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Viral infection triggers insect immune response, including RNA interference, apoptosis and
autophagy, and profoundly changes the gene expression profiles in infected cells.
Although intracellular degradation is crucial for restricting viral infection, intercellular
communication is required to mount a robust systemic immune response. This review
focuses on recent advances in understanding the intercellular communications in insect
antiviral immunity, including protein-based and virus-derived RNA based cell-cell
communications, with emphasis on the signaling pathway that induces the production
of the potential cytokines. The prospects and challenges of future work are
also discussed.
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INTRODUCTION

Viral infection has posed a significant threat to human and animal health, agricultural production
and environmental safety. The frequent outbreaks of pandemics caused by viral infection taught us
bitter lessons that the long-standing battles between the hosts and viruses are much rougher than
expected. As obligate intracellular pathogens, viruses heavily rely on the host cell machinery and
resources to replicate and propagate. Accordingly, host cells develop multiple strategies, including
intrinsic antiviral response that directly restricts viral replication and assembly, and induced
antiviral response that potentiates the antiviral activity of viral-restricting factors or cells to suppress
and eliminate the invading pathogens (1–4).

Insects are the most abundant and diverse group of animals in the world. Some of them are
regarded as model organisms, disease vectors, agriculture and household pests or industrial animals.
A lot of studies have been carried out to investigate molecules, pathways and mechanisms that are
involved in the immune response of different insects upon viral challenges. Among them, a few
attentions are given to how extracellular signaling networks cooperate with intracellular pathways to
mount a robust systemic immune response. Pieces of evidence have proposed that intricate
intercellular communications occur in response to viral infection in insects, and helped us better
understand the insect antiviral immunity in a systematic way.

The best characterized antiviral immune response in insects is RNA interference (RNAi) (3, 5).
Three RNAi pathways have been identified in insects, including the small interfering RNA (siRNA)
pathway, the microRNA (miRNA) pathway and the (PIWI-interacting RNA) piRNA pathway.
Among them, siRNA has been most intensively studied as a potent antiviral defense strategy. siRNA
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is initiated by recognition and cleavage of double-stranded RNA
(dsRNA) produced either as viral replication intermediate or as
base-pairing viral transcript by Dicer-2 in host cells. Dicer-2, an
RNase III family endonuclease, processes dsRNA into 19-23-
nucleotide (nt) long siRNA duplex, which is subsequently loaded
onto Argonaute-2 (Ago-2) endonuclease and integrated into a
multiple protein complex, RNA-induced silencing complex
(RISC). siRNA duplex is then unwound to generate the guide
strand, which targets viral mRNA or genomic RNA containing
complementary sequence for degradation through the RNase
activity of Ago-2, thereby restricting viral infection. miRNA
pathway was previously charactered in post-transcriptional
regulation of gene expression during development, in which a
22-nt duplex miRNA processed by RNase III enzyme Drosha
and Dicer-1 sequentially forms miRNA programmed RNA
induced silencing complex (miRISC) with Ago-1 protein.
Recently, both virus derived miRNAs that regulate insect gene
expression and insect-encoded miRNAs that target virus mRNA
were reported, highlighting its role in host-virus interaction (6,
7). The antiviral role of piRNA which commonly involves in
genomic control of transposable elements is controversial in
Drosophila (8, 9), while in mosquito piRNAs that are derived
from acquired viral cDNA with the characteristic size range of
24–30 nt and features of ping-pong amplification cycle were
discovered to specifically inhibit viral replication (10, 11).

Besides RNAi, viral-induced apoptosis and autophagy also play
important roles in restricting viral infection (12, 13). The
expression level of several pro-apoptotic genes, such as reaper,
hid, and p53, increased in response to virus-induced stress, while
anti-apoptotic genes, such as diap1 decreased, resulting in onset of
apoptosis and subsequent phagocytosis of viral-infected cells by
haemocytes (14–17). Interestingly, sometimes this antiviral
apoptosis is suppressed by host protein, as evidence found in
silkworm that peptidoglycan recognition protein (PGRP) 2-2,
inhibited baculovirus-induced apoptosis via Akt activation,
reflecting arms race between insect and virus (18, 19). Recently,
a few studies found autophagy occurs after Drosophila infected
with vesicular stomatitis virus (VSV), Rift Valley fever virus
(RVFV) or Zika virus as evidenced by the elevation of lipidated
Atg8 (Atg8-II) level and accumulation of Atg8 in autophagic
punctae (20–24). Silencing core autophagy genes, such as atg5
or atg8, led to significant increase of viral load. Plasma membrane
receptor Toll-7 has also been demonstrated to activate autophagy
upon sensing VSV glycoproteins or RVFV (24, 25), which is
independent of transcription factor NF-kB, whereas eliminating
Zika virus by autophagy in Drosophila appears to be NF-kB-
dependent (23).

