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Adjuvants are used to maximize the potency of vaccines by enhancing immune reactions.
Components of adjuvants include pathogen-associated molecular patterns (PAMPs) and
damage-associate molecular patterns (DAMPs) that are agonists for innate immune
receptors. Innate immune responses are usually activated when pathogen recognition
receptors (PRRs) recognize PAMPs derived from invading pathogens or DAMPs released
by host cells upon tissue damage. Activation of innate immunity by PRR agonists in
adjuvants activates acquired immune responses, which is crucial to enhance immune
reactions against the targeted pathogen. For example, agonists for Toll-like receptors
have yielded promising results as adjuvants, which target PRR as adjuvant candidates.
However, a comprehensive understanding of the type of immunological reaction against
agonists for PRRs is essential to ensure the safety and reliability of vaccine adjuvants.
This review provides an overview of the current progress in development of PRR
agonists as vaccine adjuvants, the molecular mechanisms that underlie activation of
immune responses, and the enhancement of vaccine efficacy by these potential
adjuvant candidates.
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INTRODUCTION

A vaccine consists of immunogenic materials that help the host to acquire immunity against a
pathogen. Vaccination confers protection to the host by initiating a dynamic immune response that
mimics actual infection. Therefore, when the vaccinated host encounters the pathogen, the host
immune memory mounts the specific immune response rapidly to eradicate the pathogen and
prevent immune complications.

Historically, vaccine development has closely followed Pasteur’s principle of “isolation,
inactivation, and administration” whereby the causative agent has to be identified, isolated,
inactivated or attenuated, and finally administered to the host. With the advancement of
innovative technologies, some vaccines have incorporated nanotechnology, which use novel
nanoparticles to deliver components of the pathogen such as subunit proteins or nucleic acids.
New technologies in vaccine development have also addressed the need for safe and negligible off-
target effects. These novel agents offer many advantages such as high bioavailability, high
throughput and time effectiveness in development, and safety relative to the conventional
gy | www.frontiersin.org October 2021 | Volume 11 | Article 7450161
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method. However, usually, these agents alone possess low
reactogenicity and thus poorly induce immune responses.

Combining other materials, such as mineral particulates, plant
derivatives, DNA oligodeoxynucleotides, and nanoparticle
compounds, with a vaccine improves the vaccine’s overall efficacy
to promote a robust immune response and maximize protection
against the target pathogenic microorganism. These materials are
known as adjuvants based on the Latin word adjuvare that describes
the adjuvant’s role in “helping” potentiation of the vaccine. The US
Food and Drug Administration (FDA) outlines an adjuvant as a
constituent material of vaccines, which induces a specific immune
response (Food and Administration, 1997). To date, very few
adjuvants have been approved by the FDA that only supports an
adjuvant’s use if it significantly improves the vaccine efficacy.
Although several approved adjuvants are currently in use for
vaccine development in humans, the mechanisms of adjuvants
remain unknown.
INNATE IMMUNITY

Innate immunity plays an important role in the induction of host
protection by vaccination. Innate immunity is the first line of
defense in which the immune system recognizes the presence of
pathogens or cellular damage (Akira et al., 2006). Innate immune
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
cells possess sensors known as pattern recognition receptors (PRRs)
that recognize pathogen-associated molecular patterns (PAMPs)
released by pathogens or danger-associated molecular patterns
(DAMPs) in the presence of damaged cells or tissues. Upon
recognition, activation of innate immunity releases various
cytokines or factors that initiate adaptive immunity. The first
group of PRRs discovered and best characterized to date is the
Toll-like receptor (TLR) family. Humans possess 10 TLRs, while 12
have been found in mice (Kawai and Akira, 2009). These TLRs are
classified by their localization, namely plasma membrane or
intracellular endosome TLRs. Each TLR is responsible for
detecting specific PAMPs or DAMPs, as summarized in Figure 1.
The location of TLRs is closely related to their functional properties
and subsequent downstream signaling pathway. Plasmamembrane-
localized TLRs usually recognize pathogenic components such as
proteins and lipid, whereas intracellular endosome TLRs detect
nucleic acids (Barton and Medzhitov, 2003; Pandey et al., 2015).
Lipoproteins are recognized by TLR1, TLR2, and TLR6, whereas
lipopolysaccharide (LPS) and flagellin are recognized by TLR4 and
TLR5, respectively. Nucleic acid materials, such as double-stranded
RNA and single-stranded RNA, are detected by TLR3 and TLR7/8,
respectively, and TLR9 recognizes single-stranded DNA. TLR4
localizes to the endosome after recognizing LPS. Therefore,
similar to other endosomal TLRs, TLR4 induces two different
downstream signaling pathways, depending on the location of
FIGURE 1 | Adjuvant candidates and their respective receptors. TLR4 and TLR5 are expressed on the cell surface, while TLR3, TLR4, TLR7, TLR8, and TLR9 are
expressed in endosomes. TLR4, TLR5, TLR7, TLR8, and TLR9 initiate signaling through the MyD88 pathway to activate NF-kB, which induces the production of
proinflammatory cytokines. Activated Syk elicits the production of proinflammatory cytokines through the NF-kB signaling pathway. RIG-1 and MDA-5 are intracellular
nucleic acid sensors that induce both proinflammatory cytokines and type-1 interferons via MyD88 and IRF signaling pathways. cGAS produces cGAMP that activates
the cGAS-stimulator STING located on the ER to induce production of proinflammatory cytokines through the NF-kB signaling pathway. Inflammasomes (AIM2, NLRP1,
NLRP3, and NLRC4) cleave pro-caspase 1 into caspase 1 that subsequently cleaves pro-IL-1b, pro-IL-18, and Gasdermin D into their mature forms, respectively.
N-terminal Gasdermin D oligomerizes to form pores, inducing pyroptosis. Blue text represents adjuvant candidates discussed in this review.
October 2021 | Volume 11 | Article 745016
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TLR4 (Kawasaki and Kawai, 2014a). Upon detection of these signals
by TLRs, they recruit Toll/Interleukin-1 receptor (TIR) domain-
containing adaptor proteins, such as Myeloid differentiation
primary response 88 (MyD88) and TIR-domain-containing
adaptor-inducing interferon-b (TRIF), to initiate the downstream
signal transduction pathways, activating Nuclear Factor kappa-
light-chain-enhancer of activated B cells (NF-kB), interferon
regulatory factors (IRFs) or mitogen-activated protein kinases
(MAPKs) (Kawasaki and Kawai, 2014b). Subsequently, TLR
activation leads to production of inflammation-related mediators
and type I interferon (IFN).

In addition to TLRs, several cytosolic sensors collectively
known as retinoic acid-inducible gene-I (RIG-I)-like receptors
(RLRs) are responsible for detecting RNA species of invading
pathogens in the cytoplasm (Loo and Gale, 2011). There are
three members in the RLR family: RIG-I, melanoma
differentiation-associated protein 5 (MDA5), and laboratory of
genetics and physiology 2. RIG-I and MDA5 are the main
receptors of cytosolic viral nucleic acids (Kato et al., 2006).
Upon recognition, RLRs interact with the adaptor protein,
mitochondrial antiviral-signaling protein (MAVS; also known
as IFN-b promotor stimulator) to activate TANK-binding kinase
1 (TBK1) and IkB kinase-e, phosphorylating interferon
regulatory factor 3 (IRF3), and IRF7 to induce transcription of
antiviral type 1 interferons (Hartmann, 2017b; Rehwinkel and
Gack, 2020). Similarly, cyclic GMP-AMP (cGAMP) synthase
(cGAS) is a cytosol DNA sensor that detects cytosolic DNA from
bacteria, viruses, or even host DNA (Chen et al., 2016; Hopfner
and Hornung, 2020). The binding of DNA to cGAS catalyzes
synthesis of 2ʹ3ʹ-cGAMP that binds to the endoplasmic
reticulum (ER) membrane adaptor stimulator of IFN genes
(STING) (Ishikawa and Barber, 2008; Wu et al., 2013).
Activated STING then migrates to the ER-Golgi compartment
to recruit TBK1 that phosphorylates IRF3 to induce expression
of type 1 IFNs (Tanaka and Chen, 2012; Dobbs et al., 2015).

