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SPeCIaL FOCUS reVIeW

The Microbiota

Under normal conditions the intrauterine environment is 
sterile and bacteria do not colonize fetal body surfaces, including 
the fetal intestine. Intestinal colonization with a commensal 
microbiota starts already during the birthing process. In the 
case of a natural delivery colonization occurs initially through 
contact with the maternal fecal and vaginal microbiota. This 
initial seeding with bacteria starts off a sequential and dynamic 
bacterial colonization process of the infant’s intestine.1 The 
microbiota is then shaped by sequential colonization events until 
a stable microbiota is established. It is clear that babies delivered 
by caesarian section can receive quite a different set of seeding 
bacteria due to the aseptic nature of caesarian deliveries.1,2 Contact 

with maternal fecal material is absent (or severely reduced) and 
first microbial contact will be with commensal microbes from 
other sources, such as the skin. Colonization during early life 
is also influenced by feeding practices in that babies that are 
breast-fed harbor a different microbiota than babies that are 
formula-fed.3-6 These changes may impact on susceptibility to 
immune-mediated diseases later in life,7 as discussed further 
below (Fig. 1).

Establishment of a stable microbiota takes several years 
in humans (compared with several weeks in laboratory mice 
depending on the complexity of the microbiota). Events such as 
weaning off breast milk, introduction of solid foods, diet,8 and 
early use of high dose antibiotics9 can have a major impact on the 
composition of the microbiota. Other environmental influences, 
such as xenobiotics, can influence microbial physiology and 
gene expression without impacting on the composition of the 
microbiota.10

The ‘normal’ adult microbiota of humans or mice is extremely 
diverse and consists of hundreds (or thousands) of bacterial 
species reaching densities of up to 1012 bacteria per gram content 
in the large intestine. This is the highest density observed in any 
bacterial habitat analyzed so far including aqueous, sediment, 
or soil ecosystems. Despite the observed species richness, the 
vast majority of intestinal bacteria can be assigned to eight out 
of the 55 bacterial phyla described so far.11 Such conservation at 
the phyla level is found in most mammalian species. This alone 
indicates that formation of the intestinal microbiota is not a 
random event but rather an evolutionary established process that 
provides a rich and specialized niche for select members from 
only a few bacterial phyla.

Axenic and Gnotobiotic Mouse Models

The complexity of the intestinal microbiota of laboratory 
animals and the variability between individual vivaria is a huge 
experimental and technical challenge in current biomedical 
research. Specific pathogen-free (SPF) mice with extremely 
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The impact of the gut microbiota on immune homeostasis 
within the gut and, importantly, also at systemic sites has 
gained tremendous research interest over the last few years. 
The intestinal microbiota is an integral component of a 
fascinating ecosystem that interacts with and benefits its host 
on several complex levels to achieve a mutualistic relationship. 
Host-microbial homeostasis involves appropriate immune 
regulation within the gut mucosa to maintain a healthy gut 
while preventing uncontrolled immune responses against 
the beneficial commensal microbiota potentially leading to 
chronic inflammatory bowel diseases (IBD). Furthermore, 
recent studies suggest that the microbiota composition might 
impact on the susceptibility to immune-mediated disorders 
such as autoimmunity and allergy. Understanding how the 
microbiota modulates susceptibility to these diseases is an 
important step toward better prevention or treatment options 
for such diseases.
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diverse undefined microbiotas have helped to gain an important 
initial understanding of the importance of the microbiota 
composition in a variety of disease models. This is demonstrated 
for example by the fact that experiments performed in different 
vivaria often yield conflicting results and one important 
experimental variable is likely to be differences in the microbiota. 
Conversely, demonstrating that immune defects can lead to 
alterations in the microbiota must rely on robust experimental 
design using co-housed littermate controls. This requirement 
was elegantly illustrated in a landmark study by Ubeda et al. 
showing that differences in the composition of the microbiota 
observed in TLR-deficient mouse strains reflected long-term 
divergence of the microbiota when the different mouse strains 
are housed in isolation from each other rather than defective 
innate immunity.12 Although recent advances in high throughput 
sequencing technology make it feasible to study very complex 
microbiotas in detail, to precisely define cause or consequence of 
an observed effect remains challenging.