In addition, genome-wide RNAi screening and transcriptional
profiling has revealed a plethora of genes involved in antiviral
immune response. Some of them have broad antiviral activity. For
instance, negative elongation factor (NELF) and positive elongation
factor b (P-TEFb) collaboratively mediate transcriptional pausing to
potentiate the rapid activation of some inducible genes and are
required to restrict viral replication in adult flies and mosquito cells
(26). Some have been reported to be involved in anti-microbial
immunity with uncharacterized antiviral activity. For instance, two
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anti-microbial peptide (AMP) coding genes, diptericinB and
attacinC were up-regulated in transgenic flies expressing a
Sindbis virus (SINV) replicon (27). Knocking-down their
expression led to a modest but significant increase in SINV load,
confirming their antiviral functions. In mosquito cells, Dengue
virus (DENV) infection up-regulated the expression of a cecropin-
like peptide which does not only have anti-bacterial activity, but
also have anti-DENV and anti-Chikungunya virus activity (28).
The enhanced expression of gloverin, lebocin, attacin was also
observed in silkworm larvae infected with Bombyx mori
nucleopolyhedrovirus (BmNPV) (29). Based on these facts, the
Toll and IMD pathways, which are the two canonical NF-kB
pathways responsible for immune response against bacterial and
fungi infection, are considered to be implicated in anti-viral
immunity (30, 31). But most of viral-induced genes remain
enigmas in terms of the molecular mechanism underling their
antiviral activity. For instance, virus-induced RNA 1 (vir-1), a
marker of the induction of anti-viral response, is mainly regulated
by JAK/STAT pathway (32). Loss of function of JAK (named
Hopscotch in Drosophila) caused decreased expression of vir-1,
increased viral load and decreased survival after Drosophila C virus
(DCV) infection. However, the molecular mechanism of antiviral
activity of Vir-1 is unknown.
INTERCELLULAR COMMUNICATIONS

Although intracellular degradation is crucial to virus elimination,
intercellular communication is believed to orchestrate and
coordinate the cellular events. In the following, we will review
the recent studies on extracellular signaling networks during
antiviral immune response (Figure 1) and discuss the prospects
and challenges of future work.

Protein Based Intercellular
Communication: Cytokines
As a comparison, the potent antiviral immune response in
mammalian cells is largely dependent on a group of secretory
protein collectively named cytokines, which are produced and
secreted by viral-infected cells, and bind specific receptors on its
own, neighboring or distant cells to initiate intracellular signaling
mainly via JAK/STAT pathway (33, 34). Cytokines are divided
into several subgroups, including interferon, chemokine,
interleukin and tumor necrosis factor, among which interferon
is particularly important for the immune response to virus. Cells
activated by interferon synthesize various molecules that inhibit
virus entry, replication and assembly, or produce inflammatory
reactions to initiate apoptosis, autophagy and necrosis (35).
Although comparative genomic analysis and evolutionary
study revealed that insects do not possess the homologous
molecules to vertebrate cytokines, the core components of
JAK/STAT pathway including Hopscotch (JAK), STAT92E
(STAT), negative regulators SOCS and PIAS have been
identified in insects, and parallels between gain-of-function
studies with mammalian homologs suggests the functional
similarity of insect JAK/STAT pathway to vertebrates. Thanks
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to the genetic analysis of mutants defective in embryonic
development, ligands and receptor of JAK/STAT pathway were
first discovered in Drosophila (36). All three ligands, named
unpaired (Upd), Upd2, and Upd3 bind the same receptor named
Domelss (Dome) which shares sequence similarity with
mammalian IL-6 receptor (37), but only Udp2 and Upd3 are
induced by viral infection and provide protection from a viral
infection (38). Notably, JAK/STAT pathway has been considered
to be triggered in bystander cells rather than in infected cells,
since vir-1 was not induced in DCV-infected fat body and
periovarian sheath, but was substantially induced in epithelial
cells of the ventral epidermis or in the oviduct, in which no viral
load was detected, suggesting that vir-1 was induced after a signal
generated by the DCV-infected cells (32).

