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Abstract: The botanical genus Digitalis is equal parts colorful, toxic, and medicinal, and its bioactive
compounds have a long history of therapeutic use. However, with an extremely narrow therapeutic
range, even trace amounts of Digitalis can cause adverse effects. Using chemical methods, the United
States Food and Drug Administration traced a 1997 case of Digitalis toxicity to a shipment of Plantago
(a common ingredient in dietary supplements marketed to improve digestion) contaminated with
Digitalis lanata. With increased accessibility to next generation sequencing technology, here we ask
whether this case could have been cracked rapidly using shallow genome sequencing strategies
(e.g., genome skims). Using a modified implementation of the Site Identification from Short Read
Sequences (SISRS) bioinformatics pipeline with whole-genome sequence data, we generated over 2 M
genus-level single nucleotide polymorphisms in addition to species-informative single nucleotide
polymorphisms. We simulated dietary supplement contamination by spiking low quantities (0–10%)
of Digitalis whole-genome sequence data into a background of commonly used ingredients in
products marketed for “digestive cleansing” and reliably detected Digitalis at the genus level while
also discriminating between Digitalis species. This work serves as a roadmap for the development
of novel DNA-based assays to quickly and reliably detect the presence of toxic species such as
Digitalis in food products or dietary supplements using genomic methods and highlights the power
of harnessing the entire genome to identify botanical species.

Keywords: dietary supplements; genome skimming; Digitalis; toxic botanicals

1. Introduction

In 1785, physician and amateur botanist William Withering introduced the medical
world to Digitalis purpurea. While he successfully used Digitalis preparations to treat a broad
variety of cardiac conditions related to fluid retention, withering himself also noted the tox-
icity of this plant alongside its medicinal value, cautioning its use be discontinued as soon
as symptoms of toxicity arose [1]. At the height of its use in the 1960s and 1970s, surveys
estimated that up to 15% of all hospital patients were using digitalis-derived medications,
and 20–30% of those patients were likely experiencing symptoms of toxicity [2]. These
symptoms include cardiac manifestations, vomiting, anorexia, diarrhea, dizziness, fatigue,
delirium, syncope, and visual disturbances such an xanthopsia (yellow vision) [1,3,4], and
it has even been suggested that Vincent Van Gogh was experiencing xanthopsia due to
digitalis toxicity during the last years of his life [5]. Today, two cardiac glycosides are still
isolated for use from Digitalis: digitoxin and digoxin, and Withering’s warning regarding
their narrow therapeutic range holds true almost 250 years later. Due to the risks of toxicity,
Digitalis derived drugs have become less popular in modern medicine [6], but it’s potent
toxic effects still pose risks in cases of accidental contamination.

In 1997, two women were hospitalized with symptoms consistent with Digitalis toxicity
several days after starting a dietary supplement regiment intended to provide “internal
cleansing” [7]. The cases were brought to the United States Food and Drug Administration
(FDA), which investigated them using a chemical-based method including a Kedde reaction
and thin layer chromatography. The presence of cardiac glycosides was confirmed in the
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raw materials indicated by the initial analyses using liquid chromatography and mass
spectroscopy, and the species (Digitalis lanata) was confirmed using microscopy [7]. The
source was identified as a batch of Plantago, which is commonly known as plantain,
although not related to the tropical banana plant [7].

The world of eukaryotic DNA-based species identification in food and dietary sup-
plements products has undergone a revolution in the past 10 years, and while progress
has been swift it has not been without challenges [8–10]. Contemporary methods of DNA-
based identification include DNA fingerprinting techniques like restriction fragment length
polymorphisms [11], microarrays [12], a full suite of polymerase chain reaction (PCR)
methods, [13–17], in addition to traditional DNA barcoding [9,18] and a variety of next
generation sequencing (NGS) approaches [19–21].

NGS methods have recently been investigated to distinguish between closely related
eukaryotic species [21,22] and to detect food origins [23], the presence of toxic species [24],
allergens [25], as well as other cases of adulteration [20,26,27], both accidental and econom-
ically motivated. However, the application of NGS technology is not without limitations.
Targeted barcoding regions can suffer from amplification and primer bias, while whole-
genome sequencing (WGS) methods are often restricted by taxonomically limited sequence
databases and lack of well-annotated reference genomes, especially for non-model or-
ganisms. Chloroplast databases can provide a uniform and informative reference for
identification, but certain closely related or hybridized species are indistinguishable or
confounded using these data [25]. Additionally, although chloroplast DNA is typically
found in high copy numbers in many plant cells, plastid DNA proportions have been
shown to vary due to both tissue type [28] and plant age [29], and large nuclear genomes
can decrease the relative representation of plastid DNA in a genome skimming run [30–32].

Nuclear DNA methods may be required for robust detection of trace adulteration,
but quality whole-genome references for flowering plants are still few and far between
due to their size and repetitive structure. As of 2017, only 236 angiosperm genomes had
been sequenced [33] out of an estimated 350,699 species (www.theplantlist.org, accessed
on 17 May 2021). This represents less than 0.07% of angiosperms, and a curated but
comprehensive database remains an elusive goal. Data from the broadest available nuclear
databases (e.g., NCBI) can suffer from poor sequence quality, inaccurate identification,
and contamination [34]. Voucher collections have been leveraged to mediate some of
these problems by providing traceable, expertly identified reference material for chemical
analyses [35]. At the FDA, these samples are also being used to facilitate the creation
of DNA-based reference databases [36] and novel molecular pipelines [25] that could
circumvent complications involved with chemical analyses [10].

