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Abstract
Widely used genomic prediction models may not properly account for heterogeneous (co)variance structure across the
genome. Models such as BayesA and BayesB assume locus-specific variance, which are highly influenced by the prior for
(co)variance of single nucleotide polymorphism (SNP) effect, regardless of the size of data. Models such as BayesC or
GBLUP assume a common (co)variance for a proportion (BayesC) or all (GBLUP) of the SNP effects. In this study, we
propose a multi-trait Bayesian whole genome regression method (BayesN0), which is based on grouping a number of
predefined SNPs to account for heterogeneous (co)variance structure across the genome. This model was also implemented
in single-step Bayesian regression (ssBayesN0). For practical implementation, we considered multi-trait single-step
SNPBLUP models, using (co)variance estimates from BayesN0 or ssBayesN0. Genotype data were simulated using
haplotypes on first five chromosomes of 2200 Danish Holstein cattle, and phenotypes were simulated for two traits with
heritabilities 0.1 or 0.4, assuming 200 quantitative trait loci (QTL). We compared prediction accuracy from different
prediction models and different region sizes (one SNP, 100 SNPs, one chromosome or whole genome). In general, highest
accuracies were obtained when 100 adjacent SNPs were grouped together. The ssBayesN0 improved accuracies over
BayesN0, and using (co)variance estimates from ssBayesN0 generally yielded higher accuracies than using (co)variance
estimates from BayesN0, for the 100 SNPs region size. Our results suggest that it could be a good strategy to estimate (co)
variance components from ssBayesN0, and then to use those estimates in genomic prediction using multi-trait single-step
SNPBLUP, in routine genomic evaluations.

Background

Genomic selection was pioneered by the study of Meu-
wissen et al. (2001), and is rapidly becoming the state-of-
the-art genetic selection methodology in many breeding
programs around the world. The models proposed by
Meuwissen et al. (2001) include a BLUP model, where the
variances of single nucleotide polymorphism (SNP) effects
are assumed to be the same for all SNPs (SNPBLUP), or
specific to each SNP (BayesA and BayesB). Under a series

of assumptions, the SNPBLUP model is equivalent to a
mixed linear model, GBLUP (Habier et al. 2007), which
uses a relationship matrix (G) computed from genetic
markers (Nejati-Javaremi et al. 1997) to model covariances
between individuals’ genetic effects (Stranden and Garrick
2009). This equivalency resulted in a widespread adoption
of genomic prediction in genetic evaluations, because only
an extra step of computation of G and its inverse is required
for the traditional mixed model equations (Henderson 1984)
used in animal breeding (Karaman et al. 2016). Moreover, it
also allows all extensions of BLUP methodology, such as
multiple-trait, random regression, or repeated measures to
be easily implemented in genomic evaluations (Tiezzi and
Maltecca 2015). The GBLUP model has been widely used
to predict breeding values in animal species, such as cattle
(Luan et al. 2009; Su et al. 2012b), pig (Lukić et al. 2015),
sheep (Daetwyler et al. 2010a) and fish (Ødegård et al.
2014; Tsai et al. 2016), and accuracies from GBLUP were
reported to be higher than those from traditional pedigree-
based BLUP.
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Although widely used in genomic evaluations, these
BLUP-based genomic prediction models have some draw-
backs. First, they ignore the fact that a large proportion of
the SNPs may not have any influence on the trait of interest.
Second, different loci or genomic regions may have rather
different variances. The two models of Meuwissen et al.
(2001), BayesA and BayesB, were proposed to overcome
such drawbacks. Assuming SNP-specific variances, BayesA
fits each of SNPs, while BayesB fits approximately 1-π of
the SNPs, where π is the percentage of SNPs which have no
influence on the trait of interest. When π= 0, BayesB is
equivalent to BayesA. As pointed out by Gianola et al.
(2009), both models are problematic as full conditional
posteriors of the SNP-specific variances have only one
additional degree of freedom compared to their priors
regardless of the amount of data available. A simpler model
that similarly fits approximately 1-π of the SNPs, but with a
common variance, BayesC, was also proposed (Meuwissen
2009; Kizilkaya et al. 2010).

Zeng et al. (2016) introduced a Bayesian partitioned
regression model for genomic prediction, which involves
the selection of genome regions followed by the selection of
SNPs within those selected regions. The model fits
approximately 1−Π of the regions assuming region-
specific variances, and 1− πs of the SNPs within the
region s assuming a common variance for the SNPs in the
region. Referring to this “nested” variable selection struc-
ture of the model, it was termed as BayesN. The special
case of the partitioned regression model of Zeng et al.
(2016), i.e., BayesN with Π= πs= 0 (hereafter, BayesN0),
is equivalent to BayesA or GBLUP when a fixed region size
is set at one SNP or the whole genome, respectively. We
hypothesize that, at any other region size, but these two
extreme sizes of genome regions, higher prediction
accuracies can be obtained using BayesN0. Although it
ignores the fact that a proportion of the genome regions, and
therefore a proportion of the SNPs, may not have any
influence on the trait of interest, prediction accuracy may
increase compared to BayesA by benefiting from the
increase in the accuracy in estimation of SNP variances, and
compared to BLUP-based models by allowing SNPs in
different regions to have different variances. Partitioning of
the covariate matrix of marker genotypes, M, or in other
words, assigning priors to genome regions rather than
individual SNPs, was shown to influence the accuracy of
genomic predictions (Brøndum et al. 2012; Gebreyesus
et al. 2017; Karaman et al. 2018).

Many important traits in animal breeding have genetic
correlations in varying sizes with one or more traits, and
therefore, measurements of such correlated traits carry
information for the genetic values of others. Several multi-
trait models have been proposed for genomic prediction
(Calus and Veerkamp 2011; Jia and Jannink 2012; Hayashi

and Iwata 2013; Gebreyesus et al. 2017; Cheng et al.
2018b), and simulations have shown that genomic predic-
tion accuracies from multi-trait models are superior to those
from single-trait models (Calus and Veerkamp 2011; Jia and
Jannink 2012; Guo et al. 2014; Karaman et al. 2018). Multi-
trait genetic evaluation rely on the genetic association
between the traits through the genetic variance and covar-
iance structure. Models used for genomic prediction,
therefore, should properly account for the makeup of these
genetic (co)variance components to obtain the highest
accuracy of prediction. When only a few genome regions
explain a considerable amount of the variances and/or
covariance in a two-trait analysis, models that account for
the heterogeneous correlation structure over the genome
may have advantages over the methods that assumes a
constant correlation over the genome (Gebreyesus et al.
2017; Karaman et al. 2018).

The GBLUP model was extended to utilize all pheno-
typic, pedigree and genotypic information simultaneously,
including phenotypic information on non-genotyped indi-
viduals, and termed as single-step GBLUP (ssGBLUP)
(Christensen and Lund 2010; Aguilar et al. 2010). In
ssGBLUP, the pedigree-based relationship matrix A and the
genomic relationship matrix G are combined into a single
matrix H. As for GBLUP, only an extra step for computa-
tion of H and its inverse is required for the traditional mixed
model equations used in animal breeding (Misztal and
Legarra 2017). However, ssGBLUP also suffers from the
same drawbacks of GBLUP.