The signaling pathways responsible for induction of
mammalian cytokines may also give some clues to whether
there exists any “cytokine” that transmits antiviral signals
between insect cells. Viral nucleic acids in mammalian cells are
recognized by diverse cytosolic RNA or DNA sensors, including
toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I),
Frontiers in Immunology | www.frontiersin.org 3
absent in melanoma 2 (AIM2), DNA-dependent activator of
IFN-regulatory factors (DAI) and cyclic GMP-AMP synthase
(cGAS) (39). The signal is eventually relayed to transcriptional
factors, including interferon regulatory factor 3 (IRF3) and NF-
kB via signaling adaptors, such as antiviral-signaling protein
(MAVS) and stimulator of interferon genes (STING) to activate
interferon expression (40, 41). Despite the fact that far less
nucleic acids sensors have been identified in insects, STING-
mediated antiviral immunity has been discovered in Drosophila
and Bombyx mori recently (23, 42, 43). Epistatic analysis showed
that dSTING acts upstream of IKKb and NF-kB transcriptional
factor Relish to regulate the expression of a set of antiviral
molecules, including a putative transmembrane protein named
Nazo. Flies bearing dSTING or Relish mutant displayed higher
susceptibility to infection of DCV, VSV or Cricket paralysis virus
(CrPV). Activation of Relish by BmSTING was also detected in
silkworm cell as evidenced by the cleavage of Relish carboxy-
terminal Ankyrin repetitive sequence, which releases Relish from
sequestration in cytoplasm, when BmSTING was over-expressed.
The evolutionary conservation in STING- and NF-kB-dependent
A

B

C

FIGURE 1 | Intercellular communications in insect antiviral immune response. (A) Cytokines produced and released from viral infected cells bind to receptors and
activate antiviral immune response in target cells. (B) Double-stranded RNA (dsRNA) and Ago-2 is transferred through tunneling nanotubes bridging infected cells
and neighboring cells. (C) Viral-derived dsRNAs (vsRNAs) produced in viral-infected cells engulfed by haemocytes are reverse-transcribed into vDNAs by
endogenous transposon reverse transcriptase. vDNAs then serve as template for transcription of secondary vsRNAs which are secreted in exosome-like vesicles and
processed into siRNA by cells taking up these vesicles.
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antiviral signaling pathway between insects and mammals
suggests functional similarity in their downstream effectors.
Indeed, a few years ago an antiviral factor Vago which bears no
sequence homology to mammalian cytokines was first reported
to be induced in the fat body of flies upon DCV infection, later
its mosquito homologs that may act like interferon have been
identified in Culex, Aedes and Anopheles (44, 45). CxVago
was produced and secreted by West Nile virus (WNV)-infected
cells. Incubating naïve cells with supernatant collected from
Vago-expressing cells activated the JAK/STAT signaling
pathway and induced the expression of vir-1 in naïve cells
independent of Dome. A NF-kB binding site was identified in
CxVago promoter region afterwards, and Culex Rel2 which is a
Drosophila Relish homolog has been demonstrated to be required
for induction of CxVago subsequently. In addition, activation of
Rel2 upon SINV infection was observed in mosquito cells (46).
Intriguingly, after incubating with supernatants harvested from
cells expressing Relish activated form, naïve silkworm cells
displayed substantial resistance to BmNPV infection. Certain
polypeptides purified from the supernatants of DNV-infected
mosquito cells also acted like cytokines, conferring antiviral
activity to naïve cells (47, 48).

Interestingly, in both flies and mosquito cells, induction of
Vago has been characterized to be Dicer-2 dependent, since Dicer-
2-mutant flies or Dicer-2-silenced mosquito cells had significantly
lower levels of Vago induced by viral infection compared to Dicer-
2-intact controls. But mutation of other RNAi key players, such as
Ago-2 and R2D2 had no impact on Vago expression, indicating
that induction of Vago is independent of RNAi pathway.
Phylogenetic analysis revealed Dicer-2, which is a key player in
RNAi, is closely related to mammalian RIG-I in terms of their
DExD/H-box helicase domain (49, 50). Both of them belong to
RIG-I-like receptor (RLR) family along with some other
cytoplasmic RNA sensors, including MDA5 and Laboratory of
Genetics and Physiology 2 (LGP2). More recently, Dicer-2 has
been reported to modulate viral DNA production via acting as a
pattern recognition receptor similar to RLR that senses defective
viral genomes (DVGs) (51). The absence of RIG-I proteins in
insects but presence of the activity of RNA sensing and induction
of antiviral factors which is carried out in a Dicer-2 dependent
manner suggests Dicer-2 may be the archetypal RLR that activates
the antiviral signaling pathway in insects. It is worth exploring
whether Dicer-2, STING and Relish constitute a signaling axis that
leads to the production of antiviral effectors and contributes to
cell-cell communication.