In this study we present a modified implementation of Site Identification from Short
Read Sequences (SISRS) [37], a reference-free ortholog discovery pipeline that takes WGS
data as input, to identify toxic adulterants (Digitalis) in mixed samples both at the genus
and species level. SISRS does not rely on external databases or annotated reference genomes
(which do not exist for Digitalis) when identifying loci useful for classification, overcoming a
major hurdle in many contemporary NGS pipelines [34]. From these SISRS loci we identify
over 2 million genus-informative single nucleotide polymorphisms (SNPs) for Digitalis and
thousands of species-informative SNPs. As in the real-world case of Digitalis toxicity, we
spike Digitalis WGS data into simulated mixtures containing Plantago, another member
of the Plantaginaceae family, along with other commonly used botanical ingredients in
products marketed for digestive health. SNPs generated in this study facilitated robust
detection of Digitalis adulteration at read proportions of 0.05%, and accurate species
identification when datasets contained ~4 Mb of Digitalis data. Using test species that
allow us to assess the sensitivity and specificity of our markers even when differentiating
amid closely related botanicals, here we examine how methods utilizing the nuclear
data from low-coverage WGS datasets (i.e., ‘genome skims’) might be used in the future
to detect even minute amounts of contamination with toxic plant species in foods and
dietary supplements.

www.theplantlist.org
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2. Materials and Methods
2.1. Sample Acquisition
2.1.1. DNA Extraction and Sequencing

DNA was extracted from thirty-two vouchered Plantaginaceae specimens from the
New York Botanical Gardens (https://www.nybg.org/plant-research-and-conservation/
tour/laboratory-collections accessed on 17 May 2021) and the University of Rhode Island’s
Heber W. Youngken Medicinal Garden (https://web.uri.edu/youngken-garden/ accessed
on 17 May 2021) using the QIAGEN DNeasy Plant Mini Kit. Samples were leaf material
dried on silica, which were held at 4 C until extraction. The samples included species
from the Plantaginaceae family: three Digitalis, eleven Plantago, fifteen Veronica, and three
additional species (Callitriche stagnalis, Bacopa monneri, and Gratiola ramosa). Samples were
quantified with a broad range Qubit 3 fluorometer assay to ensure successful extraction.
Libraries were then prepared for Illumina sequencing, following [38], using a Covaris
M220 sonicator to shear to approximately 300 bp, followed by end repair, adapter ligation,
amplification, and subsequent AmPure cleanups using the KAPA HyperPrep kit and dual
indexed adapters. Libraries were quantified and sized using a Qubit 3 fluorometer and an
Agilent 2100 Bioanalyzer, respectively. Nine samples underwent an additional AmPure
bead cleanup and quality control process to remove residual primer dimers. Samples were
pooled at a 6nM concentration and sequenced on a single lane of the Illumina HiSeq2500
platform (Genewiz, South Plainfield, NJ, USA). The same libraries of Digitalis grandiflora,
D. ferruginea, D. lutea, and also Plantago patagonica and P. rhodosperma were also sequenced
on an in-house Illumina MiSeq with a 600-cycle kit, along with an additional independent
sample of D. ferruginea. Five Digitalis samples were additionally sequenced on an in-house
Illumina NextSeq500, including the three Digitalis libraries from the original HiSeq2500 run,
and two additional vouchered samples provided by the University of Mississippi. These
last two samples were extracted and prepared for sequencing using the same methods
as above. Raw reads from these sequencing runs were deposited under the BioProject
PRJNA325670, and their SRA accessions and associated BioSample IDs are available in the
Supplementary Tables S2 and S5).

2.1.2. Companion Data from Public Archives

In addition to specimens sequenced as part of this study, we also acquired publicly
available sequence data for an additional Digitalis purpurea sample, as well as several
Plantaginaceae species (Littorella uniflora, Plantago lagopus, Plantago ovata, and Veronica
agrestis). In addition to these data, we also acquired WGS data for two specimens each from
Aloe vera and Linum usitatissimum (flaxseed). These species were the third and fourth most
common botanical ingredients found to co-occur with Plantago (plantain) based on a screen
of twenty products marketed for digestive health on Amazon. No WGS data were available
for the first and second most common co-occurring ingredients, Rhamnus purshiana (cascara
sagrada) and Cassia angustifolia (senna). NCBI identification numbers for all companion
data can be found in the appropriate Supplemental Tables (Tables S2, S5, and S7).

2.2. Nuclear Enrichment of Digitalis WGS Data

For one specimen from each of the five Digitalis species, we used bbmerge.sh and bb-
duk.sh from the BBTools suite (https://jgi.doe.gov/data-and-tools/bbtools/, Last accessed
on 21 May 2021) to perform read merging and automated adapter removal. We used getOr-
ganelle [39] to assemble circularized chloroplast genomes from these adapter-trimmed
reads using kmer values of 21, 45, 65, 85, and 105 and a maximum of 50 extension rounds.
Except for the two Digitalis specimens used in the multispecies mixes, all Digitalis read sets
were screened to remove chloroplast-derived data. We first quality-trimmed raw Digitalis
reads using bbduk.sh from the BBTools suite (qtrim = w, ktrim = r, trimq = 10, maq = 15,
minlength = 50), then assessed quality with FastqQC [40]. After pooling the chloroplast as-
semblies generated above, we used bbmap.sh from the BBTools suite to map and screen these

https://www.nybg.org/plant-research-and-conservation/tour/laboratory-collections
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quality-trimmed reads against this multispecies chloroplast reference dataset, separating
reads that mapped (presumably chloroplast-derived reads) from nuclear-derived reads.

2.3. Composite Genome Assembly

In order to identify nuclear loci that would be useful for Digitalis detection in the
absence of a reference genome, we used the SISRS bioinformatics pipeline [37] to generate
conserved, orthologous sequence data directly from raw sequencing reads. SISRS generates
a so-called ‘composite genome’ (i.e., a de novo pan genome) by pooling reads proportionally
across species to a final depth of ~10X genomic coverage, and then performing a single
de novo genome assembly. Using a genome size estimate of 2 Gb for the genus [41], we
used reformat.sh from the BBTools suite to subsample reads equivalently among Digitalis
species and evenly among specimens therein, resulting in a final genome assembly dataset
containing 20 Gb of primarily nuclear Digitalis data. We used Ray v.2.3.2-devel [42] to
assemble the composite genome using the subsampled nuclear reads, default parameters,
and a k-value of 31. This composite genome represents a ‘taxonomically-averaged’, com-
mon set of nuclear loci against which read data from all Digitalis species can be mapped
and compared.

2.4. Nuclear Digitalis Read Mapping and SNP Dataset Development

SISRS uses read data from individual specimens, species datasets containing multiple
individuals, or specimens pooled at a higher taxonomic level to profile allelic variation at
each site in the composite genome. In this study, we profiled Digitalis data at the species
level (i.e., specimen data pooled together by species) and at the genus level (i.e., pooling all
nuclear Digitalis datasets together). In combination, these datasets allowed us to isolate
(1) all nuclear sites that had a single, fixed allele that was present in all five Digitalis species
(i.e., putative genus-informative DNA markers) as well as sites that were variable among
the Digitalis species (i.e., putative species-informative single-nucleotide polymorphisms
or SNPs).

