form is quite rare compared with the CH4-MI'- 
M2 form. 
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