Apparently, not all viral-induced molecules potentiate antiviral
immunity, some may promote host survival by preventing
immune signaling from over-activation. Diedel has been
characterized as an immunomodulatory cytokine in Drosophila
that was strongly induced following infection with slowly
replicating viruses, such as SINV and VSV (52). diedel mutant
flies developed persistent inflammation as a few immune-related
genes, most of which are considered to be controlled by the IMD
pathway, were up-regulated in the absence of viral infection. They
also showed reduced survival after immune challenges without an
increase in viral load, suggesting the IMD pathway which may
Frontiers in Immunology | www.frontiersin.org 4
contribute to viral-induced pathogenesis is required to be down-
regulated. Interestingly, Diedel homologs have also been identified
in the genome of three different and unrelated families of DNA
viruses that infect Lepidoptera, including Entomopoxvirinae,
Baculoviridae, and Ascoviridae (53). Transcriptome analysis
found elevated expression of ascovirus diedel in infected
Spodoptera frugiperda larvae (54), and expression of the
ascovirus diedel partially rescued the reduced viability of diedel
mutant flies (52). The possible horizontal transfer of
immunomodulatory genes from host to virus represents a
strategy that virus exploits to manipulate host immune response
in favor of its own replication and dissemination.

RNA Based Intercellular Communication:
Transferring of Virus-Derived RNA
Between Cells
Intercellular transferring of virus- or host-derived RNA, DNA
and proteins from infected cells to neighboring cells are
increasingly recognized as an important mean to mount a self-
sustaining and even amplified innate immune response. Gap
junctions, exosomes, microvesicles and plant plasmodesmata
have been reported to deliver the substances originated from
viral infected cells to immunize the other cells before arrival of
the virus (55–58). Although the open circulatory system in
insects is always believed to allow fast spread of virus in the
hemolymph and migration beyond the primary site of
replication, the possible cell-cell communication is supported
by evidence of intercellular transferring of virus-derived RNA.
Flies defective in dsRNA endocytosis or intracellular transport
were hypersensitive to viral infection, and the high mortality was
accompanied by hundredfold increase in viral titer, suggesting a
systemic spread of dsRNA is required for antiviral immunity
(59). Nanotube-like structures made of actin and tubulin were
first reported in a study of the intercellular communication
between Drosophila cells (60). Those membrane projections
generated by viral-infected cells bridge neighboring cells for
transferring of components of RNAi machinery, including
Ago-2 and dsRNA between cells. A more recent study
discovered that haemocytes acquire virus-derived dsRNA
(vsRNA) by phagocytosing virus-infected cells and reverse-
transcribe the viral RNA through endogenous transposon
reverse transcriptases into DNA which serves as a template for
transcription of secondary vsRNA in an Ago-2 dependent
manner (61). The secondary vsRNA is secreted by haemocytes
in exosome-like vesicles (ELVs) and spreads through the
haemolymph. It is then processed into siRNA by cells taking
up these ELVs and confers virus-specific immunity. Of note, this
systemic antiviral potential of haemocyte-derived ELVs persists
weeks after the onset of viral infection, thus it was proposed as an
RNAi-based “adaptive immunity” in Drosophila.
DISCUSSION

Extracellular signaling network coordinates the systemic immune
response through alarming or even arming the non-infected cells
February 2021 | Volume 12 | Article 613729
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with messages from viral infected cells. Although it is one of the
most important parts of immune response, much less have we
learnt about the molecules or vesicles secreted by viral infected
cells, ways to deliver them or the pathways they influence.
Integrated omics approaches might be required to characterize
the soluble substances in the fractionated extracellular fluid of viral
infected cells in the future research, screening of target genes under
regulation of signaling pathways that are activated by viral sensors
would also help to narrow down the candidates. Furthermore, the
absence of viral loads in tissues expressing antiviral marker genes
(32) or passive protection of naïve flies against viral challenges
conferred by injection of purified ELVs from viral infected flies
(61) suggests a tissue-targeted delivery or diffusion throughout the
entire body, therefore identification of molecules that act as
receptors or carriers of those extracellular substances will
decipher how the antiviral signal is transmitted between cells,
which tissues or organs are targeted and which intracellular
pathways are activated.