2.5. Background Species Mapping and Data Filtration

For both species- and genus-level identification from multi-species mixtures, discerni-
bility will be restricted if identifying alleles are also present in more distantly related taxa
(i.e., if they are non-specific). To enrich our dataset for Digitalis-specific SNPs, we used
SISRS to map WGS data from 34 non-Digitalis Plantaginaceae species onto the composite
genome, along with one specimen of aloe and flax. We quality-trimmed all read sets using
bbduk.sh from the BBTools suite as before, but, contrary to the Digitalis samples, we did
not separate these datasets into nuclear and chloroplast fractions and mapped all quality-
trimmed reads. Based on these mappings, we pruned both the genus- and species-level
SNP datasets of sites that had read coverage from any of the non-Digitalis species.

The SNPs generated above represent sites with informative variation, pre-screened
against close evolutionary relatives and other species known to co-occur in mixtures. These
sites would represent a good starting dataset for confirmatory tests of single specimens;
however, in mixed-species samples, that could contain any number of co-occurring species,
sites can be further filtered down to reduce the impact of cross-species read mapping.
Using the genus-level SNP set, consisting of sites with Digitalis-specific variation among
Plantaginaceae, aloe, and flaxseed, we tallied the number of screened SNPs that occurred
on each composite genome contig and calculated the proportion of SNPs relative to the
total contig length. We then filtered both the genus- and species-level SNP sets down to
just those deriving from contigs with at least the median number and proportion of genus-
level SNPs. This filtering removes contigs (and their SNPs) that contain predominantly
non-specific data and enriches the dataset for regions where Digitalis has experienced
potentially informative mutations.
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2.6. Generating Mixed Samples

In order to assess the utility and sensitivity of the species- and genus-level SNPs for
identifying Digitalis in multispecies mixtures, we spiked increasing amounts of WGS data
from Digitalis ferruginea and D. lanata into a series of simulated mixtures containing equal
amounts of WGS data from Plantago major, Aloe vera, and Linum usitatissimum (Figure 1).
All read samples were quality-trimmed as before, and no chloroplast read separation was
performed. For each mixture, we targeted a practically relevant base depth of ~1.88 Gb,
equivalent to an Illumina MiSeq sequencing run with 8 multiplexed samples. For both
Digitalis species, we generated ten sets of ‘adulterated’ data by adding Digitalis WGS data
to final proportions ranging from 0.01% (187,500 bases) to 10% (187.5 Mb). Each mixture,
including a control dataset that contained no Digitalis data, had ten pseudoreplicates gener-
ated by randomly subsampling reads from the quality-trimmed datasets using reformat.sh
from the BBTools suite. For each pseudoreplicate, data from D. ferruginea and D. lanata
were added to identical background mixtures (i.e., Replicate B1 was mapped twice us-
ing the same data for Plantago, Aloe, and Linum, while varying the Digitalis species), but
background data varied among replicate sets (i.e., Replicates B1 and B2 contain different
random subsets of Plantago, Aloe, and Linum data).
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Figure 1. Overview of mock dietary supplement sample design. All mock supplement mixes were
created in silico from sequencing data. The control sample consisted of equal parts Plantago major,
Aloe vera, and Linum usitatissimum reads. The adulterated supplement mixes contained the same
background as the control but also included 0.01%, 0.025%, 0.05%, 0.1%, 0.25%, 0.5%, 1%, 2.5%, 5%,
and 10% of either Digitalis lanata or Digitalis ferruginea reads.
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2.7. Screening Mixed Samples for Digitalis SNPs

We used SISRS to map each of the mix pseudoreplicates against the composite genome,
and we surveyed the alleles present at each of the Digitalis genus- and species-informative
sites that survived upstream screening and filtering. For each pseudoreplicate, we per-
formed both a genus- and species-level inquiry; in both cases we queried the relevant SNPs
and tallied (1) sites that had read coverage and (2) sites that contained the Digitalis genus-
or species-informative allele.

2.7.1. Genus-Level Digitalis Detection

For genus-level detection, we first used linear models in R [43] to assess the rela-
tionship between the number of Digitalis bases added to the mixture and the number of
recovered Digitalis alleles. We then compared the number of Digitalis genus-informative
alleles detected in the negative control group (where no Digitalis data were added) to the
count from each pseudoreplicate group using t-tests in R, assessing significance at α = 0.05
(i.e., Does this set of pseudoreplicated samples contain more matching Digitalis genus SNPs
than a sample with no Digitalis added?).

2.7.2. Species-Level Digitalis Detection

For all species-informative SNP positions with coverage in each pseudoreplicate,
we calculated the ratio of SNPs supporting and refuting each species assignment and
assigned species based on the highest ratio (i.e., matching species-informative alleles/all
species-informative SNP positions with coverage) and used a modified Z-score test [44] to
statistically assess whether that SNP proportion was statistically distinct from the other
species. As a median-based test, the modified Z-score test is robust when comparing small
samples sizes (i.e., 5 species), and significance of all p-values was assessed after Bonferroni
correction (α = 0.05/5 = 0.01). To reduce species assignments involving too few data, we
only performed statistical species identification on pseudoreplicates where (1) there was
read data in the mixture that covered 5 species-informative SNP positions for each Digitalis
species, and (2) where the species with the highest ratio of matching species-informative
SNPs was supported by at least 5 matching alleles.

3. Results
3.1. Assembly of the Nuclear Digitalis Composite Genome

Chloroplast genomes for each of the five survey Digitalis species were assembled
with getOrganelle using between 662 Mb and 3.8 Gb of adapter-trimmed reads, and all
assemblies resulted in a circular genome (Table S1). Trimmed base counts for the Digitalis
samples ranged from 629 Mb to 24 Gb per species, and 90–98% of reads across datasets
failed to map to the chloroplast dataset and were considered putatively nuclear (Table S2).
Using 2 Gb as a genome size estimate for the genus, to achieve 10X genome coverage
we targeted a subsampling depth of 4 Gb for each of the five species; however, the D.
purpurea sample only had 572 Mb of nuclear data and we made up the difference equally
among taxa. The composite genome assembly generated by Ray resulted in 1.8M largely
fragmentary contigs totaling 334 Mb (N50: 666Kb; L50: 172; Table S3).

