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1  | BACKGROUND

Congenital scoliosis (CS) is a form of spinal malformation resulting from 
abnormal axial bone development in embryo. The incidence of CS is 
approximately 0.5-1 per 1000 newborn infants.1-3 CS patients always 

have multiple system deformity, such as missing ribs,4 split cord mal-
formation5 and pulmonary dysfunction,6 which physically and psycho-
logically affect their lives and daily activities. Although the studies to 
explore the pathogenesis of CS have been conducted for many years, 
the aetiology is still elusive. Previous studies have proved that genetic 
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Abstract
Congenital scoliosis (CS) is a form of spinal curvature resulting from anomalous devel-
opment of vertebrae. Recent studies demonstrated that circRNAs could serve as po-
tential biomarkers of disease diagnosis. Genome-wide circRNAs expression in seven 
CS patients and three healthy controls was initially detected. Bioinformatics analysis 
was conducted to explore the potential pathological pathway of CS. Quantitative 
PCR (qPCR) was performed to validate the selected circRNAs in the replication co-
hort with 32 CS patients and 30 healthy controls. Logistic regression controlling for 
gender was conducted to compare the expression difference. Receiver operating 
characteristic (ROC) curve analysis was performed to evaluate the diagnostic value. 
Twenty-two differentially expressed circRNAs were filtered from genome-wide cir-
cRNA sequencing. Seven circRNAs were validated by qPCR. Only hsa_circ_0006719 
was confirmed to have a higher expression level in the CS group than the healthy 
control group (P = 0.036). Receiver operating characteristic curve also suggested that 
hsa_circ_0006719 had significant diagnostic value for CS (AUC = 0.739, P = 0.001). 
We described the first study of circRNAs in CS and validated hsa_circ_0006719 as a 
potential novel diagnostic biomarker of CS.
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factors could lead to the development of CS, such as rearrangement 
of chromosome 16p11.2,7 mutation of TBX68 or FBN1.9 There is also 
evidence that environmental factors could contribute to the develop-
ment of CS. Li et al10 found that vitamin A deficiency in pregnancy may 
induce CS in rats. Some researchers illustrated that hypoxia and high 
altitude are associated with a higher risk of CS.1,11 However, there were 
few types of research focusing on the linkage of these aetiological fac-
tors. Thus, it is urgent and necessary to identify novel molecular mark-
ers of the mechanism, even for diagnosis and therapeutics.

Circular RNAs (circRNAs) are a class of non-coding RNAs that man-
ifested with stable circular RNA structure.12 Recent studies have re-
ported that circRNAs play a pivotal role in different kinds of diseases. 
CircRNAs could act as efficient microRNA sponges,13 which function 
as post-transcriptional regulators.14 Some researchers also found that 
some circRNAs could work as protein sponges,15 which can influence 
gene regulation. Other studies also found in cellular responses to en-
vironmental stress, some circRNAs can be translated.16,17 Because of 
the unusually stable circular structure, circRNAs were also reported to 
be promising diagnostic biomarkers in different diseases.18,19 There are 
very few studies focusing on circRNAs and CS. Our previous study has 
identified significantly different expressed circRNAs in vitamin A defi-
ciency-induced CS rats.20 However, the function and characteristics of 
circRNAs in CS patients are still unclear.

In this study, we enrolled seven patients and three healthy con-
trols to identify and compare the expression of genome-wide cir-
cRNAs. After filtering, annotation and validation, we compared the 
differentially expressed circRNAs aiming to find the potential diag-
nostic and therapeutic biomarkers of CS.

2  | MATERIAL S AND METHODS

2.1 | Patients and materials

Seven patients diagnosed as CS and three healthy controls were re-
cruited from Peking Union Medical College Hospital (PUMCH). Thirty-
two CS patients and 30 healthy controls were enrolled as a replication 
cohort. The inclusion and exclusion criteria of CS were as follows.

2.1.1 | Inclusion criteria

1. Patients diagnosed as CS.
2. Age of onset under 18 years old.
3. Having complete imaging data, including X-ray, three-dimensional 

imaging of the spine CT or spinal MRI.

2.1.2 | Exclusion criteria

1. Other types of scoliosis including adolescent idiopathic scoliosis, 
neuromuscular scoliosis, scoliosis secondary to skeletal dysplasia 
or connective tissue abnormalities.

2. Incomplete imaging data.
3. Having a chronic disease that influenced skeletal development.

All patients were diagnosed as CS by at least two experienced 
orthopaedic surgeons. The clinical information of the study subjects 
was summarized in Table 1. Written informed consent was obtained 
from all the participants or their guardians. All controls were healthy 
without any spinal deformity or other diseases. The Ethical Review 
Board of Peking Union Medical College Hospital approved this study 
(Protocol Number: JS-1901).