Although the lack of sequence similarity between insect and
vertebrate cytokines impedes a sequence-function relationship
analysis, the structural features they share suggest they are
functionally related. For example, one subdomain of Diedel,
consisting of an antiparallel b-sheet covered by an a-helix,
resembles certain CC or CXC chemokine family members (62),
which modulate immune response by maintaining proliferative
homeostasis and attenuating apoptosis. Interestingly, recombinant
human IL-8 was reported to promote the phagocytic activity of
Drosophila S2 cells and enhance the expression of Upd-3 as well as
some AMP genes, including defensin, cecropin A1, and diptericin
(63), implying that certain membrane bound molecule may
function as receptor to ligand that resembles the structure of IL-8.

Some danger signals, such as metabolites produced by viral-
infected cells or damage-associated molecular pattern (DAMP)
released by dead or damaged cells, may also serve as mediator for
systemic inflammatory response. For instance, in mammalian
models nitric oxide (NO) generated through NO synthase (NOS)
which is upregulated upon viral infection can diffuse freely across
cell membranes and activate antiviral mechanisms in various
ways, including direct and indirect damage to viral genomes (64,
65). In insects, it is well documented that NO regulates immune
response to bacteria, nematode and parasites characterized by
AMP expression and melanin production (66–68), and a cell-
based assay showed that NO inhibits DENV replication partly
through suppressing RNA-dependent RNA polymerase (69),
although its role in insect antiviral immunity has not been
characterized. Actin, an evolutionarily-conserved DAMP was
reported to selectivity induce JAK/STAT target genes through
cytokine Upd3 in Drosophila, whether it confers antiviral activity
needs further investigation (70).

Antiviral immune response induced by different viruses varies,
which might be another factor that complicates the understanding
of insect antiviral immunity. For instance, Vago/Vago-like
expression was down-regulated upon the infection of virulent
virus but not with avirulent virus in bumblebee (71). Fast
replicating viruses, such as DCV, CrPV and Flock House virus
(FHV), unlike slowly replicating viruses, did not induce Diedel
Frontiers in Immunology | www.frontiersin.org 5
expression (52). In the mosquito midgut, transcriptional level of
Rel2 and its canonical target genes, such as diptericin and attancin,
was not induced by DENV (72), but the activation of Rel2 was
detected on protein level and knockdown of Rel2 significantly
increased WNV viral load (44). The seemingly disagreement on
the involvement of certain molecules in antiviral immunity
suggests a careful assessment of their general or specific
functions is required.

In addition to their potential roles in the antiviral immune
response, some molecules also participate in the defense against
other microbial challenges. For example, knock-down of
dSTING resulted in more susceptibility to Listeria infection
(73) and mutation of BmSTING led to defective autophagy of
microsporidia in silkworm larvae (74), suggesting insect STING
mediates immune signaling pathways in response to various
pathogens. However, some cytokines that have been identified in
insect immune defenses against bacteria or parasites, such as
growth blocking peptide (GBP) which has been characterized as
a cytokine switching humoral and cellular immune response (75,
76), and TNF ortholog Eiger which promotes apoptotic cell
death via JNK pathway and aids clearance of extracellular
pathogens (77, 78), are not reported in the antiviral response.
Therefore, it will be interesting to investigate whether there exist
multifaceted mediators in insect innate immunity.

While studies on the viral-induced intercellular communication
are still preliminary in insects, they provide valuable insights into
artificial manipulation of host immune response. Insulin/insulin-
like peptide has been recently reported to potentiate JAK/STAT
pathway via ERK to broadly inhibit flavivirus replication in fly and
mosquito cells, and insulin-supplemented meal effectively reduced
WNV titers in infected Culex mosquitos (79, 80). Although the
change in insulin level induced by viral infection was not yet
reported in insects or even linked to antiviral immunity prior to
this report, the decrease in insulin secretion was found to be
common in mammals after viral infection. Research efforts aimed
at characterizing the intercellular communication will not only
provide a greater depth of knowledge regarding extracellular
signaling networks, but also potential targets for pest or disease
control based on interfering intercellular communication or
priming insects with molecules transmitting antiviral messengers.
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