3.2. Nuclear Digitalis Mapping and SNP Dataset Generation

SISRS mapping of the nuclear Digitalis species datasets onto the composite genome
resulted in base calls for 21 M–159 M sites per species (6.5–47.8% of sites; Table S4), while
the Digitalis genus dataset containing data from all species resulted in base calls for 272 M
sites (81.5% of sites; Table S4). Of these, 6.4 M sites had a single, fixed allele found in
all five Digitalis species (Table S4). Among the five Digitalis species, species-informative
SNP counts (sites with a fixed base for all species, and a unique allele for one species)
ranged from 14 K–223 K sites per species (Table S4). After removing sites with coverage
from non-Digitalis species (Table S5) we filtered contigs by the proportion and amount of
Digitalis-specific sites, allowing SNPs from contigs where (1) at least 22.4% of sites in the
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contig were Digitalis-specific (median proportion) and (2) with at least 53 Digitalis-specific
sites (median site count). After filtering, the final Digitalis genus SNP count was 2.4 M sites,
while species-informative SNPs ranged from 6.3 K–101 K sites per species (Table S4).

3.3. Screening Mixed Samples

To create the simulated sample mixtures, we pooled equivalent amounts of trimmed
WGS data from Plantago, Aloe, and Linum with increasing amounts of spike-in D. ferruginea
or D. lanata data (Table S6) ranging from 0.01% to 10% (Table S7). Each simulated sample
contained ~1.9 Gb of trimmed WGS data. We used SISRS to map all reads from each mix
pseudoreplicate against the composite genome (n = 10 per spike species, per spike amount),
and defined an SNP match as a site where either a genus- or species-informative allele
was detected.

3.3.1. Genus-Level Screening

For mix pseudoreplicates spiked with Digitalis data, the number of recovered alleles
indicating the presence of the genus Digitalis was highly correlated with the number of
Digitalis bases added. Digitalis ferruginea resulted in ~1 new SNP match for every 1309
bases added (p < 2.2 × 10−16, R2 = 0.9991), and D. lanata resulted in 1 new SNP match
for every 862 bases added (p < 2 × 10−16, R2 = 0.9992; Figure 2A; Table S8). The negative
control samples with no Digitalis data added had positive hits for 8–193 sites (Figure 2B;
Table S7), while spiking in the lowest amount of either D. ferruginea or D. lanata (~187 Kb
or ~0.01%) resulted in a significantly higher average of 339 and 360 sites, respectively
(both p < 2.5 × 10−3; Figure 2B; Tables S7 and S9). All Digitalis-spiked pseudoreplicate
groups had a statistically higher average number of Digitalis genus matches relative to the
negative control group (all p < 2.5 × 10−3; Table S9), but the distribution of matched sites
overlapped with the negative control samples at the two lowest spike-in concentrations for
both Digitalis species (0.01% and 0.025%, 187 Kb and 468 Kb) (Figure 2B).

3.3.2. Species-Level Screening

We queried the alleles present at all species-informative SNP positions and only
classified samples where (1) each species had 5 SNP positions covered, and (2) at least
5 matching SNPs supported the top species hit. Out of the 100 Digitalis-spiked pseu-
doreplicates for each species (10 pseudoreplicates × 10 spike-in amounts), D. ferruginea had
53 pseudoreplicates that passed this filtering, while 67 D. lanata pseudoreplicates contained
sufficient data. In each case, the adulterant species in each qualifying pseudoreplicate
was correctly identified (Figure 3; all p < 9.7 × 10−35; Tables S10 and S11) and all pseu-
doreplicates could be classified when 18.75 Mb of Digitalis data (1% of the total data) was
added (Figure 3; Tables S11 and S12). At lower Digitalis concentrations, some D. ferruginea
could also be identified at 0.1% (n = 1/10), 0.25% (n = 3/10), and 0.5% (n = 9/10) (Figure 3;
Tables S11 and S12), while D. lanata was correctly identified in all pseudoreplicates contain-
ing at least 4.6 Mb (0.25% of the total data; Tables S11 and S12) and also at 0.05% (n = 1/10)
and 0.1% (n = 6/10) (Figure 3; Tables S11 and S12). In all cases, 44–77% of SNPs that
associated with the spike-in species had the correct species allele, while the second-best
match never reached above 5.6% (Figure 3; Table S12).
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Figure 2. Digitalis detection using SISRS. (A) Spiking more WGS data from Digitalis ferruginea
or D. lanata into simulated mixtures containing Plantago, Aloe, and Linum resulted in a strongly
correlated increase in the number of Digitalis genus-informative alleles recovered from mixed samples
(p < 2.0 × 10−16; R2 > 0.999). (B) At low concentrations of adulterating Digitalis (0.01–0.25%), the
distribution of detected Digitalis genus-informative alleles overlapped with that of the negative
control that had no Digitalis data added (grey bar), although group means were still significantly
higher (all p < 2.5 × 10−3). When Digitalis data made up 0.05% or more of the data (~937 Kb), there
was an unambiguously significant increase in detected alleles (all p < 3.47 × 10−7).
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Figure 3. Accuracy of Digitalis species detection. For all mixture pseudoreplicates with sufficient
data, the species of Digitalis was assigned based on the proportion of SNPs from each sample that
contained species-informative alleles. In all cases the highest ratio of matching SNPs derived from
the correct species, and all comparisons were significant based on modified Z-score analysis (all
p ≤ 9.72 × 10−35). Proportions represent pseudoreplicates meeting the minimum data criteria. When
Digitalis data accounted for 1% or more of the dataset (18.75 Mb), 10/10 pseudoreplicates could be
identified, but limited data precluded robust species identification at some lower concentrations.