Importantly, studying the effects of 
the intestinal microbiota on the host 
immune system on a functional and 
mechanistic level requires precisely 
defined experimental systems in 
terms of genetic background (which 
is achieved through inbreeding) 
but also at the level of microbiota 
composition. Axenic (germ-free) 
mice are reared and housed under 
absolutely sterile conditions in flexible 
film isolators.13 Germ-free mice can 
then be colonized with single or 
multiple defined bacterial species to 
obtain gnotobiotic mice. Importantly, 
gnotobiotic mice also need to be 
maintained under the same rigorous 
conditions as axenic mice in order to 
maintain the gnotobiotic status and 
prevent introduction of additional 
microbes from animal handlers or the 
environment.

Axenic embryo transfer into germ-
free pseudopregnant recipient females 
allows for the efficient re-derivation 
of any genetically modified (Tg, KO, 
KI, reporter, fate-map) mouse strain 
from any hygiene status to germ-free 
status.13 This gives the researcher the 
ability to choose from a huge range 
of inbred isogenic mouse lines and in 
the future hopefully also of a range of 
standardized isobiotic microbiotas (or 
single bacterial species), which can be 
shared between different laboratories 
to allow for inter-lab data comparison 
with a never before reached level of 
confidence.

As an alternative approach to the addition of defined bacterial 
species, germ-free mice can also be colonized with a complex 
consortium of bacteria isolated from conventional or SPF mice 
or humans. This is also a powerful experimental technique for 
studying host-microbial interactions and has provided much 
information about microbial-mediated changes in host responses. 
For example, the addition of human microbiota to germ-free mice 
has been extremely informative and has provided the opportunity 
to study the impact of human disease-associated microbiotas in a 
controlled experimental setting.8,14-17

The use of gnotobiology is not limited to mouse models. 
For example, gnotobiotic zebrafish have successfully been used 
to study evolutionarily conserved responses to the microbiota,18 
and germ-free and gnotobiotic Drosophila melanogaster is used to 
study host-microbial homeostasis.19

In this review we summarize recent developments in 
understanding host-microbial interactions mostly based on 
observations made in mouse model systems.

Figure 1. Interplay between microbiota composition and disease susceptibility. antibiotics, diet, mode 
of delivery at birth, and genetics all seem to have a significant impact on the microbiota composition, 
which in turn might affect the susceptibility to immune mediated disorders.
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Immune Adaptations in Response to Colonization

Intestinal colonization induces a range of physiological, 
metabolic, and immune adaptations within the host. Here we 
focus primarily on the host immune adaptations that promote 
host-microbial mutualism and immune homeostasis.

Innate immune maturation
The intestinal epithelium provides a physical and biochemical 

barrier segregating the intestinal lumen from the inside of the 
body and intestinal epithelial cells are highly responsive to 
both microbial and immune-mediated signals. Goblet cells, 
specialized secretory epithelial cells, secrete mucins that form a 
tight mucus layer above the epithelial cell layer. The inner mucus 
layer is essentially devoid of bacteria,20 and the genetic deletion of 
mucin 2 leads to colitis,21 indicating the important role of mucus 
in maintaining the physical barrier. As the cells most closely 
located to the gut lumen, epithelial cells are potent producers 
of antimicrobial peptides that function as natural antibiotics 
by either directly killing or inactivating bacteria.22 Although 
some antimicrobial peptides such as α and β defensins are 
produced independently of the microbiota,23 others such as the 
C-type-Lectin Reg3γ or Ang4, which are controlled via pattern 
recognition receptors on host cells, are almost absent in germ-free 
mice.24,25 Enterocytes and paneth cells, a specialized epithelial 
cell that is located at the base of the crypts of Lieberkühn, have 
been shown to sense the density of the microbiota and become 
activated upon an increased bacterial load leading to a MyD88-
dependent Reg3γ production.26,27 Indeed, knock out models 
of mice lacking Reg3γ or epithelial MyD88 provided evidence 
that Reg3γ is needed for the spatial segregation of bacteria and 
intestinal epithelium and suppression of adaptive immunity.27