Fernando et al. (2014) proposed a class of single-step
models, which not only unifies all available information as
ssGBLUP does, but also accommodates any Bayesian whole
genome regression model. This yields models of, for
instance, ssBayesA or ssBayesN0, referring to the Bayesian
whole genome regression model used in the single-step
analysis. However, such an approach requires that all
unknowns of the model to be estimated using Markov-chain
Monte Carlo techniques which may be computationally
infeasible especially in routine genomic evaluations. In
genomic predictions using weighted GBLUP, it was shown
that the use of the same SNP variances over a few years does
not reduce prediction accuracy (Su et al. 2014). Indeed, in
routine evaluations, variance components are not updated for
each round of evaluation, because they are expected to be
relatively consistent over time (Calus et al. 2014). An
alternative to the fully Bayesian approach in Fernando et al.
(2014) could be a strategy, where all necessary parameters
are estimated using a Bayesian whole genome regression
model first, and mixed model equations are then solved
given the “known” values of the variance components,
leading to a single-step SNPBLUP (ssSNPBLUP) model.

The aim of this study was three-fold: (i) to introduce a
multi-trait whole genome regression model that allows
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heterogeneous (co)variances, (ii) to compare accuracies
from single- and multi-trait genomic prediction, and (iii) to
investigate the use of region-specific estimates of (co)var-
iances in genomic predictions using ssSNPBLUP.

Material and methods

Data sets and simulations

The genotype data were simulated for five generations
(Gen1−Gen5) based on real haplotypes of 2200 Holsteins
(Gen0), as described in Karaman et al. (2018). At each
generation, the number of males and females were kept
constant at 200 and 2000, respectively, and the mating ratio
was 1:10. Mating was completely at random, and selection
was not considered. Each sire was mated twice with one of
the ten dams to keep the population size at 2200 at each
generation. Only the single nucleotide polymorphisms
(SNPs) (11,154) located on first five chromosomes were
considered.

Phenotypic values of the two traits were simulated to
have heritabilities of 0.1 and 0.4, which represents low (L)
and high (H) heritability traits, respectively. Total number
of quantitative trait loci (QTL) was set at 200, which were
randomly selected from the SNP set, ensuring that the
average minor allele frequency (MAF) of QTL is 0.15
(Karaman et al. 2018). The criterion for the MAF of the
QTL was based on the assumption that they in general have
relatively low MAF (Goddard and Hayes 2009; Kemper and
Goddard 2012). The QTL were randomly assigned into
three groups according to their causal relationships with the
traits. This was done by assuming a percentage of the total
QTL (82%) had pleiotropic effects on two traits, while one
half of the remaining QTL had effect on one trait, and one
half on the other trait.

Two scenarios, G9 and N5, were considered in terms of
the distribution of QTL effects and correlations for the
effect of pleiotropic QTL. In the scenario G9, the effects of
the pleiotropic QTL were achieved by simulating two cor-
related gamma variables (Dvorkin 2012) with marginal
distributions of G(0.4, 1.66), and a correlation of 0.9. The
78% of those QTL were assigned to a correlation between
effects on two traits of 0.9, and 22% of −0.9 randomly. The
correlation group of −0.9 was achieved by switching the
sign of QTL effect for one of the traits at random. The QTL
effects, which were assumed to have a correlation of 0.9,
were assigned a negative or positive sign at random for both
traits. In the second scenario, scenario N5, effects of all
pleiotropic QTL were simulated from a bivariate normal
distribution with a correlation of 0.5. Although fluctuated
across the replicates, all scenarios lead to genetic correla-
tions of about 0.45 at Gen0. The QTL SNPs were excluded

from the final data set of SNP for the analysis. Random

residual effects were sampled from N 0;
Iσ2eL 0
0 Iσ2eH

� �� �
,

where the sizes of σ2eL and σ
2
eH

were determined according to
heritabilities of 0.1 and 0.4, respectively.

Final data (see Table 1) were created by masking geno-
types and/or phenotypes of the animals as follows. For gen-
erations 3 and 4, it was assumed that males had no
phenotypes, but genotypes, while all females had phenotypes,
and some fraction of them had also genotypes. Those geno-
typed females were selected completely at random. Genera-
tion 5 was used as validation population, where 500 randomly
selected animals were assumed to be genotyped. Pedigree was
traced back to Gen0. Animals had phenotypes on both traits,
or none of them. In total, 20 replicates were generated.

Models and methods

A novel multi-trait Bayesian whole genome regression
model (BayesN0), single-step SNPBLUP and single-step
Bayesian regression models introduced by Fernando et al.
(2014) were compared for multi-trait genomic prediction.
Single-trait analysis were also performed, but neither the
models nor their theory were given in this paper, as the
models are special cases of their multi-trait counterparts. In
this section, we followed the notation in Fernando et al.
(2014) as closely as possible.

Basic multi-trait model

A multi-trait mixed model including only general means as
fixed effects and marker effects as random effects can be
written as

yL
yH

� �
¼ 1L 0

0 1H

� �
μL

μH

� �
þ ML 0

0 MH

� �
αL

αH

� �
þ eL

eH

� �
;

ð1Þ

where yL and yH are the vectors of phenotypes, 1 are vectors
of ones, μL and μH are general means, ML and MH are the
matrices of genotypes for k markers, αL and αH are the

Table 1 Number of animals with genotype and phenotype in each
generation

Generation G G&P P Total

Gen0 – – – 2200

Gen1 – – – 2200

Gen2 – – – 2200

Gen3 200 (M) 500 (F) 1500 (F) 2200

Gen4 200 (M) 500 (F) 1500 (F) 2200

Gen5 500 – – 2200

G genotype, P phenotype, M male, F female
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vectors of marker effects, and eL and eH are the vectors of
random residual effects, for traits “L” and “H”, respectively.
In our simulations, animals had records for both traits or
none of them. Therefore, ML=MH, and these matrices will
be denoted as M hereinafter, to simplify the demonstration.
Residuals, e′ ¼ e′L; e

′
H

� �
, are typically assumed to follow a

normal distribution, e | R0 ~N(0, R0⊗ I), where

R0 ¼ σ2eL σeLH
σeHL σ2eH

� �
, and I is an identity matrix.

Multi-trait Bayesian partitioned regression (BayesN0)

The columns of M and vector α given in Eq. (1) can be
divided into S subsets in a conformable manner:

yL
yH

� �
¼ 1L 0

0 1H

� �
μL

μH

� �
þ M1 ¼MS 0

0 M1 ¼MS

� �
αL;1

..

.

αL;S

αH;1

..

.