4. Discussion

Identifying ingredients of complex, mixed samples using DNA methods is an ongoing
challenge, and the method that is chosen for a particular question must be carefully consid-
ered. Metabarcoding approaches often rely on well-curated reference databases, but due to
the limited size of many of these datasets, care must be taken to choose marker regions
that both (1) provide appropriate taxonomic discrimination while (2) also accounting for
issues such as amplification errors, bias, and artifacts introduced by PCR. Additionally,
metabarcoding approaches often preclude quantification beyond relative abundance, and
relying on highly targeted techniques can also fail due to fragmented DNA [21], which is
often found in highly processed food products and dietary supplements.

On the other end of the spectrum, whole-genome sequencing (WGS) approaches,
including low-coverage genome skimming, circumvent many of the limitations associ-
ated with traditional metabarcoding or targeted locus methods. WGS data provides an
untargeted snapshot of DNA in a sample; it bypasses the need for a priori marker selection,
reduces negative biases associated with PCR amplification, and provides a more holistic,
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semiquantitative (with caveats), representation of sample composition [21]. Especially
in the absence of a reference genome, analysis of WGS data typically relies on kmer bin-
ning [45–47], BLAST [48], or metagenomic assembly and classification of the resulting
contigs using a database [49,50]. The availability of genome annotation data or useful
marker sets in botanicals varies widely outside of model clades, and in many cases the
taxonomic discrimination of analyses is severely limited by database robustness, or lack
thereof. As an attempt to overcome these challenges, many WGS-based identification ap-
proaches still begin with a reduction down to smaller, more manageable data subsets, such
as extraction of organellar reads [36,51], or specific sets of well-characterized genes [52];
yet, based on both their size (e.g., datasets containing few loci) and the nature of their
heredity (e.g., in the case of maternal chloroplast inheritance), these data subsets also
present challenges when identifying closely related species or hybrids.

Here we present a pipeline that relies only on WGS data, without the need for a
reference genome, annotation data, or any external databases, to generate informative
SNPs for the identification of toxic adulterants (Digitalis) in mixed botanical samples. This
pipeline overcomes both the need for a priori marker selection and PCR amplification
biases associated with metabarcoding, as well as the typical issues associated with work
in non-model clades. While recent plastid-based analyses of Anemopaegma and Veronica
yielded informative SNP counts in the thousands [53,54], here we identify over 2.4 million
nuclear genus-informative SNPs for Digitalis that were screened against a background of
Plantago (plantain), Aloe vera (aloe), and Linum usitatissimum (flax) (Table S4, Figure 1), as
well as tens of thousands of species-informative SNPs. Rather than relying on a small
subset of plastid reads or gene subsets, working from a large, untargeted nuclear dataset
dramatically increased both our resolution and ability to recover orders of magnitude more
SNPs when compared to many existing methods.

We simulated mixed samples based on practical data limits (~2 Gb per sample, equiv-
alent to a MiSeq 600-cycle kit multiplexed eight ways) and at this depth unambiguous
genus-level Digitalis detection was possible even in trace amounts when Digitalis data
made up only 0.05% of the mixture (~1 Mb of spike-in data) (Figure 2B). Additionally, we
see a highly-correlated increase in genus-level SNP recovery with respect to the amount of
Digitalis data spiked into the mixture (Figure 2A), suggesting that this method is semiquan-
titative, supporting previous work [21]. Relative to the genus-informative SNP sets, there
were fewer species-informative SNPs, and robust identification of species required around
10 times more data (0.5% of the mixture, or just under 10Mb) (Figure 3).

The nuclear loci generated by SISRS [37] were assembled using only Digitalis nuclear
data, and as such, rescreening this dataset against species other than Plantago, Aloe, and
Linum would theoretically allow for detection of Digitalis in mixtures containing any
primary ingredients. Additionally, these datasets are dynamic, and more data from the
existing Digitalis species or data from background species not included here could be
analyzed without the need to generate a new composite genome from scratch. For instance,
we screened our Digitalis markers against a single specimen of most outgroup taxa to
reduce the amount of cross-species mapping; yet the unadulterated control samples had
~100 SNP matches that should have been Digitalis-specific (Figure 2B). In a real-world test
case these sites too could be purged from the SNP lists for any downstream tests, and
this iterative database refinement would serve to minimize false positives. Notably, the
Digitalis purpurea sample used in this study resulted in an abnormally high number of
species-specific SNPs relative to the other four Digitalis species screened (Table S4), which
could be due to sample contamination, sequencing errors, or a high degree of evolutionary
divergence in this species [55]. If this aberration is not biologically founded (i.e., if due
to some systematic error), swapping that sample out for another and regenerating SNPs
would also allow for the recovery of more SNPs.

While this pipeline is computational in nature, the SNPs identified in this study
can just as easily be used for diagnostic primer design to develop targeted assays for the
Digitalis genus, as well as specific species. This method does not rely on identifying markers
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within well-characterized loci and thus, is considerably less restrictive. Since the number
of highly problematic toxic plants commonly found in foods and dietary supplements is
finite, the development of additional composite genomes and SNP databases for taxa of
concern is a feasible goal. In addition to NGS methods as employed here, these databases
can be used to develop suites of targeted primer sets for use with common molecular
methods such as PCR, or more specialized quantitative applications like qPCR or ddPCR.
The pseudoreplicated, simulated adulteration study described here is largely intended
as a proof of concept, yet also provided a clear roadmap for the application of SISRS
for identifying species within mixed samples. Continued development of this method,
including tests on real-world adulterated samples, may lead to the rapid expansion of
both NGS-based and molecular tools for faster identification of toxic plants in foods and
consumer products.

5. Conclusions

Here, we illustrate how shallow WGS data can be used to detect low concentrations
of adulterants of a specific toxic or allergenic contaminant at the genus or species level
with no pre-existing reference genome or annotation data. This provides a roadmap for
the rapid generation of nuclear markers in non-model groups. Our results indicate that
when provided with sufficient sequencing data of background materials, ~2 Gb of data can
correctly identify adulteration with simulated contamination of as little as 0.05% of Digitalis
to both the genus and species level in mixed botanical samples using a modified application
of SISRS. In the 1997 case of Digitalis adulteration, we believe our method would have
detected D. lanata in both the dietary supplement and the Plantago raw material, as well as
provide semiquantitative information regarding the amount of D. lanata present.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10081794/s1, Table S1: Whole-genome sequence data used to assemble Digitalis chloro-
plast genomes using getOrganelle, Table S2: Digitalis whole-genome sequence data used in this study
for composite genome assembly and SNP discovery, Table S3: SISRS assembly statistics for Digitalis
composite genome, Table S4: Results of mapping Digitalis whole-genome sequencing data onto
composite genome including filtering SNPs to include more Digitalis-specific contigs, Table S5: Non-
Digitalis whole-genome sequence data used in this study for SNP masking, Table S6: Whole-genome
sequence data used in this study for creating mixed pseudoreplicates, Table S7: Pseudoreplicated
mix components and mapping statistics, Table S8: Results from linear regression of recovered SNPs
versus Digitalis bases added, Table S9: Summary of genus-level classification results for mixed pseu-
doreplicates including total matching sites and proportion of sites that matched Digitalis, Table S10:
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versus second highest species match.