Finally, certain sensors, such as nucleotide-binding
oligomerization domain-like receptors (NLRs) or absent-in-
melanoma-2 (AIM2)-like receptors, together with the adaptor
protein apoptosis-associated spec-like protein containing a
CARD (ASC) and caspase-1, form an intracellular multimeric
protein complex known as the inflammasome to regulate the
maturation and release of interleukin- (IL)-1b and IL-18
(Franchi et al., 2012). Examples of inflammasomes are
nucleotide-binding domain, leucine-rich-containing family,
pyrin domain-containing (NLRP1), NLRP3, NLR family
CARD domain containing-4 (NLRC4), AIM2, and the pyrin
family. These inflammasomes are activated by a wide range of
PAMPs and DAMPs. NLRP1b in murine cells detects bacterial
toxins (Levinsohn et al., 2012), NLRC4 is activated by
components of type three secretion systems of gram-negative
bacteria (e.g., flagellin) (Zhao et al., 2011), whereas AIM2 senses
intracellular dsDNA (Hornung et al., 2009). Conversely, the
NLRP3 inflammasome is act ivated by ionic influx,
mitochondrial dysfunction, ROS production, and lysosomal
damage that are induced by stimuli from pathogens or
damaged host cells (Kelley et al., 2019). Upon stimulation, the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
sensor and ASC form a large protein complex that recruits pro-
caspase-1, which causes cleavage and maturation of pro-caspase-
1 into caspase-1. Caspase-1 then catalyzes cleavage of inactive
pro-IL-1b and pro-IL-18 into their active forms (Rathinam and
Fitzgerald, 2016). Additionally, caspase-1 is responsible for
maturation of gasdermin D. Its mature form oligomerizes at
the plasma membrane, which forms pores and subsequently
causes pyroptosis (proinflammatory cell death) and the release of
mature IL-1b and IL-18 (Liu et al., 2016).

Innate immunity provides a rapid reaction against invading
pathogens. However, it lacks specificity and is unable to produce
a long-term memory response. In the context of vaccination,
adaptive immunity is crucial for the required specificity and
provides long-term protective immunity against the recurring
target antigen. Innate immunity provides the link to activate
adaptive immunity. The secretion or induction of stimulatory
molecules (CD40, CD80, and CD86), cytokines, and chemokines
at the site of infection by activated cells in innate immunity aids
in the recruitment and maturation of immune cells in adaptive
immunity (Kang and Compans, 2009; Pulendran and Ahmed,
2011). Innate immune cells, such as dendritic cells (DCs) and
macrophages, also act as antigen-presenting cells (APCs) to
provide antigen-specific activation signals to adaptive immune
T and B cells (Pasare and Medzhitov, 2004). Additionally, the
types of cytokines released mediate different modes of T helper
(Th) cell activation, namely Th1 or Th2 cell expansion. The Th1
response is mainly required to induce immunity against
intracellular pathogens or tumors, whereas Th2 is primarily
involved in eliminating extracellular pathogens by secreting
antibodies (Korsholm et al., 2010). In brief, understanding how
innate immunity works has greatly facilitated the development of
effective adjuvants. In the following sections, we discuss licensed
adjuvants, adjuvants in trials, and the innate immune responses
stimulated by these adjuvant candidates.
CURRENTLY APPROVED ADJUVANTS

Licensed adjuvants are grouped in accordance with their
functional role in promoting vaccine efficacy. The first group
of adjuvant acts as a vehicle that delivers the vaccine antigen.
For example, alum salt (Glenny, 1926) and an emulsion (Freund,
1956) improve antigen presentation to APCs and recruit
neutrophils and monocytes for rapid antigen transport to
draining lymph nodes (Calabro et al., 2011). Conversely, the
second group of adjuvants works as an immunostimulant by
inducing the innate immune response. Liposome-based AS01
and CpG oligodeoxynucleotide exert immunostimulatory effects
through TLRs. They activate innate immune responses in APCs.
They also intermediate the adaptive immune response by acting
as a potentiating agent of vaccine antigens to achieve synergistic
engagement in host immunity.

Alum
Aluminum salts, also known as alum, are the most common
adjuvant in the vaccine industry. Alum is also the earliest
October 2021 | Volume 11 | Article 745016
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adjuvant to be used in the 1920s when Glenny and colleagues
found that purification of tetani and diphtheria toxoids with
alum improves antibody responses in an animal model.
Generally, alum compounds have different forms and may
contain other elements such as sodium, cesium, and
ammonium. However, alum in general refers to aluminum
hydroxide and aluminum phosphate (Brito et al., 2013).
Several activation mechanisms induced by alum have been
proposed, although the actual mechanism has remained a
subject of debate. Initially, it was believed that alum causes
persistent and prolonged antigen release from the vaccine
injection site, which is referred to as the “depot effect” (Glenny
et al., 1926). This explanation was dismissed years later after
some studies showed that removing the vaccine administration
site did not affect the antibody titer of the specific antigen (Holt,
1950; Hutchison et al., 2012).

The surface of alum provides the capacity for the interaction
with the antigen via several mechanisms such as electrostatic,
hydrophobic, ligand exchanges, and many others. Protein
antigens tend to be adsorbed to the solid surface at a pH near
to the protein’s isoelectric point. The hydrophobic residues on
the surface of protein antigens participate in the interaction with
the surface of alum, which creates the adsorption effect.
Furthermore, depending on the pH, the charge of alum
promotes effective electrostatic interactions with various types
of vaccine antigens. The positive surface charge of aluminum
hydroxide and negative surface charge of aluminum phosphate
at neutral pH promote electrostatic adsorption of antigens
towards aluminum hydroxide or aluminum phosphate.
Moreover, chemical modification by the ligand exchange
mechanism, when the negative charge of the phosphate group
terminal of antigen exchanges with the positively charged
hydroxyl group of aluminum hydroxide, creates a strong
interaction between alum and the antigen (Al-Shakhshir et al.,
1994; Chang et al., 1997; Noe et al., 2010).