αH;S

266666666664

377777777775
þ eL

eH

� �
;

where y ¼ yL
yH

� �
involves the phenotypes of genotyped

individuals only, M1, …, MS are genotype matrices
regarding genomic regions, and αt,1, …, αt,S (t= L, H for
low and high heritability traits, respectively) are vectors of
SNP effects for corresponding genomic regions. We assume
that all SNPs j (j= 1, …, ks) in the same genomic region s
(s= 1, …, S) have the same (co)variance for the two traits:

var αsj

� 	 ¼ var
αL;sj

αH;sj

� �
¼ Bs ¼

σ2αL;s σαLH;s

σαHL;s σ2αH;s

" #
:

Likelihood of the model is given as:

pðy j μ;α;B;RÞ / Rj j�1
2exp � 1

2 y� Xμ�M1α1 � ¼ð

�MSαSÞ′R�1ðy� Xμ�M1α1 � ¼ �MSαSÞ

o
where X ¼ 1L 0

0 1H

� �
, μ ¼ μL

μH

� �
, B ¼ BL BLH

BHL BH

� �
with Bi being diagonal matrices consisting of SNP
variances (BL and BH) or covariances (BLH ¼ BHL), and
R ¼ R0 � I. The vector of fixed effects, μ, were assigned a
flat prior, and other parameters of the model were assigned a
normal or an inverse Wishart (IW) prior for conjugacy:

αsj j Bs � Nð0;BsÞ
e j R0 � Nð0;R0 � IÞ

Bs j vB;VB � IWðvB;VBÞ

R0 j vR;VR � IWðvR;VRÞ:

Full conditional distributions of μ, αsj, Bs, and R0 can be
obtained after some algebra:

p μ j :ð Þ � N X′R�1X
� 	�1

X′R�1y�; X′R�1X
� 	�1

h i

p αsj j :
� 	 � N M�′

j R
�1M�

j þ B�1
s

� ��1
M�′

j R
�1y�; M�′

j R
�1M�

j þ B�1
s

� ��1
� �

p Bs j :ð Þ � IW vB þ ks; SBs þ VBð Þ½ �

p R0 j :ð Þ � IW vR þ n; SR þ VRð Þ½ �;

where, “.” stands for all other parameters and y*, y* is the
vector of phenotypes corrected for all other effects,

M�
j ¼

mj 0
0 mj

� �
, SBs ¼

Pks
j¼1 αsjα′

sj and SR ¼ Pn
i¼1 eie

′
i.

This multi-trait whole genome regression model was
referred to as multi-trait BayesN0 throughout this paper,
as it is an extension of a particular form of partitioned
regression model (BayesN) introduced by Zeng et al.
(2016), to multi-trait case. Note that when the size of region
is fixed at one SNP or whole genome, model becomes
equivalent to multi-trait BayesA or GBLUP, respectively.

Multi-trait single-step SNPBLUP

In the following expressions, n stands for the non-
genotyped animals, and g stands for the genotyped ani-
mals. Note that in our simulations, animals had records for
both traits or none of them. In a multi-trait single-step
SNPBLUP (ssSNPBLUP) analysis, the phenotypes are
modeled as (Fernando et al. 2014):

y ¼ X�μ� þWαþ Uϵþ e ; ð2Þ

where y ¼ yL
yH

� �
is the vector of phenotypes for genotyped

and non-genotyped individuals, μ� ¼
μL
μg;L
μH
μg;H

2664
3775, μL and μH

are the overall means of the two traits, μg,L and μg,H are the
differences between breeding values of genotyped and non-

genotyped animals for the two traits, X� ¼ X�
L 0
0 X�

H

� �
with X�

L ¼ X�
H ¼ 1 �ZnAngA�1

gg 1
1 �Zg1

� �
, W ¼ ZL 0

0 ZH

� �
ML 0
0 MH

� �
with ZL ¼ ZH ¼ Zn 0

0 Zg

� �
and
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ML ¼ MH ¼ bMn

Mg

� �
, α ¼ αL

αH

� �
. Zn and Zg are incidence

matrices relating breeding values of non-genotyped and

genotyped animals to their phenotypes, M̂n and Mg are
matrices of imputed and observed genotypes for non-
genotyped and genotyped animals, respectively, αL and αH

are the vectors of allele substitution effects. The U ¼
UL 0
0 UH

� �
with UL ¼ UH ¼ Zn

0

� �
and ϵ ¼ ϵL

ϵH

� �
, where

ϵL and ϵH are the vectors of imputation residuals. The e is a
vector of random residual effects assumed to follow e | R0 ~

N(0, R0⊗ I), where R0 ¼ σ2eL σeLH
σeHL σ2eH

� �
, and I is an

identity matrix. Vector of α is assumed to follow α | B ~

N(0, B) with B ¼ BL BLH

BHL BH

� �
, where Bi are diagonal

matrices consisting of SNP variances (BL and BH) or
covariances (BLH=BHL). Vector of ϵ is assumed to follow
ϵ j G0;A � Nð0;G0 � AÞ, where G0 is the additive genetic
(co)variance matrix. The Ang, Agg and Ann are submatrices
of the pedigree-based relationship matrix, A, corresponding
to the relationships between non-genotyped and genotyped
individuals, among the genotyped individuals, and among
the non-genotyped individuals, respectively. The matrix of

imputed genotypes, M̂n, is obtained with AngA
�1
gg Mg

(Fernando et al. 2014).

The mixed model equations corresponding to the model
in Eq. (2) is as follows.

X�′R�1X� X�′R�1W X�′
n R

�1Un

W′R�1X� W′R�1Wþ B�1 W′
nR

�1Un

U′
nR

�1X� U′
nR

�1W U′
nR

�1Un þG�1
0 � A�nn

264
375 bμbαbϵ
264

375 ¼
X�′R�1y

W′R�1y

U′
nR

�1y

264
375
ð3Þ

The A−nn is the part of the inverse of pedigree-based
relationship matrix, A, corresponding to the non-genotyped
individuals, and R=R0⊗ I.

Multi-trait single-step BayesN0 (ssBayesN0)