Author Contributions: Conceptualization, E.S.H., R.L. and S.M.H.; methodology, E.S.H. and R.L.;
software, R.L. formal analysis, R.L.; data curation, R.L.; writing—original draft preparation, E.S.H.;
writing—review and editing, E.S.H., R.L. and S.M.H.; supervision, S.M.H.; project administration,
E.S.H., R.L. and S.M.H. funding acquisition, S.M.H. All authors have read and agreed to the published
version of the manuscript.

Funding: Elizabeth Hunter and Robert Literman were supported, in part, by an appointment to the
Research Participation Program, administered by the Oak Ridge Institute for Science and Education
(ORISE) through an interagency agreement between the U.S. Department of Energy and the U.S.
FDA. This project was also supported through an FDA Chief Scientist Challenge Grant, number
200F07AC04 to Sara M. Handy.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

https://www.mdpi.com/article/10.3390/foods10081794/s1
https://www.mdpi.com/article/10.3390/foods10081794/s1


Foods 2021, 10, 1794 12 of 14

Data Availability Statement: Raw data generated for this project are available under the GenBank
BioProject PRJNA325670. Specific SRA accessions for each sample can be found in the Supplementary
Tables S2 and S5.

Acknowledgments: The authors would like to thank Ikhlas Khan and Amar Chittiboyina from
the National Center for Natural Products Research at the University of Mississippi, Riley Kirk and
Matthew Bertin from the College of Pharmacy at the University of Rhode Island and especially the
New York Botanical Garden for providing botanical tissues. We are grateful to Lindsay Rosen from
FDA-CFSAN for DNA extraction, Padmini Ramachandran and Amanda Windsor from FDA-CFSAN
for sequencing and technical support, and Christopher Paight from the University of California Santa
Barbara for valuable discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Withering, W. An Account of the Foxglove and Some of Its Medical Uses; Cambridge University Press: Cambridge, UK, 1785.
2. Beller, G.A.; Smith, T.W.; Abelmann, W.H.; Haber, E.; Hood, W.B.J. Digitalis Intoxication—A Prospective Clinical Study with

Serum Level Correlations. N. Engl. J. Med. 1971, 284, 989–997. [CrossRef] [PubMed]
3. Lapostolle, F.; Borron, S.W. Chapter 58—Digitalis. In Haddad and Winchester’s Clinical Management of Poisoning and Drug Over-

dose, 4th ed.; Shannon, M.W., Borron, S.W., Burns, M.J., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2007; pp. 949–962.
ISBN 978-0-7216-0693-4.

4. Haruna, Y.; Kawasaki, T.; Kikkawa, Y.; Mizuno, R.; Matoba, S. Xanthopsia Due to Digoxin Toxicity as a Cause of Traffic Accidents:
A Case Report. Am. J. Case Rep. 2020, 21, e924025-1–e924025-4. [CrossRef] [PubMed]

5. Somberg, J.C. Van Gogh and Digitalis. Am. J. Cardiol. 2020, 136, 164–165. [CrossRef] [PubMed]
6. Packer, M. Why Is the Use of Digitalis Withering? Another Reason That We Need Medical Heart Failure Specialists. Eur. J. Heart

Fail. 2018, 20, 851–852. [CrossRef] [PubMed]
7. Slifman, N.R.; Obermeyer, W.R.; Aloi, B.K.; Musser, S.M.; Correll, W.A.; Cichowicz, S.M.; Betz, J.M.; Love, L.A. Contamination of

Botanical Dietary Supplements by Digitalis Lanata. N. Engl. J. Med. 1998, 339, 806–811. [CrossRef]
8. Harbaugh Reynaud, D.T.; Mishler, B.D.; Neal-Kababick, J.; Brown, P.N. The Capabilities and Limitations of DNA Barcoding of

Dietary Supplements 2015. Available online: https://www.ahpa.org/portals/0/pdfs/the-capabilities-and-limitations-of-dna-
testing-final_ahpa.pdf (accessed on 17 May 2021).

9. Parveen, I.; Gafner, S.; Techen, N.; Murch, S.; Khan, I. DNA Barcoding for the Identification of Botanicals in Herbal Medicine and
Dietary Supplements: Strengths and Limitations. Planta Med. 2016, 82, 1225–1235. [CrossRef]

10. Pawar, R.; Handy, S.; Cheng, R.; Shyong, N.; Grundel, E. Assessment of the Authenticity of Herbal Dietary Supplements:
Comparison of Chemical and DNA Barcoding Methods. Planta Med. 2017, 83, 921–936. [CrossRef]

11. Mueller, S.; Handy, S.M.; Deeds, J.R.; George, G.O.; Broadhead, W.J.; Pugh, S.E.; Garrett, S.D. Development of a COX1 Based
PCR-RFLP Method for Fish Species Identification. Food Control 2015, 55, 39–42. [CrossRef]

12. Handy, S.M.; Chizhikov, V.; Yakes, B.J.; Paul, S.Z.; Deeds, J.R.; Mossoba, M.M. Microarray Chip Development Using Infrared
Imaging for the Identification of Catfish Species. Appl. Spectrosc. 2014, 68, 1365–1373. [CrossRef]

13. Rasmussen Hellberg, R.S.; Naaum, A.M.; Handy, S.M.; Hanner, R.H.; Deeds, J.R.; Yancy, H.F.; Morrissey, M.T. Interlaboratory
Evaluation of a Real-Time Multiplex Polymerase Chain Reaction Method for Identification of Salmon and Trout Species in
Commercial Products. J. Agric. Food Chem. 2011, 59, 876–884. [CrossRef]