2.2 | RNA extraction and Genome-wide 
circRNAs sequencing

Total RNA was extracted from the peripheral blood using a Qiagen 
PAXgene Blood miRNA Kit (QIAGEN, Eastwin Scientific, Inc, Beijing, 
China) according to the manufacturer's instructions. The quality and 
integrity of the extracted RNA were evaluated using an RNA 6000 
Nano Lab Chip Kit (Agilent Technologies, CA, USA) and an Agilent 
2100 Bioanalyzer (Agilent Technologies, CA, USA). The ribosomal 
RNAs were removed using a Ribo-Zero Gold rRNA Removal Kit 
(Human/Mouse/Rat) (Epicenter Company, Madison, WI, USA). The 
linear RNAs were digested by RNase R to separate the circRNAs. 
The RNAs were then reverse-transcribed to create the final cDNA 
library using the mRNA-Seq sample preparations kit (Illumina, San 
Diego, CA, USA). Sequencing was carried out by HiSeq X-Ten with 
150-bp pair-end reads mode.

2.3 | Bioinformatics analysis and 
annotation of circRNAs

The low-quality reads were removed, and the clean reads were 
aligned to the reference human genome (hg19). Based on the tool 
of find_circ,14 find_circ_enhance was used to identify circRNAs with 
default parameters (circRNA read count ≥2 and unique alignment 
reads ≥2). Filtered circRNAs were used for further annotation. After 
comparing to circBase, novel circRNA and known circRNA were 
separated. Transcripts per million clean tags (TPM) were applied 
to quantify the expression of circRNAs.21 Differentially expressed 
circRNAs were estimated by DESeq2.22 The expression level was 
considered significantly different when |log2 fold change| > 1 and 
P value < 0.05. Functional enrichment analysis of the differentially 
expressed circRNA-related genes at Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) was performed using 
clusterProfiler (v3.6.0) Bioconductor package.

2.4 | Validation of selected circRNAs

Quantitative PCR (qPCR) was performed to validate the circRNAs 
identified by the bioinformatics analysis. Divergent primers were 
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designed using circPimer (v1.2). First-strand cDNA was synthesized 
using SuperScript III First-Strand (Thermo Fisher Scientific, Beijing, 
China) according to the manufacturer's instructions. qPCR condi-
tion was as follows: an initial 1-min denaturation at 95°C (Ramp Rate 
4.4°C/s) followed by 40 cycles of 15 seconds at 95°C, 15 seconds at 
the appropriate annealing temperature (depending on the divergent 
primer set used) and 30 seconds extension at 72°C, then 5 seconds 
at 95°C, 60 seconds at 60 and 95°C (Ramp rate 0.11°C/s) for melt 
curve analysis, with a final cooling at 50°C for 30 seconds. For can-
didate circRNAs, the PCR products were separated from the electro-
phoresis agarose gel. Sanger sequencing was conducted to validate 
the back-spliced site of each circRNAs. Each qPCR of each circRNA 
was replicated three times using β-actin as the internal control for 
normalization of expression. The ΔΔCt method was performed to 
calculate the relative expression of circRNAs.

2.5 | Statistical analysis

Data of qPCR were analysed using SPSS software (16.0 version, SPSS 
Inc, Chicago, IL, USA). The expression differences of qPCR were 
evaluated using logistic regression controlling for gender. Receiver 
operating characteristic (ROC) curve was performed to estimate the 
diagnostic application of circRNA.

3  | RESULTS

3.1 | Genome-wide circRNA expression profiles

There were 551,278 circRNAs identified by circRNA sequencing 
in seven CS patients and three healthy controls. After filtering, 
there were 126 907 candidate circRNAs left for further analysis 
(Figure 1A). In order to identify the source of those circRNAs, break-
point type was also annotated (Figure 1B). Most of them were de-
rived from exonic or intronic circRNAs. Differentially expressed 
circRNAs were estimated by the fold changes (FC) of circRNA ex-
pression (Figure 1C). In total, 394 circRNAs with significantly differ-
ent expression level were analysed by the volcano plot (Figure 1D, 
Table S1).

We enriched the differentially expressed circRNA-related 
genes and then subjected these genes to GO annotation and KEGG 

pathway analysis. It indicated that the circRNA-related genes were 
enriched in several pathways. The top outcomes of GO enrichment 
were organelle organization in biological process (BP), intracellular 
organelle part in cellular component (CC) and transcription coacti-
vator activity in molecular function (MF) (Figure 2A). In the KEGG 
pathway analysis, three pathways with the most significant associ-
ation were the ubiquitin-mediated proteolysis signalling pathway, 
endocytosis signalling pathway and oocyte meiosis signalling path-
way (Figure 2B), indicating that these pathways could be associated 
with CS.