The single-step SNPBLUP requires the estimation of (co)
variance components, and then use of these in mixed
model equations to estimate breeding values. In contrast,
Bayesian approach can be used to obtain the vector of
fixed and random effect estimates, bμ; bα;bϵ½ �′, the genetic
and residual variance components, and the SNP (co)
variances simultaneously, as in the original paper of
Fernando et al. (2014). In principle, any Bayesian whole
genome regression model can be incorporated in this
single-step model, and BayesN0 was used here
(ssBayesN0). Likelihood of the ssBayesN0 model is

given as:

pðy j μ�;α;B;RÞ / Rj j�1
2 exp � 1

2 ðy� X�μ� �W1α1 � ¼ �WSαS � UϵÞ′R�1
n

ðy� X�μ� �W1α1 � � � � �WSαS � UϵÞg;

where matrices and parameters are as specified earlier. A
flat prior was assumed for μ*. Priors for α, e, Bs and R0

were the same as in BayesN0. A multivariate normal prior,
ϵ j G0;A � Nð0;G0 � AÞ, was assumed for the vector of ϵ,
and G0 was assigned an inverse Wishart prior, G0 | vG, VG ~
IW(vG, VG). Full conditional distributions of μ*, αsj, Bs, ϵ,
G0, R0 can be obtained after some algebra:

p μ� j :ð Þ � N X?′R�1X�� 	�1
X′R�1y�; X?′R�1X�� 	�1

h i
p αsj j :
� 	 � N W�′

j R
�1W�

j þ B�1
s

� ��1
W�′

j R
�1y�; W�′

j R
�1W�

j þ B�1
s

� ��1
� �

p Bs j :ð Þ � IW vB þ ks; SBs þ VBð Þ½ �

p ϵj:ð Þ � N U′
nR

�1Un þG�1
0 � A�nn

� 	�1
U′

nR
�1y�; U′

nR
�1Un þG�1

0 � A�nn
� 	�1

h i

p G0 j :ð Þ � IW vG þ Nn; SG þ VGð Þ½ �

p R0 j :ð Þ � IW vR þ n; SR þ VRð Þ½ �

where y*, SBS and SR are as defined before,

W�
j ¼

wj 0
0 wj

� �
, Nn is the number of non-genotyped

individuals, and SG ¼ ϵ′LA
�nnϵL ϵ′LA

�nnϵH
ϵ′HA

�nnϵL ϵ′HA
�nnϵH

� �
.

Statistical analysis

Single- and multi-trait models of BayesN0 and single-step
BayesN0 (ssBayesN0) were fitted with varying region sizes
(one SNP, 100 SNPs, a whole chromosome and the whole
genome). The parameters of the priors for SNP, residual and
genetic (co) variance matrices in the multi-trait models were

VB ¼ ðvB � 2� 1ÞeB where eB ¼ eG0P
2pj 1�pjð Þ,

VR ¼ vR � 2� 1ð ÞeR0, and VG ¼ vG � 2� 1ð ÞeG0, which
were derived from the mean of an inverse Wishart dis-
tributed random variable, and vB= vR= vG= 5. It is worth
noting that inverse Wishart distribution imply a scaled
inverse chi-square distribution for each variance with spe-
cific parameters (Wang et al. 2018). That is, e.g.,

Bs11 ¼ σ2αL;s � χ�2 4;
~σ2αL;s
2

� �
, where ~σ2αL;s is the first diagonal

element in eB.
Single-trait BayesN0 and ssBayesN0 models were spe-

cial cases of their multi-trait counterparts, for which the

278 E. Karaman et al.



multivariate normal priors for SNP effects, model residuals
and imputation residuals were replaced with univariate

normal priors e:g:; αL;sj � N 0; σ2αL;s

� �� �
, and inverse

Wishart priors for the (co)variance components were
replaced with scaled inverted chi-square priors

e:g:; σ2αL;s � χ�2 df; S2L
� 	� �

, for conjugacy. Parameters for

these scaled inverted chi-square prior distributions for SNP,
residual and genetic variances were df= 4 and a scale
parameter, derived from the expected value of a scaled
inverse chi-square distributed random variable

e:g:; S2L ¼ ~σ2αL;s df�2ð Þ
df ;where ~σ2αL;s ¼

~σ2gLP
2pj 1�pjð Þ

� �
(Habier

et al. 2010a). That is, e.g., σ2αL;s � χ�2 4;
~σ2αL;s
2

� �
. Hence, not

only the mean, but also the distribution of priors for the
variances were consistent between the single- and multi-trait
analysis, with only difference being the value of variance
components used. The matrices of eG0 and eR0 used in priors
for multi-trait analysis, and genetic ~σ2g

� �
and residual var-

iances ~σ2e
� 	

used in priors for single-trait analysis, were the
estimates obtained by fitting single or multi-trait Ridge-
Regression models at SNP level, respectively, using the
JWAS (Cheng et al. 2018a) package in Julia (Bezanson
et al. 2017).

Markov-chain Monte Carlo (MCMC) algorithm with
Gibbs sampling method was used to obtain samples of each
parameter from its full conditional posterior distribution.
Chain length for the analyses using BayesN0 and
ssBayesN0 consisted of 50,000 or 70,000 cycles, of which
the first 30,000 or 50,000 cycles were discarded as burn-in,
respectively. Convergence was tested by comparing results
for the two chain lengths (50,000 vs. 70,000) on a random
subset of the replicates and region sizes (Zeng et al. 2018).
Every tenth sample of the post burn-in cycles were stored
for posterior analysis, yielding 2,000 posterior samples.
Mean value of the posterior samples was used as the esti-
mate of each parameter. The change in accuracy of pre-
diction was negligible for 70,000 compared to 50,000
cycles of Markov chain, and therefore, the results from the
chain length of 50,000 were presented.

For single- and multi-trait ssSNPBLUP models, the
genetic and residual (co)variances and SNP (co)variances
were obtained as the mean values of the posterior samples
from BayesN0 or ssBayesN0. The genetic (co)variances
required in mixed model equations for ϵ̂ were computed as
the mean of the (co)variances of the breeding values at each
MCMC cycle for BayesN0, or directly as the mean of
genetic (co)variances for ssBayesN0. Hereafter, analysis
using the variance components from BayesN0 and
ssBayesN0 will be referred to as ssSNPB1 and ssSNPB2,
respectively. The ssSNPB1 and ssSNPB2 models were

solved with the Conjugate Gradients method with diagonal
preconditioning using the IterativeSolvers package in Julia,
and convergence tolerance was chosen to be 10−12. All
analyses were performed using self-written scripts in Julia.

The predicted breeding values of animals using multi-
trait BayesN0 were obtained from

bgt ¼ Mbαt; t ¼ L;H:

The predicted breeding values of animals using single-step
models, ssBayesN0, ssSNPB1 and ssSNPB2, were obtained
from:

bgt ¼ �AngA
�1
gg 1

�1

" #
μ̂g;t þ

bMn

Mg

" #bαt þ
Zn

0

� �bϵt; t ¼ L;H

ð4Þ
Prediction accuracy was assessed as the correlation

between true and predicted breeding values of validation
individuals. The bias of prediction was assessed based on
the slope of the regression of true breeding values on the
estimated breeding values of validation individuals. Accu-
racy for single- and multi-trait models with different region
sizes were compared for each trait, and each model sepa-
rately. Prediction accuracy for all methods was compared
for each trait and at each scenario of region size. All
comparisons were performed separately for genotyped and
non-genotyped individuals using a two-sided paired t-tests,
for which accuracies were paired across each replicate for
the same validation population. A Bonferroni correction
was used to control the Type 1 error rate of 0.05, caused by
multiple comparisons.