14. Handy, S.M.; Timme, R.E.; Jacob, S.M.; Deeds, J.R. Development of a Locked Nucleic Acid Real-Time Polymerase Chain Reaction
Assay for the Detection of Pinus Armandii in Mixed Species Pine Nut Samples Associated with Dysgeusia. J. Agric. Food Chem.
2013, 61, 1060–1066. [CrossRef]

15. Shokralla, S.; Hellberg, R.S.; Handy, S.M.; King, I.; Hajibabaei, M. A DNA Mini-Barcoding System for Authentication of Processed
Fish Products. Sci. Rep. 2015, 5, 15894. [CrossRef]

16. Puente-Lelievre, C.; Eischeid, A.C. Development and Validation of a Duplex Real-Time PCR Assay with Locked Nucleic Acid
(LNA) Probes for the Specific Detection of Allergenic Walnut in Complex Food Matrices. Food Control 2021, 121, 107644. [CrossRef]

17. Shanmughanandhan, J.; Shanmughanandhan, D.; Ragupathy, S.; Henry, T.A.; Newmaster, S.G. Quantification of Actaea racemosa
L. (Black Cohosh) from Some of Its Potential Adulterants Using QPCR and DPCR Methods. Sci. Rep. 2021, 11, 4331. [CrossRef]
[PubMed]

18. Handy, S.M.; Deeds, J.R.; Ivanova, N.V.; Hebert, P.D.N.; Hanner, R.H.; Ormos, A.; Weigt, L.A.; Moore, M.M.; Yancy, H.F. A
Single-Laboratory Validated Method for the Generation of DNA Barcodes for the Identification of Fish for Regulatory Compliance.
J. AOAC Int. 2011, 94, 201–210. [CrossRef] [PubMed]

19. Ivanova, N.V.; Kuzmina, M.L.; Braukmann, T.W.A.; Borisenko, A.V.; Zakharov, E.V. Authentication of Herbal Supplements Using
Next-Generation Sequencing. PLoS ONE 2016, 11, e0156426. [CrossRef]

20. Handy, S.M.; Ott, B.M.; Hunter, E.S.; Zhang, S.; Erickson, D.L.; Wolle, M.M.; Conklin, S.D.; Lane, C.E. Suitability of DNA
Sequencing Tools for Identifying Edible Seaweeds Sold in the United States. J. Agric. Food Chem. 2020, 68, 15516–15525. [CrossRef]
[PubMed]

http://doi.org/10.1056/NEJM197105062841801
http://www.ncbi.nlm.nih.gov/pubmed/5553483
http://doi.org/10.12659/AJCR.924025
http://www.ncbi.nlm.nih.gov/pubmed/32769961
http://doi.org/10.1016/j.amjcard.2020.09.009
http://www.ncbi.nlm.nih.gov/pubmed/32941822
http://doi.org/10.1002/ejhf.1043
http://www.ncbi.nlm.nih.gov/pubmed/29052294
http://doi.org/10.1056/NEJM199809173391204
https://www.ahpa.org/portals/0/pdfs/the-capabilities-and-limitations-of-dna-testing-final_ahpa.pdf
https://www.ahpa.org/portals/0/pdfs/the-capabilities-and-limitations-of-dna-testing-final_ahpa.pdf
http://doi.org/10.1055/s-0042-111208
http://doi.org/10.1055/s-0043-107881
http://doi.org/10.1016/j.foodcont.2015.02.026
http://doi.org/10.1366/14-07505
http://doi.org/10.1021/jf103241y
http://doi.org/10.1021/jf304223a
http://doi.org/10.1038/srep15894
http://doi.org/10.1016/j.foodcont.2020.107644
http://doi.org/10.1038/s41598-020-80465-0
http://www.ncbi.nlm.nih.gov/pubmed/33619286
http://doi.org/10.1093/jaoac/94.1.201
http://www.ncbi.nlm.nih.gov/pubmed/21391497
http://doi.org/10.1371/journal.pone.0156426
http://doi.org/10.1021/acs.jafc.0c03734
http://www.ncbi.nlm.nih.gov/pubmed/33334103


Foods 2021, 10, 1794 13 of 14

21. Handy, S.M.; Pawar, R.S.; Ottesen, A.R.; Ramachandran, P.; Sagi, S.; Zhang, N.; Hsu, E.; Erickson, D.L. HPLC-UV, Metabarcoding
and Genome Skims of Botanical Dietary Supplements: A Case Study in Echinacea. Planta Med. 2021, a-1336-1685. [CrossRef]

22. Zhang, N.; Erickson, D.L.; Ramachandran, P.; Ottesen, A.R.; Timme, R.E.; Funk, V.A.; Luo, Y.; Handy, S.M. An Analysis of
Echinacea Chloroplast Genomes: Implications for Future Botanical Identification. Sci. Rep. 2017, 7, 216. [CrossRef] [PubMed]

23. Wirta, H.; Abrego, N.; Miller, K.; Roslin, T.; Vesterinen, E. DNA Traces the Origin of Honey by Identifying Plants, Bacteria and
Fungi. Sci. Rep. 2021, 11, 4798. [CrossRef] [PubMed]

24. Mutebi, R.R.; Ario, A.R.; Nabatanzi, M.; Kyamwine, I.B.; Wibabara, Y.; Muwereza, P.; Eurien, D.; Kwesiga, B.; Bulage, L.;
Kabwama, S.N.; et al. Large Outbreak of Jimsonweed (Datura Stramonium) Poisoning Due to Consumption of Contaminated
Humanitarian Relief Food: Uganda, March–April 2019. 2021; In Review.

25. Literman, R.; Ott, B.M.; Wen, J.; Grauke, L.; Schwartz, R.; Handy, S.M. Reference-Free Discovery of Millions of SNPs Permits
Species and Hybrid Identification in Carya (Hickory). In prep.