In addition to anti-microbial peptides, intestinal epithelial cells 
also produce multiple cytokines in response to microbial-derived 
signals. For example, intestinal epithelial cells can produce thymic 
stromal lymphopoietin (TSLP), transforming growth factor-β 
(TGF-β), IL-25, a proliferation-inducing ligand (APRIL), and 
B cell activating factor (BAFF), which have downstream effects 
on both innate and adaptive immune cells (reviewed in ref. 28). 
Furthermore, epithelial cells express the receptor for IL-22, a key 
cytokine involved in intestinal homeostasis.29 Innate immune 
responses to commensal microbiota and the role of the gut 
microbiota in promoting host-microbial homeostasis has also 
been well studied in Drosophila melanogaster (reviewed in ref. 19).

Immunoglobulin A
One of the most prominent effects of intestinal colonization 

is the induction of secretory IgA (SIgA). With 40–60 mg/kg/
day, IgA is the most abundantly produced antibody isotype 
in the body. IgA is especially important at mucosal surfaces 
where dimeric IgA is transported into the lumen via polymeric 
immunoglobulin receptor (pIgR)-dependent transcytosis through 
intestinal epithelial cells.30 Even though IgA is produced in such 
great quantities the lack of IgA in humans is quite common and 
mostly asymptomatic, much like IgA-deficient animals that can 
compensate for IgA by production of IgM.31 A functional role 
for IgA in mucosal infections has been clearly demonstrated for 

example for rotavirus, influenza, and cholera toxin.32 In addition, 
we have demonstrated that bacterial-specific IgA is induced 
following colonization and that the IgA repertoire is likely to 
adapt to changes in the microbial composition.33 The importance 
for IgA is furthermore demonstrated in activation-induced 
cytidine deaminase (AID)-deficient mice, which have a defective 
class switch recombination and somatic hypermutation. Those 
animals display anaerobic bacterial overgrowth in the proximal 
intestine and hyperplasia of intestinal isolated lymphoid follicles.34 
The same authors have also investigated AID mutant mice in 
which the ability for class switch recombination is maintained, 
while, somatic hypermutation is severely impaired due to a single 
point mutation in AID (AIDG23S). The consequence is a dramatic 
reduction of intestinal high-affinity IgA and an altered microbial 
composition,35 thus indicating that high-affinity IgA can shape 
microbial composition. Nevertheless, the precise function of 
IgA in promoting host-microbial mutualism under homeostatic 
conditions (in the absence of infection or toxins) remains elusive.

CD4+ T cells
Another well-studied immune adaptation is the induction 

of different mucosal CD4+ T cell subsets following intestinal 
colonization. A variety of functionally distinct CD4+ T cells exist 
with the best-studied subsets in mucosal tissues being Foxp3+ 
regulatory T cells (Treg), Th1, Th2, Th17, and T follicular helper 
(Tfh) cells. A lot of progress has been made in identifying the role 
of these subsets in host-microbial mutualism by using more or less 
defined bacterial communities or individual species. While the 
work of Fiona Powrie and others has clearly demonstrated the role 
of intestinal Treg in controlling inflammation36 several studies 
have now demonstrated that normal intestinal colonization 
either with different bacterial communities37,38 or individual 
species such as Bacteroides fragilis39 also induces Treg. Even 
though it seems that some bacterial classes (e.g., Clostridia37,40) 
might be more potent than others in inducing intestinal Treg it 
has to be kept in mind that even segmented filamentous bacteria 
(SFB), which are the prototypical inducers of intestinal Th17 
cells, induce Treg.41,42 Although the existence of SFB in humans 
is controversial, SFB-like organisms have been described in 
Ulcerative Colitis patients43 and therefore the biological effects 
of SFB may also be relevant in humans. Probiotic species have 
also been implicated in the induction of intestinal Treg cells. 
For instance, treatment of mice with the probiotic mixture 
VSL#3 (a mixture of bifidobacteria, lactobacilli, and Streptococcus 
salivarius) or the probiotic strain Lactobacillus reuteri increased 
the percentage of Treg cells.44,45 Therefore, induction of intestinal 
Treg following commensal colonization seems to be a hallmark 
of host-microbial immune adaptation.