Results

Bayesian whole genome regression (BayesN0)

Prediction accuracies from single- and multi-trait BayesN0
models are given in Tables 2 and 4 for genotyped indivi-
duals in validation population, at varying sizes of genome
region. Grouping 100 adjacent SNPs generally provided the
highest accuracies for both single- and multi-trait models,
with some exceptions in scenario N5. Accuracies for dif-
ferent region sizes were generally ranked as 100 SNPs > 1
SNP > 1 Chr >WG in scenario G9. When a multi-trait
model was used in scenario G9, prediction accuracy for the
region size of 100 SNPs were about 4 and 12 percentage
points higher for low heritability trait (L), and about 3 and 8
percentage points higher for high heritability trait (H),
compared to those for region sizes of one SNP (BayesA)
and whole genome (GBLUP), respectively. Using multi-
trait BayesN0 with a region size of 100 SNPs resulted in
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higher accuracies than corresponding single-trait BayesN0
for both traits, though not always significant. Bias for pre-
dicting breeding values of genotyped individuals is shown
in Supplementary Tables S1 and S3. Regression coefficients
were generally closer to 1 for trait H in both scenarios. They
were higher than 1 particularly for single-trait analysis of
trait L in scenario G9 and single- and multi-trait analysis of
trait L in scenario N5.

Single-step genomic prediction

Prediction accuracies from single- and multi-trait analysis
are given in Tables 2–5. Similar to BayesN0, accuracies for
different region sizes were generally ranked as 100 SNPs >
1 SNP > 1 Chr >WG in scenario G9. For single-trait

analysis of trait L, accuracies from the region size of 1 SNP
and/or WG were similar to, or even slightly higher than,
that of region size of 100 SNPs in scenario N5. Using
ssSNPB1 improved accuracies for genotyped individuals
compared to using BayesN0, for both single- and multi-
trait analysis. Accuracies from ssBayesN0 were generally
similar to or somewhat higher than those from ssSNPB1,
particularly in scenario G9. Using single-step SNPBLUP
with (co)variances obtained from ssBayesN0, i.e.,
ssSNPB2, yielded similar accuracies to the corresponding
ssBayesN0 model. Accuracies from ssSNPB2 were similar
to, though sometimes slightly higher in scenario G9, those
from ssSNPB1 for non-genotyped animals. For non-
genotyped animals, taking 100 adjacent SNPs as a gen-
ome region provided similar to or slightly higher accuracies

Table 3 Accuracies for non-
genotyped individuals using
single- and multi-trait models in
scenario G9

Trait1 Region size2 Single-trait3 Multi-trait

ssSNPB1 ssBayesN0 ssSNPB2 ssSNPB1 ssBayesN0 ssSNPB2

L4 1 SNP ab0.351
c

ab0.357
c

ab0.361
c

b0.402
b

b0.406
b

a0.418
a

100 SNPs a0.355
c

a0.363
c

a0.363
c

a0.412
b

a0.426
a

a0.427
a

1 Chr b0.340
b

b0.342
b

bc0.342
b

c0.378
a

c0.377
a

b0.378
a

WG b0.337
c

b0.337
c

c0.336
c

d0.361
abc

d0.365
b

c0.366
a

H 1 SNP a0.526
cd

a0.528
d

a0.531
bc

a0.529
bcd

a0.533
b

a0.537
a

100 SNPs a0.530
c

a0.535
b

a0.535
b

a0.534
b

a0.539
a

a0.539
a

1 Chr b0.513
abc

b0.513
c

b0.513
bc

b0.516
abc

b0.517
ab

b0.517
a

WG b0.511
bc

b0.511
c

b0.511
bc

b0.513
abc

b0.514
ab

c0.514
a

1L and H: low (0.1) and high (0.4) heritability traits, respectively
2Chr chromosome, WG whole genome
3ssSNPB1 and ssSNPB2: Single-step SNPBLUP, for which the variance components were obtained from
BayesN0 and ssBayesN0, respectively
4Different alphabets mean significantly different values at a Type 1 error rate of 0.05 with Bonferroni
correction. Subscripts and superscripts stand for comparisons within column and row, respectively, for
each trait

Table 2 Accuracies for genotyped individuals using single- and multi-trait models in scenario G9

Trait1 Region size2 Single-trait3 Multi-trait

BayesN0 ssSNPB1 ssBayesN0 ssSNPB2 BayesN0 ssSNPB1 ssBayesN0 ssSNPB2

L4 1 SNP ab0.349
e

ab0.452
cd

ab0.470
d

ab0.478
c

b0.437
d

b0.536
b

b0.554
b

a0.574
a

100 SNPs a0.365
d

a0.460
c

a0.478
c

a0.479
c

a0.481
c

a0.559
b

a0.590
a

a0.590
a

1 Chr b0.335
c

b0.434
b

bc0.444
b

bc0.445
b

b0.402
b

c0.493
a

c0.497
a

b0.499
a

WG b0.335
d

b0.433
b

c0.433
bc

c0.433
b

c0.362
cd

d0.461
ab

d0.472
a

c0.473
a

H 1 SNP b0.587
g

b0.683
e

b0.689
de

b0.700
bc

b0.593
f

b0.688
cd

b0.699
b

a0.712
a

100 SNPs a0.611
f

a0.698
d

a0.716
b

a0.716
b

a0.622
e

a0.707
c

a0.725
a

a0.725
a

1 Chr c0.552
e

c0.650
bd

c0.651
cd

c0.651
abcd

c0.558
e

c0.655
ac

c0.657
ab

b0.657
ab

WG d0.538
d

c0.642
c

c0.642
bc

c0.643
bc

d0.543
d

d0.644
abc

d0.646
ab

c0.646
a

1L and H: low (0.1) and high (0.4) heritability traits, respectively
2Chr chromosome, WG whole genome
3ssSNPB1 and ssSNPB2: Single-step SNPBLUP, for which the variance components were obtained from BayesN0 and ssBayesN0, respectively
4Different alphabets mean significantly different values at a Type 1 error rate of 0.05 with Bonferroni correction. Subscripts and superscripts stand
for comparisons within column and row, respectively, for each trait
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than taking one SNP as a genome region, but higher
accuracies than taking whole genome as a genome region,
in scenario G9. For scenario N5, on the other hand, all
region sizes generally lead to similar accuracies for non-
genotyped animals. Regression coefficients were generally
closer to 1 for trait H, but higher than 1 for trait L in
scenario N5 (Supplementary Tables S1–S4).