The interaction between alum and an antigen has been
suggested to assist in delivering the antigen to APCs. Alums
bind directly to lipids on the cell membrane of DCs because there
is no specific receptor for alum (Flach et al., 2011). Additionally,
alum forms particulates with soluble antigens via the adsorption
effect, which facilitates uptake of the antigen by APCs via
phagocytosis (Mannhalter et al., 1985; Ghimire et al., 2012).
The phagocytosed alum-antigen causes lysosomal release of
cathepsin B into the cytoplasm, which activates caspase-1-
associated NLRP3 inflammasome activity (Hornung et al.,
2008). Then, caspase-1 also catalyzes the production of
proinflammatory cytokines such as IL-1b, IL-18, and IL-33
(Sutterwala et al., 2006; Eisenbarth et al., 2008; Li et al., 2008).
Alum engaged by DCs also initiates several important signaling
mechanisms that include phosphoinositide-3-kinase and
calcineurin-nuclear factor of activated T cells (NFAT), which
depends on spleen tyrosine kinase (Syk) (Mori et al., 2012;
Khameneh et al., 2017). Moreover, alum-antigen promotes
specialization of APCs that subsequently induce differentiation
of naïve CD4(+) T cells to produce IL-4 and IL-5 for the Th2-
type immune response (Rimaniol et al., 2004; Sokolovska et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
2007). The cytotoxicity of alum also causes the production of
several DAMPs, such as uric acid (Kool et al., 2008; Kool et al.,
2011), ATP (Riteau et al., 2012), and heat-shock protein 70
(Wang et al., 2012), which serves as activation signals for the
NLRP3 inflammasome.

Alum predominantly drives activation of the Th2 immune
response, but a weak Th1 response. Th1 is not only responsible for
protection against viruses and intracellular bacteria (Wang et al.,
2012), but also facilitates cancer eradication (Granoff et al., 1997).
Therefore, alum has poor adjuvanticity for vaccines against influenza
(Granoff et al., 1997), malaria (Mata et al., 2013), and tuberculosis
(Lindblad et al., 1997; Doherty and Andersen, 2005). The
combination of alum with ligands of PPRs creates a balanced Th1
and Th2-type immune response. One of the earliest licensed
adjuvants, AS04, combines alum with monophosphoryl lipid A
(MPLA), an LPS derivative purified from Salmonella minnesota
(Casella and Mitchell, 2008). Compared with LPS, MPLA has
increased safety because it has lower reactogenicity than LPS.
(Dowling and Levy, 2015). The phosphate groups on MPLA enable
adsorption to alum by electrostatic interactions and ligand exchange,
which allows the alum to acts as a vehicle to deliver MPLA to APCs
and precisely activates the TLR4 response (Shi et al., 2001). Thus,
compared with MPLA as a single agent, the addition of alum to
MPLA induces rapid and robust production of proinflammatory
cytokines via the TLR4 signaling pathway. The combination of alum
with MPLA also prolongs cytokine induction and immune cell
recruitment at injection sites (Didierlaurent et al., 2009).

The remarkable safety of alum makes it the first choice of
adjuvant in vaccine research and development. To date, the use
of alum alone or in combination has created many successful
vaccines for humans, such as vaccines for tetanus (HogenEsch
et al., 2018), diphtheria (HogenEsch et al., 2018), polio
(HogenEsch et al., 2018), hepatitis A (HogenEsch et al., 2018),
hepatitis B (AS04) (Kundi, 2007), human papillomavirus (AS04)
(Harper et al., 2004; Harper, 2006; Paavonen et al., 2007), and the
most recent SARS-CoV-2 (Wu et al., 2021; Xia et al., 2021; Zhang
et al., 2021). Despite the significant advantages of alum, there are
several drawbacks. The presence of alum often leads to swelling
and erythema at the vaccine injection site, which is caused by
strong innate and humoral immune responses such as excessive
proinflammatory cytokines and antigen-specific IgE antibodies
(Fawcett and Smith, 1984; Mark et al., 1995). Furthermore,
in vivo models have shown aluminum element traces at the
inoculation site even after 1 year post-administration (Gupta
et al., 1996; Gupta et al., 1997), which pose a risk to induce severe
chronic immune responses such as allergy (Netterlid et al., 2009).
Moreover, alum stability at subfreezing temperature remains
unresolved because alum salts form aggregates that
significantly decrease the adjuvanticity of alum (Braun et al.,
2009; Chen et al., 2009; Salnikova et al., 2012). Therefore, it is
essential to prepare a formulation with alum limitations in mind
to achieve maximum adjuvanticity and minimize side effects.

Emulsions
The water-in-oil emulsion developed by Jules Freund in the
1930s was first used as an adjuvant. Freund found that a water-
October 2021 | Volume 11 | Article 745016
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in-paraffin oil emulsion that contained dead Mycobacteria
tuberculosis, later known as complete Freund’s adjuvant,
initiates strong immunologic adjuvanticity and a high antibody
titer (Freund et al., 1937; Freund, 1947). The use of Freund’s
adjuvant has several drawbacks such as biodegradability of
mineral oils, quality of the emulsifier, and formulation
reproducibility (Murray et al., 1972; Shah et al., 2017).
Moreover, the toxicity of the non-metabolized mineral oil and
intolerable reactogenicities cause several local reactions that
include granuloma formation and prolonged inflammation at
the injection site (Lindblad, 2000). Systemic reactions such as
anterior chamber uveitis have been reported in animal models
(Waters et al., 1986; Allison and Byars, 1991). Later, incomplete
Freund’s Adjuvant was developed by excluding killed
mycobacteria and used in vaccine development for influenza
(Salk et al., 1952; Bomford, 1980) and HIV (Silvera et al., 2004).

A different form of emulsion known as an oil-in-water
emulsion was developed as an alternative. MF59, AS03, and
AF03 are available and approved oil-in-water emulsions for use
in human vaccines. These oil-in-water emulsions contain
squalene and some other emulsion stabilizers, such as Span 85
(MF59), Tween 80 (MF59, AS03), and a-tocopherol (AS03)
(Morel et al., 2011; Garçon et al., 2012; O’Hagan et al., 2013).
These organic compounds have low viscosity, high
biocompatibility, and can be fully metabolized in the human
body without any safety issues (Vesikari et al., 2009). The MF59
oil-in-water emulsion was the earliest approved adjuvant applied
in several influenza vaccines (H5N1 and H1N1) (Wilkins et al.,
2017). MF59 was the first AS03 emulsion series reported to
induce antibody production via the MyD88-dependent pathway
without activating the TLR signaling pathway (Seubert et al.,
2011). Loss of MyD88 in mice resulted in a significant reduction
in antibody titer after immunization with an MF59-adjuvanted
vaccine against Neisseria meningitidis (Seubert et al., 2011).
Moreover, vaccinating mice that lack ASC, an adaptor protein
within the NLRP3 inflammasome, with the MF59-adjuvanted
vaccine against H5N1 influenza virus lowers the antibody titer
(Ellebedy et al., 2011). However, antibody production in Nlrp3-
knockout and Caspase 1-knockout mice remains intact after
immunization with the MF59-adjuvanted H5N1 influenza
vaccine (Ellebedy et al., 2011; Seubert et al., 2011). Therefore,
antibody production after MF59-adjuvanted vaccination is
proposed to be dependent on ASC, but independent of NLRP3
(Pulendran et al., 2021).