3.2 | Validation of selected circRNAs

Combing with the P value and the read count of each circRNAs, we 
selected 22 circRNAs with the most stable and significant differ-
ent expression for validation (Table 2). Divergent primers were de-
signed (Table S2), and qPCR was performed, and the back-spliced 
sites of seven circRNAs were confirmed by Sanger sequencing in-
cluding hsa_circ_0006856, hsa_circ_0006719, hsa_circ_0006208, 
hsa_circ_0002785, hsa_circ_0002692, hsa_circ_0002372 and 
hsa_circ_0000225 (Figure 3). Then, we compared the expression 
level with ΔΔCt method (Table S3). All of those seven circRNAs 
had higher expression levels in the CS group than the healthy 
control (HC) group (Table S4). After compared with the expres-
sion level of the discovery cohort, only hsa_circ_0006719 had the 
same expression tendency in the replication cohort. After logistic 
regression controlling for gender, we found that the expression 
level was statistically significant different between the CS group 
and the HC group (95% CI: 0.59-0.98, P = 0.036; Table 3).

3.3 | ROC curve analysis of hsa_circ_0006719 in 
CS patients

To estimate the diagnostic value of hsa_circ_0006719 as candidate 
biomarkers of CS, ROC curve analysis was performed. The area 
under the curve (AUC) was 0.739 (95% CI: 0.611-0.866, P = 0.001) 
(Figure 4). Therefore, hsa_circ_0006719 may be a potential diagnos-
tic biomarker for CS.

Characteristics

Discovery cohort Replication cohort

CS group 
(n = 7)

Control group 
(n = 3)

CS group 
(n = 32)

Control 
group 
(n = 30)

Mean age (y) 13.57 26.67 14.49 23.67

Gender
M:F

1:6 3:0 17:15 10:20

Main Cobb angle (°) 88.86 NA 56.26 NA

TA B L E  1   Basic characteristics of 
participants in the study
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4  | DISCUSSION

In this study, we performed genome-wide circRNA sequencing 
and compared the circRNA expression profiles of peripheral blood 
from CS patients and healthy controls. Gene Ontology and KEGG 
pathway analysis were conducted to explore the potential func-
tion of the differentially expressed circRNAs. Previous studies 
have revealed that circRNAs are outputs of protein-coding genes 
in eukaryotes.23,24 They could function as post-transcriptional 
regulators, including working as microRNA sponge and protein 

sponge, even some of them could translate into proteins. Thus, 
it is feasible to predict the functions of circRNAs via their re-
lated genes.25 It is postulated that GO and KEGG pathways are 
extensively used in predicting gene function and enrichment 
analysis.26,27 According to GO annotation, we hypothesized that 
circRNAs might contribute to the development of CS by biologi-
cal process (BP), intracellular organelle part in cellular component 
(CC) and transcription coactivator activity in molecular function 
(MF). Kyoto Encyclopedia of Genes and Genomes pathway analy-
sis also indicated that differentially expressed circRNA-related 

F I G U R E  1   Characteristics of genome-wide circRNA expression profiles of the CS group and healthy control group. A, The total number 
of filtered and candidate circRNAs screened. B, The source of circRNAs based on the breakpoint. C, The scatterplot of the differentially 
expressed circRNAs. The circRNAs above the top red line and below the bottom red line indicate more than a 1.0-fold change between the 
two groups. D, The volcano plot of circRNA expression profile. The vertical lines correspond to 1.0-fold change up-regulation and down-
regulation and the horizontal line represents P = 0.05
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F I G U R E  2   GO and KEGG analysis of the differentially expressed circRNA-related genes in the CS group and healthy control group. A, 
The enriched results of biological process (BP), cellular component (CC) and molecular function (MF) by GO analysis. B, Pathways enriched in 
the KEGG analysis