Discussion

Single- vs. multi-trait genomic prediction

Multi-trait analysis generally led to higher accuracies than
their single-trait counterparts for trait L (h2= 0.1), and

similar to or higher accuracies than their single-trait coun-
terparts for trait H (h2= 0.4) (Tables 2–5). This was
expected because the gain of accuracy from multi-trait over
single-trait genomic prediction is more profound for low
heritability traits that are genetically correlated with a high
heritability trait (Jia and Jannink 2012; Guo et al. 2014).
Hayashi and Iwata (2013) compared accuracies from single-
and multi-trait analysis for traits with a genetic correlation
of 0.7, and reported that accuracy for a low heritability trait
(h2= 0.1) was improved with multi-trait analysis, while
accuracy for a high heritability (h2= 0.8) trait remained
unchanged. For a low heritability (h2= 0.05) trait, which
had incomplete data, Guo et al. (2014) showed that accu-
racy of genomic prediction was improved when a geneti-
cally correlated (rg= 0.5) trait with high heritability

Table 4 Accuracies for genotyped individuals using single- and multi-trait models in scenario N5

Trait1 Region size2 Single-trait3 Multi-trait

BayesN0 ssSNPB1 ssBayesN0 ssSNPB2 BayesN0 ssSNPB1 ssBayesN0 ssSNPB2

L4 1 SNP a0.314
d

a0.432
b

a0.432
b

a0.433
b

a0.362
c

a0.470
a

a0.469
a

a0.470
a

100 SNPs a0.313
e

a0.428
bc

a0.434
b

ab0.429
c

a0.367
d

ab0.468
a

a0.475
a

a0.474
a

1 Chr a0.309
d

b0.419
c

b0.420
c

b0.419
c

b0.341
d

c0.447
abc

b0.447
b

b0.450
a

WG a0.314
c

a0.431
ab

ab0.430
b

a0.432
a

b0.342
c

bc0.447
ab

ab0.459
ab

ab0.460
ab

H 1 SNP b0.545
d

a0.651
c

b0.654
bc

a0.658
ab

b0.548
d

a0.654
bc

b0.657
b

a0.662
a

100 SNPs a0.554
d

a0.654
c

a0.663
a

a0.662
ab

a0.559
d

a0.657
bc

a0.666
a

a0.665
a

1 Chr c0.537
b

b0.642
a

c0.645
a

b0.645
a

c0.540
b

b0.644
a

c0.646
a

b0.647
a

WG c0.537
b

b0.644
a

c0.645
a

b0.646
a

c0.539
b

b0.645
a

c0.648
a

b0.648
a

1L and H: low (0.1) and high (0.4) heritability traits, respectively
2Chr chromosome, WG whole genome
3ssSNPB1 and ssSNPB2: Single-step SNPBLUP, for which the variance components were obtained from BayesN0 and ssBayesN0, respectively
4Different alphabets mean significantly different values at a Type 1 error rate of 0.05 with Bonferroni correction. Subscripts and superscripts stand
for comparisons within column and row, respectively, for each trait

Table 5 Accuracies for non-
genotyped individuals using
single- and multi-trait models in
scenario N5

Trait1 Region size2 Single-trait3 Multi-trait

ssSNPB1 ssBayesN0 ssSNPB2 ssSNPB1 ssBayesN0 ssSNPB2

L4 1 SNP a0.328
c

a0.325
c

a0.326
c

a0.357
a

a0.353
b

a0.355
ab

100 SNPs a0.327
b

a0.327
b

a0.326
b

a0.357
a

a0.355
a

a0.355
a

1 Chr a0.324
c

a0.325
c

a0.324
c

ab0.349
ab

a0.347
b

a0.350
a

WG a0.327
b

a0.325
b

a0.327
ab

b0.343
ab

a0.350
b

a0.352
a

H 1 SNP a0.506
d

b0.507
cd

a0.510
b

a0.508
bc

ab0.509
b

a0.512
a

100 SNPs a0.507
c

a0.511
ab

a0.511
ab

a0.509
bc

a0.512
ab

a0.512
a

1 Chr ab0.503
b

bc0.504
ab

b0.504
ab

ab0.505
a

bc0.505
ab

b0.506
ab

WG b0.503
b

c0.503
b

b0.503
b

b0.504
ab

c0.506
a

b0.506
a

1L and H: low (0.1) and high (0.4) heritability traits, respectively
2Chr chromosome, WG whole genome
3ssSNPB1 and ssSNPB2: Single-step SNPBLUP, for which the variance components were obtained from
BayesN0 and ssBayesN0, respectively
4Different alphabets mean significantly different values at a Type 1 error rate of 0.05 with Bonferroni
correction. Subscripts and superscripts stand for comparisons within column and row, respectively, for
each trait
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(h2= 0.3) was available. Cheng et al. (2018b) reported that
the mean of the posterior probability that a marker has a null
effect was higher (0.97 vs. 0.74) in multi-trait analysis
(BayesCΠ) compared to single-trait analysis (BayesCπ) for
gall volume (h2= 0.12), when the correlated trait was pre-
sence (or absence) of rust (h2= 0.21), in Loblolly Pine
(Pinus taeda L.) (Resende et al. 2012).

Beside heritability, another factor influencing accuracy is
the absolute difference between genetic and residual cor-
relations (Schaeffer 1984; Thompson and Meyer 1986). In
this study, the simulated residual correlation was null and
the genetic correlation was moderate (0.45), though the
estimates of those correlations varied around the simulated
true values. Averaged over the replicates, genetic correla-
tions were generally overestimated, whereas the residual
correlations were nearly zero and varied only after second
decimal, in both scenarios and for all region sizes. Genetic
correlations were 0.47 and 0.45 from BayesN0 with the
region size of 100 SNPs, and 0.56 and 0.51 from GBLUP
(BayesN0 with whole genome as one region), for scenarios
G9 and N5, respectively (results not given elsewhere).
Those were 0.49 and 0.47 for ssBayesN0 with the region
size of 100 SNPs, and 0.54 and 0.48 for ssGBLUP
(ssBayesN0 with whole genome as one region), for sce-
narios G9 and N5, respectively (results not given else-
where). These small deviations of genetic correlations from
their true values are expected to have little influence in
variance of prediction error (PEV), and multi-trait models
can increase the precision of breeding value estimates by
reducing PEV compared to single-trait models (Schaeffer
1984). The PEV was additionally computed for BayesN0
and ssBayesN0, from the variance of posterior samples for
breeding values of genotyped individuals in validation
population. Averaged over region sizes, the mean reduction
in PEV from multi-trait BayesN0 were about 2.5% for trait
L and 0.5% for trait H, and 5% for trait L and 0.5% for trait
H, in scenarios G9 and N5, respectively (results not given
elsewhere). The mean reduction in PEV from multi-trait
ssBayesN0 were about 9% for trait L and 0.9% for trait H,
and 6% for trait L and 0.8% for trait H, in scenarios G9 and
N5, respectively (results not given elsewhere). Bias for
single-trait analysis was relatively high for trait L particu-
larly in scenario G9 (Supplementary Tables S1–S4), how-
ever, it was generally reduced by using multi-trait models.

In multi-trait genomic prediction, correlation structures
between the traits is central to gaining advantage in pre-
diction accuracy over single-trait predictions (Gebreyesus
et al. 2017). Our results showed that the improvement from
multi-trait analysis over single-trait analysis were dependent
on whether the genetic makeup of the (co)variance structure
of the studied traits (Tables 2–5) were accounted for, and
this will be discussed in detail in the later sections.