Similar to alum, MF59 and AS03 recruit APCs and
granulocytes to the injection site (Seubert et al., 2008; O’Hagan
et al., 2012). In fact, compared with alum, MF59 has a more
prominent effect on recruiting neutrophiles and is more efficient
in promoting antigen transport by myeloid cells to draining
lymph nodes (Calabro et al., 2011). Furthermore, MF59
improves antigen uptake and presentation by monocytes to
lymphocytes without a depot effect (Awate et al., 2013).
Nevertheless, MF59 and AS03 are superior to alum for
induction of cytokines, gene regulation, leukocyte migration,
and antigen presentation (Dupuis et al., 2001; Mosca et al.,
2008). MF59 upregulates expression of several cytokines (Ccl2,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Ccl4, Ccl5, Ccl12, Cxcl10, Il1b, and Il2) much earlier than alum
(Mosca et al., 2008). Moreover, MF59 induces higher cytokine
expression than alum, such as Tnf, Ccl17, Ccl24, Ltb, and Tgfb1
(Mosca et al., 2008). a-Tocopherol in AS03 regulates the
production of some cytokines (e.g., CCL2, CCL3, and IL-6)
and chemokines (e.g., granulocyte colony-stimulating factor
and CXCL1) (Morel et al., 2011). Another study showed that
MF59 also promotes excretion of extracellular ATP from muscle
cells, which acts as a DAMP to initiate an innate immune
response for cytokine production and NLRP3 inflammasome
activation (Vono et al., 2013).

Liposome-Based Immunostimulants
Liposome-based immunostimulants are a unique type of
adjuvant encapsulated with a phospholipid bilayer known as a
liposome (Copland et al., 2005). The only available licensed
liposome-based immunostimulant is AS01. AS01 has been used
to develop several vaccines that include vaccines against malaria
(White et al., 2015), HIV (Leroux-Roels et al., 2010a; Van
Braeckel et al., 2011) and tuberculosis (Leroux-Roels et al.,
2013a). AS01 consists of two different immunostimulatory
molecules, MPLA and QS-21, encapsulated in the liposome
(Garcon and Van Mechelen, 2011). MPLA is the TLR4 ligand
used in the AS04 adjuvant, whereas QS-21 is a triperpene
glycoside saponin purified from fraction 21 of a bark extract
from Quillaja saponaria Molina (Kensil et al., 1991). The
liposome is used to deliver both MPLA and QS-21 into cells
through cholesterol-dependent endocytosis (Welsby et al., 2017).
QS-21 in the liposome induces lysosomal destabilization and
later promotes tyrosine protein kinase SYK activation (Welsby
et al., 2017). Moreover, MPLA in the cell induces the TRIF-
dependent signaling pathway after binding to endosomal TLR4
(Watts et al., 2017). The single agent QS-21 is a potent
compound with an undesirable hemolytic effect and induces
cell death, which poses a tolerability issue in humans (Beck et al.,
2015). The use of cholesterol-based liposomes abrogates the
hemolytic activity of QS-21 and cell death induction (Marty-
Roix et al., 2016).

MPLA and QS-21 of the AS01 adjuvant synergistically
activate caspase-1 for NLRP3 inflammasome activation
to release IL-1b as well as IL-18 from APCs, specifically
subcapsular sinus macrophages (Detienne et al., 2016).
The release of IL-18 by subcapsular sinus macrophages signals
rapid and early production of IFNg, especially by natural killer
cells in the draining lymph node (Coccia et al., 2017). A high
level of IFNg results in maturation of DCs and induces a Th1-
type immunity response. The synergistic effect of MPLA and QS-
21 is canceled in the state of subcapsular sinus macrophage
depletion, blocking IFNg, and loss of NK cells, which suggests
that AS01 initiates an IFNg-dependent innate immune response
(Coccia et al., 2017). Moreover, loss of TLR4 and caspase-1
significantly impacts the adjuvant effect of AS01. Lacking MPLA
suppresses the expression of IL-1b because QS-21 alone is unable
to induce IL-1b release, which suggests production of IL-1b
induced by AS01 is dependent on TLR4 (Marty-Roix et al.,
2016). Moreover, administration of either MPLA or QS-21
October 2021 | Volume 11 | Article 745016
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results in a minimal level of IFNg+ NK cell induction (Coccia
et al., 2017). Even though QS-21 activates caspase-1 for the
NLRP3 inflammasome, deficiency in the Nlrp3 in vivo model
does not affect the adjuvanticity of AS01 (Marty-Roix
et al., 2016).

Synthetic CpG Oligodeoxynucleotide
(CpG-ODN) Immunostimulants
TLR9 specifically recognizes bacterial DNA motifs with the
unmethylated cytosine-phosphate-guanine (CpG) dinucleotide
for innate immunity activation through the MyD88-dependent
pathway (Kawai and Akira, 2010). These immunostimulatory
motifs have been adopted in synthetic adjuvant development
with modifications to prevent nuclease degradation (Hanagata,
2012). CpG-ODN induces robust chemokine, cytokine, and
antibody production in natural killer cells, B cells, and
plasmacytoid DCs, causing a robust Th1-type immune
response (Akira et al., 2006). Three classes of CpG-ODN
ligands (classes A–C) have been developed, but only CpG-
ODN from class B has been used in a clinical trial (Vollmer
et al., 2004). These CpG ODNs have different nucleotide
sequences and induce production of IFNa in plasmacytoid
DCs (Verthelyi et al., 2001; Hemmi et al., 2003). CpG 1018, a
licensed class B CpG-ODN (CpG-B ODN), is a monomeric
oligonucleotide with high chemical stability and adjuvanticity to
promote Th1-type immune responses (Campbell, 2017).

CpG-B ODN is engulfed and localizes to lysosome-associated
membrane protein 1-expressing endosomes and causes
maturation of plasmacytoid DCs through localization
(Guiducci et al., 2006). Subsequently, when in the form of a
microparticle, CpG-B ODN interacts with transferrin receptor
1-positive endosomes to enhance production of IFNa via the
TLR9 signaling pathway (Guiducci et al., 2006). Moreover,
CpG-B ODN interacts with B cells directly to stimulate
antibody production (Hartmann, 2017a). A mouse model has
shown that CpG-B ODN with antigen vaccination induces
substantial and long-lasting antibody production compared
with alum-adjuvanted or non-adjuvanted vaccines (Barry and
Cooper, 2007). The recently licensed CpG 1018 is used as the
adjuvant for hepatitis B vaccine Heplisav-B (JAMA, 2018). The
use of the CpG 1018 adjuvant in Heplisav-B improves efficacy
with only two dose regimens compared with conventional
hepatitis B vaccines that require three dose regimens before
achieving maximum protection (JAMA, 2018). At present, CpG
1018 is under clinical evaluation for several other vaccines that
include vaccines against melanoma cancer (Speiser et al., 2005)
and COVID-19 (Kuo et al., 2020).
MRNA VACCINES AND ADJUVANTS

Compared with conventional vaccines, nucleic acid vaccines
have recently received much attention because of the
application of the mRNA vaccine against severe acute
respiratory syndrome-coronavirus 2 (SARS-CoV-2). mRNA
vaccines have multiple advantages over conventional vaccines.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
For example, they are non-infectious, have no risk of insertional
mutagenesis, are flexible for manipulation, and easy to produce
(Pardi et al., 2018). Previously, it was challenging to develop truly
usable mRNA vaccines because of the instability of mRNA and
the lack of an efficient delivery method. Modern technology has
resolved most of these problems using various delivery systems
that also act as an adjuvant for mRNA vaccines.