CircRNA Control Case
log2(fold 
change) P

hsa_circ_0006719 77.29 276.76 1.84 4.25E−05

hsa_circ_0037173 2.17 11.78 2.44 0.01

chr3_105389076_105404310_- 1.01 10.41 3.37 0.01

hsa_circ_0001243 1.24 9.48 2.94 0.02

hsa_circ_0041267 1.22 8.58 2.82 0.02

chr19_50840790_50865349_- 10.55 30.27 1.52 0.02

hsa_circ_0006208 55.92 5.43 −3.36 5.41E−06

hsa_circ_0002692 120.66 22.85 −2.4 3.54E−05

hsa_circ_0000225 98.56 35.15 −1.49 0.01

chr5_72311452_72333042_+ 15.36 2.69 −2.51 0.01

hsa_circ_0023233 12.17 1.34 −3.18 0.01

chr14_59730158_59758024_+ 18.61 3.58 −2.38 0.01

hsa_circ_0002785 15.16 2.24 −2.76 0.01

hsa_circ_0007128 14.49 1.83 −2.99 0.01

chr9_3630937_3651867_+ 27.01 5.89 −2.2 0.01

hsa_circ_0002372 13.75 2.25 −2.61 0.02

hsa_circ_0006856 69.08 27.04 −1.35 0.02

chr11_65202523_65211534_+ 32.54 9.9 −1.72 0.02

chr9_3647337_3651867_+ 87.83 35.67 −1.3 0.02

hsa_circ_0002280 12.89 2.25 −2.52 0.03

chr21_40578033_40584633_- 44.01 17.36 −1.34 0.03

chr6_37250657_37284982_+ 12.18 2.27 −2.43 0.04

TA B L E  2   The 22 selected circRNAs 
with the most stable and significant 
different expression
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genes were enriched in the ubiquitin-mediated proteolysis signal-
ling pathway, endocytosis signalling pathway and other several 
pathways. Previous studies indicated that the ubiquitin-mediated 
proteolysis signalling pathway is involved in osteogenic differen-
tiation and may play essential roles in disorders manifested with 
scoliosis.28,29 The endocytosis signalling pathway has also re-
ported to play an pivotal role in the development of scoliosis.30,31 
We hypothesized that these differentially expressed circRNAs 
could regulate ubiquitin-mediated proteolysis and endocytosis 
signalling pathway, which could influence the development of CS.

To explore specific circRNAs involved in CS, we compared the 
expression level in the replication cohort. We selected 22 cir-
cRNAs with the most stable and significant different expression 
for the validation. Seven circRNAs were confirmed, and only hsa_
circ_0006719 had higher expression level in the CS group than 
the HC group with significant difference. Moreover, we conducted 
ROC curve analysis to evaluate the value of hsa_circ_0006719 
for differentiating CS and HC. The results suggested that 

hsa_circ_0006719 was a potential novel diagnostic biomarker of 
CS. hsa_circ_0006719 originates from the exon 3 and intron 3 
of gene VKORC1 with the spliced sequence length of 568 bases. 
VKORC1 locates in 16p11.2 encoding vitamin K epoxide reductase 
(VKOR) complex subunit 1. VKORC1 plays an important role in 
vitamin K metabolism. It is a catalytic subunit of the VKOR com-
plex which reduces vitamin K 2,3-epoxide to active vitamin K.32,33 
Vitamin K is proved to be essential in bone development, including 
affecting the function of osteoblasts 34 and osteoclasts.35 The sup-
plementation of vitamin K has an effect of osteoporosis preven-
tion.36 Several studies also delineate that mutations of VKORC1 
are associated with bone mineral density and osteoporosis.37,38 
Thus, we hypothesized that hsa_circ_0006719 could contribute 
to the aetiology of CS by regulating the expression of VKORC1. 
Further functional studies are needed to identify this hypothesis.

There are several limitations in this study. First, since all the CS 
patients were under 18 years old, the age of the healthy controls 
was not matched with them both in the discovery cohort and in the 

F I G U R E  3   Sanger sequencing of hsa_circ_0006856 (A), hsa_circ_0006719 (B), hsa_circ_0006208 (C), hsa_circ_0002785 (D), hsa_
circ_0002692 (E), hsa_circ_0002372 (F) and hsa_circ_0000225 (G). The arrows represented the back-spliced sites

 B SE Wald df P
Odds 
Ratio

95% CI for Odds 
Ratio

Lower Upper

Gender −0.95 0.59 2.603 1 0.107 0.39 0.12 1.23

has_circ_0006719 −0.28 0.12 4.40 1 0.036 0.76 0.59 0.98

Constant 1.04 0.45 5.37 1 0.020 2.83   

Note: Gender is for males compared to females.

TA B L E  3   Logistic regression predicting 
likelihood of CS based on gender and 
hsa_circ_0006719
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replication cohort. The results could be biased by the unmatched 
age. Second, the circRNAs always act as post-transcriptional regu-
lators in target tissues. In our study, the circRNAs in plasma and tis-
sues were not detected, and further studies are needed to explore 
the underlying mechanism. Third, the sample size of the study was 
relatively small. Further studies with larger sample size are neces-
sary to validate our findings.

5  | CONCLUSION

In conclusion, we described the first study of circRNAs in CS patients. 
After genome-wide circRNAs analysis and validation in a replication 
cohort, we found that the differentially expressed circRNA-related 
genes were enriched in several pathways, and we also found that 
hsa_circ_0006719 had a higher expression level in CS and could act 
as a potential novel diagnostic biomarker of CS.
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