Accounting for heterogeneous (co)variances across
the genome using BayesN0

Multi-trait genomic prediction rely on the genetic associa-
tion between the traits through the genetic variances and
covariances, which may vary across the genome. A few
genome regions may explain a substantial proportion of the
covariance, whereas others account for nearly no covariance
between the traits (Sørensen et al. 2012). Moreover, cov-
ariances between particular traits may be positive for some
regions and negative for others, while the overall genetic
correlations are low/high (Li et al. 2017; Gebreyesus et al.
2017). This study investigated the affect of assigning priors
to genome regions, which were defined as fixed number of
SNPs (one SNP, 100 SNPs, one chromosome or whole
genome), on accuracy in multi-trait genomic prediction.

Genomic prediction rests on the LD between QTL and
SNPs (Meuwissen et al. 2001). Although the simulation
settings in this study resulted in correlations of QTL effects
that fall into different categories, it may be of a general
question where does the heterogenity of (co)variances over
the genome come from, or what does it refer to. It can be
shown that the best linear predictor of SNP effects is αt ¼
V�1

M VMQγt (t= L, H), where γt is the vector of QTL effects,
VM is the (co)variance matrix of SNP genotypes, and VMQ

is the covariance matrix of SNP and QTL genotypes (de los
Campos et al. 2015). Note that for a QTL that affect only L
(or H), corresponding row of γH (or γL) is zero. Under some
assumptions, (co)variance of the SNP effects are propor-
tional to VMsQs

V′
MsQs

, for genome region s (s= 1, …, S).
Because recombination rates vary over the genome, and
SNPs are typically in imperfect LD with QTL, each VMsQs

may be different (Wang et al. 2013), resulting in genome
having a different (co)variance pattern at the SNP level than
that of at the QTL level (de los Campos et al. 2015).

Multi-trait BayesA (BayesN0 with region size of one
SNP) was able to account for the heterogeneous correlation
structure across the genome to some extent, compared to
multi-trait GBLUP (BayesN0 with whole genome as one
region), which assumes a constant correlation across the
genome (Tables 2 and 4). Accuracies were further improved
when a group of 100 SNPs were allowed to have a common
(co)variance. It should be noted that the choice of region
sizes was arbitrary, and therefore, the region size of 100
SNPs may not be optimal. Alternatively, regions can be
achieved by grouping SNPs based on fixed length of
genomic region or LD information. Because the extent of
LD is highly variable in different populations (Wang et al.
2013), and varies with respect to SNP density (Goddard
and Hayes 2009), the decision of optimal region size is
crucial to obtain highest accuracy of genomic prediction
(Gebreyesus et al. 2017).
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Simulation studies have shown that Bayesian whole
genome regression models, which allow variances of SNP
effects differing among loci or genome regions, perform
better than GBLUP model (Meuwissen et al. 2001; Lund
et al. 2009; Karaman et al. 2018). In real-data applications,
the accuracy of genomic prediction using the Bayesian
whole genome regression models led to similar to or higher
accuracies than methods assuming a constant variance
structure (e.g., GBLUP) across the genome (Hayes et al.
2009; Habier et al. 2010b; Su et al. 2012a). The benefit from
Bayesian whole genome regression models was larger for
traits with simple genetic architectures (Coster et al. 2010;
Daetwyler et al. 2010b; Clark et al. 2011; Karaman et al.
2018). Examples for such traits can be milk protein com-
position traits, in which a substantial proportion of the
variance is explained by a few QTL (Heck et al. 2009;
Schopen et al. 2011). Gebreyesus et al. (2017) reported that
BaysesAS model resulted in higher prediction reliabilities
than GBLUP for milk protein composition traits, when 100
SNPs were assumed to have a common (co)variance, based
on a data set from 50 K SNP panel in Danish Holstein cattle.

For prediction of traits with large effect QTL, the
GBLUP model, in which a selection of SNPs, i.e., SNPs
identified in earlier genome-wide association studies
(GWAS) or identified via GWAS using the current data (de
novo GWAS, Spindel et al. (2016)), are considered as fixed
effects, can provide accuracies as high as those from
Bayesian whole genome prediction methods (Spindel et al.
2016; Lopes et al. 2017). Although the approach is rela-
tively straightforward, it either requires a priori information
about the SNPs for the traits of interest, or running a GWAS
prior to genomic prediction. Depending on the choice of
statistical method, the definition of the QTL region and the
significance threshold, different sets of SNPs can be
achieved even with the same data, and QTL regions that
explain a substantial proportion of the variance may also not
always be identified for all traits (Goddard et al. 2016;
Lopes et al. 2017).

By applying BayesN0, one has the possibility of putting
emphasis on genome regions with large effect, without
requiring any prior knowledge on the QTL region affecting
the trait(s), or without running a de novo GWAS (Lopes
et al. 2017). For practical application in breeding programs,
we think this is an advantage over GBLUP, in which
“some” SNPs are considered as fixed effects. Our results for
scenario N5 imply that the advantage of grouping SNPs in
BayesN0 over GBLUP is not limited only to traits with a
few QTL with large effect and many with small effects
(scenario G9). In scenario N5, BayesN0 with 100 SNPs
region size led to a similar accuracy to that from GBLUP in
single-trait analysis of trait L, but to a higher accuracy than
GBLUP in multi-trait analysis of trait L. Since using a
multi-trait model may be beneficial for traits by increasing

the amount of information, it can be argued that the
accuracies from single-trait analysis of trait L would also
differ among the region sizes, for the intermediate sizes of
data (Karaman et al. 2016). For asymptotically large sizes of
data, on the other hand, there might be little or no benefit of
using more sophisticated methods compared to GBLUP
(Karaman et al. 2016; Cheng et al. 2018b).

In a simulation study for single-trait genomic prediction,
Zeng et al. (2018) showed that BayesN was superior to
BayesB when the QTL had relatively low MAF, for a panel
consisting of 50 K SNPs. It is, however, unclear if this was
due to selection of regions at each cycle of MCMC, or due
to reliable estimation of SNP variances by assuming com-
mon variance to SNPs in each region, rather than assuming
a variance specific to each SNP. In that study, fitting ten
SNPs per region also provided higher accuracies of pre-
diction than fitting two SNPs per region. Hess et al. (2017)
further allowed SNPs within a region to have different
variances, in a study using 50 K SNP panel of an admixed
cattle population in New Zealand. There was no advantage
of BayesN over BayesB, for milk fat yield, live-weight and
somatic cell score. They also showed that fitting all SNPs in
a region resulted in slightly higher accuracies than fitting
only two SNPs per region.