Interest ingly, mRNA is immunogenic by nature.
The immunogenic property of mRNA is both beneficial and
detrimental for mRNA vaccines. The presence of nucleic acid
sensors, such as TLR3, TLR7/8, RIG-I, and MDA-5, recognize
vaccinated mRNA, which then proceed to activate innate
immune signaling pathways to produce type-I IFNs (Okude
et al., 2020). As mentioned previously, activation of innate
immunity is crucial for the development of adaptive immunity
against the intended vaccine target. However, excessive
production of type-I IFNs can lead to elevated activation of
Eukaryotic initiation factor 2-a kinase that inhibits protein
translation (de Haro et al., 1996), degradation of RNA, and
induction of apoptosis (Liang et al., 2006; Garcia et al., 2007).
Consequently, this will result in a reduced expression of the
target antigen and thus lower the efficacy of mRNA vaccines.
Furthermore, Pollard et al. demonstrated that expression of
antigen-encoding mRNA is higher in TRIF knockouts, which
is in agreement with previous studies showing that type-I IFNs
may reduce mRNA vaccine efficacy (Pollard et al., 2013).

To deceive nucleic acid sensors, several strategies have been
used. One method employed by BioNTech/Pfizer and Moderna
in their approved SARS-CoV-2 vaccines is replacement of
pseudouridine-incorporated mRNA with naturally occurring
1-methylpseudouridine to avoid detection by PRRs
(Buschmann et al., 2021). This modification enhances the
stability, expression, and translation of the target mRNA
(Kariko et al., 2008; Andries et al., 2015). However, notably,
adjuvants are not mentioned in the formulations of both vaccines
by BioNTech/Pfizer or Moderna (FDA, 2020a; FDA, 2020b).
BioNTech/Pfizer mentioned RNA to have adjuvant effects in
their clinical study (Mulligan et al., 2020). The modified mRNA
is delivered using liposome-based nanoparticles (LNPs). It is
possible that the LNPs used by these vaccines act as both the
delivery agent and adjuvant. Studies by Moderna suggested that
activation of robust innate immunity may not be a prerequisite
for successful immunization using an mRNA vaccine, which
suggested that mild or modest activation of innate immunity by
the LNPs in these mRNA vaccines is sufficient to provide the
required adjuvanticity (Liang et al., 2017; Hassett et al., 2019).

An mRNA vaccine can be coupled with different formulations
to increase vaccine immunogenicity. These formulations often
target various PRRs of innate immune components. An example
is TriMix in which the antigen mRNA is codelivered with a
mixture of three other mRNAs that encode CD70, CD40 ligand,
and constitutively active Toll-like receptor 4 that targets the
TLR4 pathway. This formulation is currently in vaccine trials for
HIV and cancer (Wilgenhof et al., 2016; Guardo et al., 2017).
Another innovative strategy involves codelivering the antigen
mRNA with an immunogenic RNA complexed with protamine
October 2021 | Volume 11 | Article 745016
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(RNActive by Curevac) or other cationic peptides (RNAdjuvant
by CureVac) that are often used to stabilize RNA. The stabilized
RNA functions to induce activation of innate immunity in
humans and mice via stimulation of RIG-I, MDA-5, and
TLR7/8 receptors (Fotin-Mleczek et al., 2011; Kallen et al.,
2013; Edwards et al., 2017; Ziegler et al., 2017).
TLR AGONISTS AS ADJUVANT
CANDIDATES

A classic example of fundamental discoveries translated into an
application is when researchers harnessed the ability of TLR
agonists to initiate the innate immune system to be used as
adjuvant candidates to improve the immunogenicity of vaccines.
As mentioned in the previous sections, the discovery of TLR4-
LPS led to the approval of a detoxified derivative of LPS, namely
MPLA to be used as an adjuvant or a component of combined
adjuvants. The subsequently approved TLR agonist adjuvant is
CpG 1018, a TLR9 agonist. Since their initial licensing, these TLR
agonists have also been studied as potential adjuvants in other
vaccines such as cancer and allergen vaccines. In the following
section, we will introduce several other adjuvant candidates in
development, which are categorized in accordance with their
corresponding TLRs.

TLR3 Agonist
TLR3 is localized in the endosome of a cell, which primarily
detects viral dsRNA. This receptor plays an important role in
inducing an antiviral response and may be crucial to induce
adaptive immune responses by stimulating conventional DCs
(cDCs) for cross-priming (Datta et al., 2003; Schulz et al., 2005).
Even before the discovery of TLRs, it was found that a synthetic
dsRNA, polyriboisosinic:polyribocytidylic acid [poly(I:C)] is
highly capable of inducing IFN production (Field et al., 1967).
Together with RIG-I and MDA5, TLR3 recognizes poly(I:C) that
mimics viral RNA to induce type I IFN, type III IFN, and Th1
cytokine responses (Okahira et al., 2005; Kato et al., 2006; Longhi
et al., 2009). Upon recognition of poly(I:C) by TLR3, production
of type I IFN by cDCs is particularly critical for cDCs to
effectively cross-present antigen for subsequent CD8 T cell
responses (Schulz et al., 2005; Durand et al., 2006).
Additionally, the type I IFN response induced by poly(I:C)
promotes clonal expansion of T cells, increases the effector T
cell ratio, and effectively increases the numbers of antigen-
specific B cells (Kolumam et al., 2005; Ngoi et al., 2008; Perret
et al., 2013). Hence, there has been interest in investigating
poly(I:C) as a potential adjuvant. However, the use of poly(I:C)
alone may be too toxic in humans (Cornell et al., 1976; Robinson
et al., 1976). Therefore, derivatives of poly(I:C), such as poly
(ICLC) and poly(IC12U), and alternative synthetic TLR3 agonists
(e.g., ARNAX, IPH 3102, and RGC100) have been developed and
are currently under investigation to be used as adjuvants for
infectious diseases and cancer.

Poly(ICLC) contains poly-L-lysine in carboxymethylcellulose
and retains interferon-stimulating properties, but is more
resistant to serum nucleases, thereby enhancing its
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
immunostimulatory effect (Levy et al., 1975). Moreover, the
addition of poly-L-lysine and carboxymethylcellulose has been
suggested to assist transport of poly(I:C) into the cytosol and
escape from the endosome, which potentially activates both
TLR3 and MDA5 pathways (Sultan et al., 2018). An intriguing
feature of poly(ICLC) is that, in addition to type I IFN, it induces
expression of various other genes in the innate immunity
pathway, including NF-kB pathway-related genes, components
of the inflammasome, and the complement system, which is
similar to the responses induced by live viral vaccines (Caskey
et al., 2011). To date, poly(ICLC) has been used in adjuvant
candidate studies of vaccines against infectious diseases, such as
Plasmodium falciparum (Kastenmuller et al., 2013) and HIV
(Flynn et al., 2011), and cancer (Ohlfest et al., 2013). Compared
with other TLR agonists, such as LPS and CpG, poly(ICLC) has
been demonstrated to induce a higher Th1 immune response
that is more favorable in vaccination (Sabbatini et al., 2012).

Poly(IC12U) was explicitly designed to reduce the toxicity of
poly(I:C) by having mismatched uracil and guanosine residues
(Gowen et al., 2007; Engel et al., 2011; Martins et al., 2015).
However, the reduced toxicity resulted in a lower type I IFN
reaction than poly(I:C) (Gowen et al., 2007). Nonetheless, poly
(IC12U) still enhances the immunogenicity of an H1N1 influenza
vaccine in mouse and primate models (Ichinohe et al., 2009;
Ichinohe et al., 2010). In contrast to poly(I:C) and poly(ICLC),
poly(IC12U) appears to bind exclusively to TLR3, but not MDA5
(Gowen et al., 2007). A study conducted by Inochihe et al.
showed that the use of poly(IC12U) with an antigen increases the
transcription expression of RIG-I (Ichinohe et al., 2009). Similar
to poly(ICLC), poly(IC12U) has been assessed in adjuvant studies
of vaccines against HIV (Flamar et al., 2015), influenza (Overton
et al., 2014), and cancer (Navabi et al., 2009).