B. fragilis-derived polysaccharide A (PSA) has been 
demonstrated to have immuno-modulatory functions46 but this 
seems to be a rather special case since PSA is also virulence factor 
of B. fragilis. Recently, short chain fatty acids (SCFA) have been 
described to be a more general bacterial metabolite involved in 
intestinal Treg induction.47-49

How the intestinal CD4+ T cell compartment reacts to 
changes in the microbiota composition and whether CD4+ T cell 
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subset plasticity is involved in adapting to changes in microbiota 
composition is currently under investigation by a variety of 
laboratories.

Innate lymphoid cells (ILC)
Innate lymphoid cells are more recently discovered innate cell 

types that develop from an Id2-dependent common lymphoid 
progenitor and share functional characteristics with differentiated 
T cells (reviewed in ref. 50). ILC can be subdivided into three 
different groups referred to as Group 1, 2, and 3. Group 1 ILC 
typically produce IFN-γ and include classical NK cells as well 
as T-bet+ ILC, which are related to classical natural killer (NK) 
cells due to their expression of natural cytotoxicity receptors such 
as NKp46, but while NK cells depend on IL-15, ILC depend 
on IL-7 and lack granzymes and perforins.51 Group 2 ILC are 
GATA-3+ and mainly produce IL-13 and IL-5 whereas Group 
3 ILC depend on the transcription factor RORγt and are 
important sources of IL-22 and IL-17. Group 1, 2, and 3 ILC 
share functional properties with Th1, Th2 and Th17 cells and 
the subdivision, functional plasticity and lineage conversion 
properties are not yet fully defined.52,53

At the present time, Group 3 RORγt+ ILC appear to be 
the most dependent on the presence of microbes or microbial 
products, although the extent of influence is still not completely 
understood.54-56 Differentiation of NKp46+ RORγt+ ILCs cells 
has been shown to depend on commensal microbes.54 Microbial 
stimulation also enhanced IL-22 production51 and stabilized 
expression of RORγt via intestinal epithelial cell-derived IL-7.57 
The absence of microbiota resulted in reduced RORγt expression 
in intestinal ILC and preferential induction of IFNγ producing 
ILC that confer heightened susceptibility to inflammation.57 
However, IL-22 production has also been reported to be 
suppressed in colonized mice due to intestinal epithelial-derived 
IL-25.56 Therefore RORγt+ ILC appear to be responsive to the 
presence and/or composition of the intestinal microbiota. Less 
is known about the impact of microbes on Group 1 and 2 ILC 
although they are clearly present in germ-free mice.

ILC may sense microbes through Toll-like receptors (TLR) 
and TLR2 expressed on RORγt+ ILC enhances IL-22 production 
via autocrine IL-2 signaling.58 However, it is likely that ILC also 
sense microbes indirectly and may even be better equipped to 
respond to environmental stimuli, like dietary and microbial 
metabolites via aryl-hydrocarbon receptor (AHR), NKp46,59 
or other NCR.60 In response to microbial exposure intestinal 
epithelial cells and myeloid cells can secrete many regulatory 
cytokines and high expression levels of IL-25R, IL-33R, IL-23R, 
IL1βR, and other cytokine receptors52 poise ILC extremely well 
for the immediate innate response to changes in homeostasis that 
are first sensed by epithelial or myeloid cells.61,62

In summary, microbial colonization impacts many different 
immune cells present in the small and large intestine. There is 
then a complex interplay within the tissue microenvironment 
whereby cytokines and chemokines secreted by one cell type 
further impact the effector function of other cells types, and in 
turn, immune mediators can also feed back and impact the gut 
microbiota (Fig. 2).

Effects of Microbial Immune Conditioning Early  
in Life

Whether the composition of the developing microbiota early 
in life has an imprinting character on immunological events later 
in life is an attractive research question since it would potentially 
rationalize some parts of the hygiene hypothesis, first proposed 
by Strachan.63 In mouse models, this has been investigated in the 
context of invariant natural killer T (iNKT) cells and IgE.