Accounting for heterogeneous (co)variances across
the genome using single-step Bayesian regression

Implementation of our novel Bayesian multi-trait model
(ssBayesN0) using the methodology of Fernando et al.
(2014) yielded accuracies for genotyped individuals in the
range of 0.47–0.59 and 0.45–0.48 for trait L, and 0.65–0.73
and 0.65–0.67 for trait H, in scenarios G9 and N5,
respectively (Tables 2 and 4). In a single-step analysis using
Bayesian regression (Fernando et al. 2014), taking one SNP
as a genome region is equivalent to single-step BayesA
(ssBayesA) and taking whole genome as one region is
equivalent to single-step GBLUP (ssGBLUP). Our results
indicate that ssBayesA can lead to higher accuracies than
ssGBLUP in a multi-trait analysis, by exploiting the het-
erogeneous (co)variance structure across the genome.
However, similar to the regular BayesA (Meuwissen et al.
2001), the information in the data that is utilized by
ssBayesA is limited, due to its strong dependency on the
prior for (co)variance of SNP effects (Gianola et al. 2009).
This dependency on the prior was overcome to some extent
by assuming a common (co)variance for 100 adjacent SNPs
using ssBayesN0, which generally led to higher accuracies
than ssBayesA and ssGBLUP for both trait L and H (Tables
2 and 4). Similarly, prediction accuracy for non-genotyped
individuals were increased about 6 and 0.5 percentage
points for trait L, and about 2.5 and 0.6 percentage points
for trait H, for scenarios G9 and N5, respectively, when
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region size was changed from whole genome to 100 SNPs
in multi-trait analyses (Tables 3 and 5).

For genotyped individuals, using multi-trait ssBayesN0
led to higher accuracies than using multi-trait BayesN0
(Tables 2 and 4). As other Bayesian whole genome
regression models, BayesN0 can only use the phenotypes of
genotyped animals. The ssBayesN0, on the other hand,
simultaneously uses the phenotypes of genotyped animals
(1000) and non-genotyped animals (3000, the genotypes
were imputed) (Table 1) to estimate the SNP effects in the
MCMC procedure, while accounting for the error in
imputation for non-genotyped individuals with phenotypes.
This enhances the data size used in estimation of SNP
effects, which has a key role to obtain reliable prediction of
breeding values (Daetwyler et al. 2008; Goddard 2009;
Karaman et al. 2016; Cheng et al. 2018b).

Practical implementation of single-step models
using previously estimated (co)variance
components

In this study, the estimates of the (co)variances were
obtained from BayesN0 or ssBayesN0. The former led to
ssSNPB1 model for which the (co)variance components
were obtained using only the information of genotyped
individuals, while the latter led to ssSNPB2 model for
which the (co)variance components were obtained using the
information of genotyped and non-genotyped individuals.
In practice, the (co)variance components can be estimated
less frequently compared to routine genomic evaluations
without harming the prediction accuracies (Su et al. 2014).

For genotyped individuals, ssSNPB1 model yielded
higher accuracies than BayesN0, at all region sizes in multi-
trait analysis (Tables 2 and 4). This was due to more
accurate estimation of SNP effects by the use of phenotypes
of non-genotyped individuals. The ssBayesN0 and
ssSNPB2, where the (co)variance components from
ssBayesN0 were used, generally yielded similar accuracies.
This was not surprising, because similar to BayesC0 and
SNPBLUP being equivalent models, ssBayesN0 and
ssSNPB2, are also equivalent. The ssSNPB2 generally led
to higher accuracies than ssSNPB1 in scenario G9, and
similar to or slightly higher accuracies than ssSNPB1 in
scenario N5, in multi-trait analyses.

Accuracies for non-genotyped animals were generally
similar among the models, i.e., ssSNPB1, ssBayesN0 and
ssSNPB2, in multi-trait analysis. Analysis using the model
of Fernando et al. (2014) starts with an explicit imputation
of markers for non-genotyped individuals, using pedigree
information and genotypes of genotyped relatives. Then,
marker effects and imputation residuals (ϵ) accounting for
the part of breeding values, which cannot be modeled by
imputed markers, are estimated (Gao et al. 2018).

Imputation residual is added to marker-based breeding
value (sum of individual SNP effects) of non-genotyped
individuals to obtain their total breeding values (Fernando
et al. 2014). The breeding value of genotyped individuals,
on the other hand, is composed only of sum of individual
SNP effects. Hence, a change in the accuracy of SNP effect
estimates has less impact on the accuracy of breeding value
estimates for non-genotyped individuals than for genotyped
individuals (Zhou et al. 2018).

One way to account for heterogeneous (co)variance
structure in single-step genomic prediction could be to
construct weighted G matrices (Zhang et al. 2010), and in
turn their weighted H matrix counterparts (Fragomeni et al.
2017) for ssGBLUP. In an earlier study (Karaman et al.
2018), we have shown that weighted multi-trait GBLUP
can reach accuracies similar to that of the Bayesian whole
genome regression model which was used to derive
weights. This was expected, because those “weighted”
relationship matrices are indeed implicit to Bayesian whole
genome regression methods (Fernando and Gianola 2018;
Karaman et al. 2018). A drawback of the approach using
weighted relationship matrices is that it requires the com-
putation of a number of relationship matrices which
increase with the number of traits in a multi-trait model,
and not only the computing time but also the storage of
such H matrices might be impractical for genomic pre-
diction using weighted ssGBLUP in routine evaluations.
Moreover, compared to ssGBLUP, the equations needed to
be solved for ssSNPBLUP does not grow with the number
of genotyped individuals, and the inverse of the combined
relationship matrix, H, is not needed (Fernando et al.
2014).

We did not focus on the computational (dis)advantages
of ssSNPBLUP, nor its convergency properties. Both
ssGBLUP and ssSNPBLUP, though, are known to have
some computational challenges (Taskinen et al. 2017).
Averaged over the scenarios and region sizes, ssSNPB1 and
ssSNPB2 models achieved relative convergence of 10−12 in
200 and 203 iterations (average of two traits) in single-trait
analysis, and in 435 and 478 iterations in multi-trait ana-
lysis, respectively. It should be noted that these numbers
apply only to the current data, and could vary with
equivalent formulations of the models (Taskinen et al.
2017) or with a preconditioner other than diagonal used in
this study.

Conclusions

In this study, a multi-trait whole genome regression model,
BayesN0, was proposed. The model has its equivalent
counterparts when the region size is set at one SNP
(BayesA) or the whole genome (GBLUP). Our results
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showed that assigning priors to genome regions defined as
fixed number of SNPs, e.g., 100 SNPs, may improve
accuracies over BayesA and GBLUP by accounting for
heterogeneous (co)variance structure across the genome
efficiently. The model was also implemented in single-step
(ssBayesN0) Bayesian regression approach, which unifies
pedigree, phenotypes and genotypes in a single analysis.
Highest prediction accuracies were obtained when 100
adjacent SNPs were assumed to have a common (co)var-
iance in ssBayesN0. For routine genomic evaluations, it
could be a good strategy to estimate (co)variance compo-
nents from ssBayesN0, and then to use those estimates in
genomic prediction using multi-trait single-step SNPBLUP.
Such a strategy has the potential to provide reliable esti-
mates of breeding values for both genotyped and non-
genotyped individuals.

Data availability

Genotype and pedigree data can be found at https://doi.org/
10.5061/dryad.v4126t4, along with a file including neces-
sary SNP information (chromosome ID and base-pair
position). The data and the methodology described
previously are sufficient to reproduce the results of
this study.
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