Another emerging TLR3 agonist with an adjuvant potential is
ARNAX, a TLR3-specific ligand synthesized intentionally with
reduced toxicity relative to poly(I:C) (Seya et al., 2016).
The toxicity of poly(I:C) originates from activation of the MAVS
pathway (activation of RIG-I and/or MDA5) (Matsumoto et al.,
2015). Hence, Matsumoto et al. developed a ligand that included
GpC phosphorothioate oligodeoxynucleotides and dsRNA, which is
internalized into the endosome for recognition by TLR3. Owing to
the relatively short length of the RNA chain (140), the ligand
activates TLR3 while avoiding detection by MDA5 (Matsumoto
et al., 2015). In a mouse model, the ligand did not cause a significant
increase in serum inflammatory cytokines, but facilitated cross-
presentation of the antigen by DCs and induced a Th1-skewed
profile (Takeda et al., 2017). ARNAX is mainly being studied for
cancer immunotherapy (Matsumoto et al., 2020) and influenza
vaccination (Takeda et al., 2018).

TLR7/8 Agonists
TLR7 and TLR8 have emerged as attractive adjuvant candidates
because studies have found that agonists of TLR7/8 highly induce
the required Th1 immune response, which favors vaccination
(Ghosh et al., 2006; Kwissa et al., 2012). Activation of TLR7/8
induces high levels of type I IFN, IL-12, TNF-a, and IL-1b.
Among TLR agonists, TLR8 agonist is a strong inducer of the
Th1 immune response (Ghosh et al., 2006). Additionally, TLR7/8
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and TLR9 agonists are the only agonists that activate and induce
expansion of both cDCs and plasmacytoid DCs, while also
mobilizing CD14+CD16+ (inflammatory monocytes) and
CD14dimCD16++ (patrolling) monocytes (Kwissa et al., 2012).
In particular, a class of synthetic small molecules,
imidazoquinolines, is frequently investigated for their potential
as adjuvant candidates with imiquimod (R837) and resiquimod
(R848) as the main representatives and several other TLR7/8
agonists patented and currently under study (Kieffer et al., 2020).

R837 is currently approved to treat genital warts, superficial
basal cell carcinoma, and actinic keratosis, and R848 is actively
being tested for antiviral and antitumor therapeutic use.
However, trials of imidazoquinolines as adjuvant candidates
have had mixed results because these small molecules have
some intrinsic drawbacks. Specifically, they often diffuse from
the site of application and thus away from the antigen, thereby
lowering efficacy, and induce systemic side effects (Vasilakos and
Tomai, 2013). Therefore, a specific method to deliver or direct
conjugation of small molecules to the antigens is required to
improve vaccine efficacy. Direct conjugation of TLR7/8 agonists
to HIV-1 Gag protein or even whole inactivated influenza virus
particles has increased Th1 responses and the number of
antigen-specific T cells (Wille-Reece et al., 2005; Oh and Kedl,
2010; Kastenmuller et al., 2011; Holbrook et al., 2018). Some
other conjugate formulations include intentional design of
conjugate formulations that forms large particulates.
Conjugation to synthetic polymer scaffolds, nanogels, lipid–
polymer amphiphiles, alum, polyethylene glycol (PEG), or
various other synthetic polymers has significantly improved
delivery of TLR7/8 agonists, and increased mature DCs and
antigen-specific T cells [extensively reviewed in (Bhagchandani
et al., 2021)]. Another interesting attempt to deliver TLR7
agonists is using an oxidation-sensitive polymersome based on
PEG-b-PPS reported by Scott et al. (2012). This method enabled
the delivery of the tested TLR7 agonists (gardiquimod and R848)
to the endosome to interact with endosomal TLR7, followed by a
second later phase whereby the antigen escaped from the
endosome, which transported the antigen to the cytosol,
subsequently allowing the processing and presentation of the
antigen by MHC I in DCs. Moreover, several other studies that
employed a combination of TLR7/8 agonists with one or more
TLR agonists, such as MPLA (TLR4) and MPLA + CpG ODN
(TLR4 and TLR9), in which the combinations enhanced innate
immunity responses, showed a significant surge of antigen-
specific neutralizing antibodies and improved Th1 responses
(Rizwan et al., 2013; Fox et al., 2014; Moody et al., 2014; Goff
et al., 2015). All of these innovations demonstrate the potential of
TLR7/8 agonists as adjuvant candidates.

TLR9 Agonists
As mentioned in the previous section, a TLR9 agonist CpG 1018
is commercially available as an adjuvant in the Heplisav-B
vaccine. Another CpG ODN, CpG 7909, has also entered
clinical trials and showed promising results in HBV and
malaria vaccination (Cooper et al., 2005; Ellis et al., 2012).
Concurrently, other researchers have developed next-
generation TLR9 agonists. A promising agonist is MGN1703, a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
small DNA molecule that also includes CG motifs, but is
structurally distinct from CPG ODN. MGN1703 contains a
stretch of reverse complementary DNA that is double-stranded
in the midsection and flanked by two single-stranded loops that
comprises three effective non-methylated CG motifs, thereby
forming a dumbbell-shaped structure in contrast toCpG ODN
that is linear (Kapp et al., 2014). Initially tested as an
immunotherapeutic agent against cancer, MGN1703 proceeded
to adjuvant trials and found to activate both innate and adaptive
immune responses with only mild or transient side effects
(Weihrauch et al., 2005; Kapp et al., 2014; Wittig et al., 2015).

Another interesting TLR9 agonist in human trials is IC31, a
two component adjuvant with a synthetic antimicrobial peptide
KLK and CpG-free TLR9 agonist ODN1a (Kritsch et al., 2005).
IC31 produces a balanced response between NF-kB and IRF3
signaling pathways and stimulates DCs to enhance T cell
proliferation, which leads to a Th1 response (Schellack et al.,
2006; Bernardo et al., 2011). Several vaccine trials of IC31 as an
adjuvant in humans for tuberculosis are currently ongoing
(Mearns et al., 2017; Norrby et al., 2017; Hussein et al., 2018;
Suliman et al., 2019) with potential use being considered in a
dengue fever vaccine (Bernardo et al., 2011).

TLR5 Agonist
TLR5 is expressed by various immune cells to engage and
recognize bacterial flagellin, and then elicits downstream
inflammation pathways to trigger the release of multiple
inflammatory mediators such as TNF-a, IL-1, IL-6, and nitric
oxide (Hayashi et al., 2001). However, as a ligand, flagellin evokes
mixed Th1 and Th2 responses instead of Th1-biased responses
induced by other TLR ligands (Huleatt et al., 2007). Additionally,
flagellin activates the NLRC4 inflammasome to process and
release IL-1b (Franchi et al., 2006; Zhao et al., 2011). Several
studies have demonstrated that flagellin induces an adjuvant
response in a TLR5- or NLRC4-independent model, albeit with
lower efficiency than the wildtype. The adjuvanticity is greatly
diminished when both TLR5 and NLRC4 are absent in the
mouse model, which indicates that at least one of the sensors
is required to elicit an immune response or both to reach optimal
stimulation (Vijay-Kumar et al., 2010; Lopez-Yglesias et al.,
2014). Furthermore, flagellin has been suggested to be an
adjuvant in immunocompromised patients because flagellin
could activate inflammasome via the NLRC4 pathway in DCs
with NLRP3-defect isolated from HIV patients (Dos Reis
et al., 2019).