Germ-free mice have elevated levels of iNKT cells in the lung 
and colonic lamina propria due to increased epithelial expression 
of the chemokine ligand CXCL16.64 iNKT cells express an 
invariant α chain of the TCR, recognize lipid antigens, and 
can release copious amounts of cytokines, including IL-4, 
IL-13, and IFN-γ following activation (reviewed in ref. 65). 
The increased numbers of iNKT cells in germ-free mice led to 
increased morbidity following experimental induction of IBD or 
allergic asthma. Even more striking was the observation that only 
neonatal colonization of germ-free mice could protect from the 
accumulation of iNKT cells, therefore indicating that exposure 
to microbes must occur within a short period of time after birth 
in order to establish iNKT cell tolerance later in life.

We have shown that elevated IgE levels observed in germ-
free mice and mice with a limited microbial diversity is a result 
of immune dysregulation, which can be corrected by providing 
the appropriate microbial stimulus early in life.66 Microbial 
conditioning early in life was shown to be functionally relevant 
since mice that did not receive appropriate intestinal microbial 
stimulation during that time were much more prone to antigen-
induced oral anaphylaxis later in life.

These findings may be very relevant to the human situation 
where the composition of the microbiota early in life can be 
influenced by a multitude of environmental factors, such as mode 
of delivery (natural birth vs. caesarian section), diet, or antibiotic 
use.

Impact of the Microbiota  
on Autoimmunity and Allergic Diseases

Autoimmune and allergic immune disorders such as 
inflammatory bowel disease, multiple sclerosis or asthma are 
rapidly increasing in westernized countries. All of these diseases 
have genetic susceptibility components that are usually identified 
by genome-wide association studies (GWAS) with more or 
less predictive value. However, the genetic susceptibility of the 
population cannot have changed so dramatically over just a few 
decades to explain the observed increase in incidence. Therefore, 
a non-genetic environmental (or epigenetic) component must be 
the driving force of the observed increase in incidence. While a 
link between the local cutaneous, gastric, or colonic microbiota 
with disorders of the skin, stomach, or colon, respectively, can 
easily be envisioned, we are only starting to appreciate the impact 
of the microbiota composition on systemic immune-mediated 
diseases. Importantly, there is strong emerging evidence for a 
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functional link between the composition of the intestinal 
microbiota and susceptibility to several systemic immune 
disorders, such as Type 1 diabetes,67 rheumatoid arthritis,68 and 
allergic diseases.69 Animal models provide experimental evidence 
that changes in type and level of microbial stimulation can impact 
on disease outcome. The non-obese diabetic (NOD) mouse and 
the biobreeding diabetes-prone (BB-DP) rat serve as a model 
for Type 1 diabetes. The incidence of Type 1 diabetes in these 
animals was correlated with the hygiene conditions prevailing 
in the animal facility. Using the NOD mouse model a recent 
study revealed that sex differences in the gut microbiome could 
regulate autoimmunity in a hormone-dependent way.70 However, 
other mechanisms involved in microbiota-mediated systemic 
effects on the immune system remain poorly understood and are 
subject to intense investigation.

Diet-Microbiota-Immune Axis

The crosstalk between microbes and our immune system 
is well appreciated. However, it is unquestionable that the 
nutritional status of an individual impacts on the microbial 
community and therefore the immune system, through both 
direct and indirect pathways.71 It is now clear that the gut 

microbiota composition can shift in response to changes in the 
diet. In mice, changes can occur very rapidly after changing to 
a high-fat diet leading to altered microbiome gene expression 
and metabolic pathways.8 Changes in the microbiota can then 
influence immune homeostasis through a variety of different 
pathways.