Flagellin can be used as an adjuvant by several methods that
are collectively reviewed by Cui et al. (2018). The simplest
method is direct administration with an antigen. Notably, this
delivery method successfully induces a mucosal immune
response that is central in defense against respiratory and
gastrointestinal infections (Lee et al., 2006; Hong et al., 2012).
Moreover, flagellin is flexible for modification. Attempts to
construct chimeric flagellins or coexpression of flagellin-
antigen in live attenuated bacterial strain and generation of
recombinant flagellin-antigen fusion proteins to be used as
adjuvant vaccines for infectious diseases and tumors have all
achieved certain degrees of success in animal models (Cui et al.,
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https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Ong et al. PRRs Agonist as Adjuvants
2018). To date, at least three vaccines that employ flagellin are in
the clinical trial phase. Two vaccines target the influenza virus
and one targets Yersinia pestis, a gram-negative bacterium that
causes plague (Talbot et al., 2010; Treanor et al., 2010; Hong
et al., 2012).
STING AGONISTS

STING plays a central role in the activation of several cytosolic
nucleic acid sensing pathways. For example, upon detection of
cytosolic nucleic acids derived from pathogen, tumors or host by
cGAS, cGAMP is synthesized, binds and activates STING to elicit
the downstream pathways. Various studies have listed STING
agonists as a therapeutic agent in cancer immunotherapy.
Nevertheless, the development of STING agonists as adjuvants
remains slow and, to the best of our knowledge, none have yet
entered the human trial phase. Several studies in mice have
shown that administration of these agonists improves antigen-
specific Ab production, activates STING- and type I IFN-
dependent responses, induces a balanced Th1/Th2/Th17
response, increases the duration of T cell responses, and
prolongs mouse survival (Yan et al., 2009; Ebensen et al., 2011;
Barker et al., 2013; Chandra et al., 2014; Skrnjug et al., 2014; Ahn
et al., 2018; Kinkead et al., 2018; Sallets et al., 2018). TBK1- and
IRF3-dependent, and possibly AIM2-mediated responses elicited
by these agonists are important for adjuvant effects (Ishii et al.,
2008; Ishikawa et al., 2009; Suschak et al., 2015). Notably,
cGAMP—a natural STING agonist—has been reported to be
superior as an adjuvant for intradermal influenza vaccination
compared with intramuscular administration in mice and swine
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skin models, and thus can potentially be used as an adjuvant in
cutaneous vaccination (Wang et al., 2016).
DISCUSSION

Throughout the years, vaccines have developed from the use of
the whole antigen (killed or attenuated pathogens) to a minimalist
approach in designing vaccines (subunit proteins or nucleic acid
vaccines) from prevention of infectious diseases to anti-tumor
therapy. However, the conceptualized minimalist vaccines usually
lack the ability to stimulate host immune responses to produce
the immunogenicity required against the target antigen, which
raises the importance of adjuvants in vaccine formulations.
Adjuvant development for humans is described as the slowest
process in medicine history, despite the success of vaccine
development in medical history. (De Gregorio et al., 2008).
Adjuvant availability remains limited mainly because of the
limitation in providing adequate support in boosting vaccine
efficacy for a specific illness. Furthermore, vaccine strategies that
only target adaptive immunity to initiate immunologic memory
neglect other important immunological factors needed to boost
vaccine efficacy. Fortunately, the emerging concept of innate
immunity, which shapes the adaptive immune response, has
refurbished the mechanism-of-action of vaccine adjuvants
(Fearon and Locksley, 1996). In the previous sections, we have
extensively discussed various types of adjuvant candidates and the
activated innate immune responses (Table 1).

Vaccine development for HIV in the early 1990s revealed that
the use of a single adjuvant may not be sufficient to elicit the
required immune responses against pathogens. Therefore, several
ABLE 1 | PRR adjuvant candidates and their activation mechanism.

djuvant/Candidate PRRs Mechanisms References

icensed adjuvants
lum NLRP3 • Enters the cells via phagocytosis

• Activates NLRP3 inflammasome to induce the cleavage of pro-caspase 1 into
caspase 1

• Induces production of DAMPs to activate NLRP3 inflammasome

[40,41,42]

F59, AS03 – • Enter the cells via pinocytosis
• Activate NF-kB dependent pathway via MyD88 without activating TLR signaling

pathway

[93]

PLA (AS01) TLR4 • Enter the cells via endocytosis
• Induces mainly IRF-3 signaling pathway via TRIF
• Activate NLRP3 together with QS-21

[60, 110, 112,
113]

S-21 (AS01) – • Enter the cells via endocytosis
• Activate Spleen tyrosine kinase (Syk)
• Induces NF-kB signaling pathway
• Activate NLRP3 together with MPLA

[109, 112, 113]

pG 1018 TLR9 • Induces NF-kB signaling pathway via MyD88 [121]
otential adjuvants
sRNA (Poly (I:C), Poly (ICLC), Poly (IC12U),
RNAX)

TLR3 • Induces mainly IRF-3 signaling pathway via TRIF [9, 158, 165, 173]

sRNA (R837/R848) TLR7, TLR8 • Induces NF-kB signaling pathway via MyD88 [178, 179]
pG ODN (CpG7909, MGN1703), IC31 TLR9 • Induces NF-kB signaling pathway via MyD88 [192, 193, 194,

197]
lagellin TLR5,

NLRC4
• Induces NF-kB signaling pathway via MyD88
• Also activates NLRC4 inflammasome to induce the cleavage of pro-caspase 1

into caspase 1

[216, 218]
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strategies are implemented to achieve a synergistic outcome of
adjuvants in the vaccination model, especially to elicit
proinflammatory cytokines for the innate immune response
(Nakayama, 2016). Previous attempts to use a combination of
multiple PRR adjuvants with recombinant hepatitis B surface
antigen formulated together with an emulsion or liposomes
showed encouraging outcomes (Vandepapelière et al., 2008).
More trials have been conducted to explore possible combinations
with high adjuvanticity through adjuvant synergism. For example,
the AS15 adjuvant is a liposome-based adjuvant that includes
MPLA, CpG ODN, and QS-21. A vaccine containing the AS15
adjuvant induces high antibody production and robust T cell
activation compared with other adjuvants such as AS02B that
lack CpG ODN (Kruit et al., 2013). Moreover, AS15 has other
unique features such as a antineoplastic effect (Garçon et al., 2016).
Therefore, AS15 is used in anticancer vaccine development (Kruit
et al., 2013). A combination of multiple classes of PRRs in vaccines
against HIV and TB also displays low reactogenicity, but retains
high immunogenicity and less intolerable adverse effects such as
fever and inflammation at the administration site, which indicate
that the safety and tolerability of adjuvants in combination systems
are approaching the ideal state of adjuvants (Leroux-Roels et al.,
2010b; Leroux-Roels et al., 2013b).

Despite the popularization of minimalist vaccines, another
rising concept in immunity cannot be ignored, namely trained
innate immunity (Netea et al., 2011). Vaccination against bacilli
Calmette-Guerin results in protection against heterologous
infections (Goodridge et al., 2016), which implies that innate
immunity can be trained or primed to provide cross protection
against infections other than the intended pathogen. Several TLR
agonists have been demonstrated to confer cross protection
[reviewed by Sanchez-Ramon et al. (2018)]. The incorporation
of these agonists into adjuvant formulations may confer
protection against multiple infectious agents in a single vaccine.