Commensal microbes in the colon harvest energy from non-
digestable polysaccharides like starch, cellulose, or xylans and 
thereby provide an additional source of energy that becomes 
accessible for the host. During this microbial fermentation 
process short chain fatty acids (SCFA) are generated as end 
products, with butyrate, propionate, and acetate comprising the 
three most abundantly generated SCFA. Germ-free mice have 
reduced levels of intestinal SCFA and accumulate non-digestible 
polysaccharides like raffinose,72 which accounts for enlarged 
cecum size and the black stool color. SCFA can have multiple 
effects on epithelial cells and immune cells and can profoundly 
affect inflammatory responses.73 Butyrate can provide an energy 
source for colonic epithelial cells74 and reinforce intestinal 
epithelial barrier integrity,75 but also impact T cell cytokine 
production.76 SCFA-induced signaling has been shown to inhibit 
histone-deacetylases,77 regulate autophagy in intestinal epithelial 
cells,78 modulate chemotaxis and function of neutrophils,79,80 and 
impact on the size and function of the colonic regulatory T cell 

Figure 2. Overview of the cytokine network regulating innate and adaptive immune-microbiota interactions. The immune cell types and cytokines 
involved in sensing the microbiota and controlling innate and adaptive immune homeostasis are illustrated.
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pool.47-49 Furthermore, insulin-dependent fat accumulation can 
be reduced by GPR43 signaling on adipocytes via suppression 
of insulin-mediated fat uptake.81 Interestingly, since different 
microbial species produce different levels or types of SCFA,82 
these metabolites may mediate some of the immunological effects 
that have been attributed to microbial diversity.

Vitamin A is an essential fat soluble vitamin that has been 
known for many years to promote immunity. Retinoic acid, a 
metabolite of Vitamin A, has potent immune effects (reviewed in 
ref. 83). Retinyl esters are hydrolyzed in the liver to retinol, which 
is released into the circulation or secreted in the bile. Retinol is then 
converted to retinoic acid (RA) within cells through the action of 
alcohol dehydrogenases (ADH) and retinaldehyde dehydrogenases 
(RALDH). Epithelial cells, stromal cells and dendritic cells all 
produce RA, which is controlled by expression of RALDH, which 
is in turn responsive to TLR signals and cytokines. RA promotes 
class switch recombination to IgA in B cells,84,85 imprints gut 
homing in T cells,86 and RA production by CD103+ dendritic cells 
drives induction of Treg87,88 and can promote Th17 differentiation.89 
More recently, Vitamin A deficiency was shown to promote ILC2 
induction and inhibit ILC3 activity, which enhanced immunity 
to worm infection90 and Vitamin A deficiency during pregnancy 
led to reduced formation of lymph nodes in the offspring and 
increased susceptibility to infection.91

The microbiota and/or diet can also influence the immune 
system through stimulating the aryl hydrocarbon receptor (AHR), 
which is a ligand-dependent transcription factor expressed by a 
wide range of cell types. The ligands for AHR can be derived 
from host cells, environmental toxins, bacterial metabolites, 
or naturally occurring plant-derived phytochemicals, such as 
flavonoids and glucosinolates from green vegetables like broccoli 
or brussel sprouts.92 Signaling through the AHR has been shown 
to regulate the postnatal expansion of intestinal RORγt+ group 
3 ILC and the formation of intestinal lymphoid follicles,93-95 

regulate Th17 and IL-22 production, Th1/Th2, Treg, and Tr1 
cells, and promote the ability of DC to induce Treg differentiation 
through upregulation of idoleamine 2,3-dioxygenase (IDO) 
and RA.96 In addition to SCFA and AHR ligands, adenosine 
5′-triphosphate (ATP) can also be microbial derived and ATP 
can induce polarization of Th17 cells. Indeed, low ATP levels 
in the intestinal lumen have been associated with the absence of 
Th17 cells in germ-free mice and administration of systemic or 
rectal ATP led to an increase in Th17 cells.97

Conclusion

Our microbial partners heavily influence the mucosal and 
systemic immune systems and the dynamics of colonization 
early in life are critically involved in educating the developing 
immune system. Changes in microbial composition, diversity, 
metabolism, and gene expression seem to have far-reaching effects 
on immunity and may be particularly relevant in the context of 
immune-mediated diseases such as autoimmunity or allergy. 
Understanding the mechanisms involved will help provide better 
treatment, or even prevention, protocols for such diseases in the 
future.
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