Safety is another challenge of adjuvant development. Previously,
alum and emulsions were postulated to cause chronic toxicity and
inflammation because these adjuvants form long-term tissue depots
(Petrovsky, 2015). Regrettably, alum and emulsions cannot be
eliminated from an adjuvant formulation because their absence
significantly reduces vaccine efficiency (Calabro et al., 2011).
Formulating alum or emulsions with PRR agonists may reduce
the amount of alum or emulsion needed, thereby minimalizing
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
toxicity while maintaining a robust innate immune response.
However, precautionary measures are crucial for those with
immunodeficiencies, such as children and older individuals
(Pasquale et al., 2015). Nonetheless, a broad selection of PRRs
and a better understanding of their signaling pathways allow the
development of targeted adjuvants by avoiding specific signaling
pathways that may be detrimental to immunodeficient people
(Vasou et al., 2017).
CONCLUSION

From the licensed and potential adjuvants discussed in this
review, it is evident that innate immunity is the critical
determining factor for the efficacy of an adjuvant. Adjuvants
that induce effective innate immunity have a high possibility to
boost vaccine efficiency and achieve full protection against
diseases. Thus, the ability to initiate an innate immune
response should be highlighted as the principal criterion for a
potential adjuvant. PRR agonists have received attention as
future adjuvant candidates because of their ability to promote
a potent innate immune response. In the foreseeable future, we
should expect the use of more PRR agonists in adjuvant
formulations for clinical trial. Despite tremendous progress in
searching for novel adjuvants for vaccine development in recent
decades, further research must broaden the adjuvant varieties,
which are suitable for all individuals with safety and
vaccine efficacy.
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Kool, M., Soullié, T., van Nimwegen, M., Willart, M. A., Muskens, F., Jung, S., et al.
(2008). Alum Adjuvant Boosts Adaptive Immunity by Inducing Uric Acid and
Activating Inflammatory Dendritic Cells. J. Exp. Med. 205 (4), 869–882. doi:
10.1084/jem.20071087

Kool, M., Willart, M. A., van Nimwegen, M., Bergen, I., Pouliot, P., Virchow, J. C.,
et al. (2011). An Unexpected Role for Uric Acid as an Inducer of T Helper 2
Cell Immunity to Inhaled Antigens and Inflammatory Mediator of Allergic
Asthma. Immunity 34 (4), 527–540. doi: 10.1016/j.immuni.2011.03.015

Korsholm, K. S., Petersen, R. V., Agger, E. M., and Andersen, P. (2010). T-Helper 1
and T-Helper 2 Adjuvants Induce Distinct Differences in the Magnitude,
Quality and Kinetics of the Early Inflammatory Response at the Site of
Injection. Immunology 129 (1), 75–86. doi: 10.1111/j.1365-2567.2009.03164.x

Kritsch, C. E., Berger, A., Heinrich-Cseh, C., Bugajska-Schretter, A., and Zauner,
W. (2005). Separation and Quantification of a Novel Two-Component Vaccine
Adjuvant. J. Chromatogr B Analyt Technol. BioMed. Life Sci. 822 (1-2), 263–
270. doi: 10.1016/j.jchromb.2005.06.013

Kruit, W. H., Suciu, S., Dreno, B., Mortier, L., Robert, C., Chiarion-Sileni, V., et al.
(2013). Selection of Immunostimulant AS15 for Active Immunization With
MAGE-A3 Protein: Results of a Randomized Phase II Study of the European
Organisation for Research and Treatment of Cancer Melanoma Group in
Metastatic Melanoma. J. Clin. Oncol. 31 (19), 2413–2420. doi: 10.1200/
jco.2012.43.7111
October 2021 | Volume 11 | Article 745016

https://doi.org/10.4049/jimmunol.170.6.3059
https://doi.org/10.1038/s41541-018-0089-x
https://doi.org/10.1111/imm.12845
https://doi.org/10.1016/j.vaccine.2011.10.058
https://doi.org/10.1038/s41580-020-0244-x
https://doi.org/10.1038/nature07725
https://doi.org/10.1038/ni.1631
https://doi.org/10.1016/j.vaccine.2006.08.013
https://doi.org/10.1186/s13063-017-2354-0
https://doi.org/10.1096/fj.11-184556
https://doi.org/10.1002/jmv.21824
https://doi.org/10.1016/j.vaccine.2009.04.074
https://doi.org/10.1038/nature06537
https://doi.org/10.1038/nature07317
https://doi.org/10.1038/nature08476
https://doi.org/10.1001/jama.2018.1097
https://doi.org/10.4161/hv.25181
https://doi.org/10.1007/s10059-009-0015-1
https://doi.org/10.1038/mtna.2014.28
https://doi.org/10.1038/mt.2008.200
https://doi.org/10.1128/IAI.01108-12
https://doi.org/10.1172/JCI45416
https://doi.org/10.1038/nature04734
https://doi.org/10.1093/intimm/dxp017
https://doi.org/10.1038/ni.1863
https://doi.org/10.3389/fimmu.2014.00461
https://doi.org/10.3389/fimmu.2014.00461
https://doi.org/10.3390/ijms20133328
https://doi.org/10.4049/jimmunol.1600420
https://doi.org/10.1080/13543776.2020.1825687
https://doi.org/10.1080/13543776.2020.1825687
https://doi.org/10.1172/jci.insight.122857
https://doi.org/10.1084/jem.20050821
https://doi.org/10.1084/jem.20071087
https://doi.org/10.1016/j.immuni.2011.03.015
https://doi.org/10.1111/j.1365-2567.2009.03164.x
https://doi.org/10.1016/j.jchromb.2005.06.013
https://doi.org/10.1200/jco.2012.43.7111
https://doi.org/10.1200/jco.2012.43.7111
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Ong et al. PRRs Agonist as Adjuvants
Kundi, M. (2007). New Hepatitis B Vaccine Formulated With an Improved
Adjuvant System. Expert Rev. Vaccines 6 (2), 133–140. doi: 10.1586/
14760584.6.2.133

Kuo, T.-Y., Lin, M.-Y., Coffman, R. L., Campbell, J. D., Traquina, P., Lin, Y.-J.,
et al. (2020). Development of CpG-Adjuvanted Stable Prefusion SARS-CoV-2
Spike Antigen as a Subunit Vaccine Against COVID-19. Sci. Rep. 10 (1), 20085.
doi: 10.1038/s41598-020-77077-z

Kwissa, M., Nakaya, H. I., Oluoch, H., and Pulendran, B. (2012). Distinct TLR
Adjuvants Differentially Stimulate Systemic and Local Innate Immune
Responses in Nonhuman Primates. Blood 119 (9), 2044–2055. doi: 10.1182/
blood-2011-10-388579

Lee, S. E., Kim, S. Y., Jeong, B. C., Kim, Y. R., Bae, S. J., Ahn, O. S., et al. (2006). A
Bacterial Flagellin, Vibrio Vulnificus FlaB, has a Strong Mucosal Adjuvant
Activity to Induce Protective Immunity. Infect. Immun. 74 (1), 694–702.
doi: 10.1128/IAI.74.1.694-702.2006

Leroux-Roels, I., Forgus, S., De Boever, F., Clement, F., Demoitié, M.-A., Mettens,
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