26. Soffritti, G.; Busconi, M.; Sánchez, R.A.; Thiercelin, J.-M.; Polissiou, M.; Roldán, M.; Fernández, J.A. Genetic and Epigenetic
Approaches for the Possible Detection of Adulteration and Auto-Adulteration in Saffron (Crocus Sativus L.) Spice. Molecules 2016,
21, 343. [CrossRef]

27. Böhme, K.; Calo-Mata, P.; Barros-Velázquez, J.; Ortea, I. Recent Applications of Omics-Based Technologies to Main Topics in Food
Authentication. TrAC Trends Anal. Chem. 2019, 110, 221–232. [CrossRef]

28. Sakamoto, W.; Takami, T. Chloroplast DNA Dynamics: Copy Number, Quality Control and Degradation. Plant Cell Physiol. 2018,
59, 1120–1127. [CrossRef] [PubMed]

29. Golczyk, H.; Greiner, S.; Wanner, G.; Weihe, A.; Bock, R.; Börner, T.; Herrmann, R.G. Chloroplast DNA in Mature and Senescing
Leaves: A Reappraisal. Plant Cell 2014, 26, 847–854. [CrossRef] [PubMed]

30. Dodsworth, S. Genome Skimming for Next-Generation Biodiversity Analysis. Trends. Plant Sci. 2015, 20, 525–527. [CrossRef]
31. Straub, S.C.K.; Parks, M.; Weitemier, K.; Fishbein, M.; Cronn, R.C.; Liston, A. Navigating the Tip of the Genomic Iceberg:

Next-Generation Sequencing for Plant Systematics. Am. J. Bot. 2012, 99, 349–364. [CrossRef] [PubMed]
32. Van der Merwe, M.; McPherson, H.; Siow, J.; Rossetto, M. Next-Gen Phylogeography of Rainforest Trees: Exploring Landscape-

Level CpDNA Variation from Whole-Genome Sequencing. Mol. Ecol. Resour. 2014, 14, 199–208. [CrossRef] [PubMed]
33. Chen, F.; Dong, W.; Zhang, J.; Guo, X.; Chen, J.; Wang, Z.; Lin, Z.; Tang, H.; Zhang, L. The Sequenced Angiosperm Genomes and

Genome Databases. Front. Plant Sci. 2018, 9, 418. [CrossRef] [PubMed]
34. Breitwieser, F.P.; Lu, J.; Salzberg, S.L. A Review of Methods and Databases for Metagenomic Classification and Assembly. Brief.

Bioinform. 2019, 20, 1125–1136. [CrossRef]
35. Cook, D.; Lee, S.T.; Gardner, D.R.; Molyneux, R.J.; Johnson, R.L.; Taylor, C.M. Use of Herbarium Voucher Specimens To Investigate

Phytochemical Composition in Poisonous Plant Research. J. Agric. Food Chem. 2021, 69, 4037–4047. [CrossRef] [PubMed]
36. Zhang, N.; Ramachandran, P.; Wen, J.; Duke, J.; Metzman, H.; McLaughlin, W.; Ottesen, A.; Timme, R.; Handy, S. Development of

a Reference Standard Library of Chloroplast Genome Sequences, GenomeTrakrCP. Planta Med. 2017, 83, 1420–1430. [CrossRef]
[PubMed]

37. Schwartz, R.S.; Harkins, K.M.; Stone, A.C.; Cartwright, R.A. A Composite Genome Approach to Identify Phylogenetically
Informative Data from Next-Generation Sequencing. BMC Bioinform. 2015, 16, 193. [CrossRef] [PubMed]

38. Windsor, A.M.; Ott, B.M.; Zhang, N.; Wen, J.; Hsu, E.; Handy, S.M. Full Chloroplast Genome Sequence of the Economically
Important Dietary Supplement and Spice Curcuma Longa. Microbiol. Resour. Announc. 2019, 8, e00576-19. [CrossRef]

39. Jin, J.-J.; Yu, W.-B.; Yang, J.-B.; Song, Y.; dePamphilis, C.W.; Yi, T.-S.; Li, D.-Z. GetOrganelle: A Fast and Versatile Toolkit for
Accurate de Novo Assembly of Organelle Genomes. Genome Biol. 2020, 21, 1–31. [CrossRef] [PubMed]

40. Babraham Bioinformatics—FastQC A Quality Control Tool for High Throughput Sequence Data. Available online: http:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 30 November 2019).

41. Castro, M.; Castro, S.; Loureiro, J. Genome Size Variation and Incidence of Polyploidy in Scrophulariaceae Sensu Lato from the
Iberian Peninsula. AoB Plants 2012, 2012. [CrossRef]

42. Boisvert, S.; Raymond, F.; Godzaridis, É.; Laviolette, F.; Corbeil, J. Ray Meta: Scalable de Novo Metagenome Assembly and
Profiling. Genome Biol. 2012, 13, R122. [CrossRef]

43. R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2020.

44. Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting Outliers: Do Not Use Standard Deviation around the Mean, Use
Absolute Deviation around the Median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [CrossRef]

45. Wood, D.E.; Lu, J.; Langmead, B. Improved Metagenomic Analysis with Kraken 2. Genome Biol. 2019, 20, 257. [CrossRef]
46. Ounit, R.; Wanamaker, S.; Close, T.J.; Lonardi, S. CLARK: Fast and Accurate Classification of Metagenomic and Genomic

Sequences Using Discriminative k-Mers. BMC Genom. 2015, 16, 236. [CrossRef]
47. Kim, D.; Song, L.; Breitwieser, F.P.; Salzberg, S.L. Centrifuge: Rapid and Sensitive Classification of Metagenomic Sequences.

Genome Res. 2016, 26, 1721–1729. [CrossRef] [PubMed]
48. Madden, T. The BLAST Sequence Analysis Tool; National Center for Biotechnology Information: Bethesda, MD, USA, 2003.
49. von Meijenfeldt, F.A.B.; Arkhipova, K.; Cambuy, D.D.; Coutinho, F.H.; Dutilh, B.E. Robust Taxonomic Classification of Uncharted

Microbial Sequences and Bins with CAT and BAT. bioRxiv 2019. [CrossRef]

http://doi.org/10.1055/a-1336-1685
http://doi.org/10.1038/s41598-017-00321-6
http://www.ncbi.nlm.nih.gov/pubmed/28303008
http://doi.org/10.1038/s41598-021-84174-0
http://www.ncbi.nlm.nih.gov/pubmed/33637887
http://doi.org/10.3390/molecules21030343
http://doi.org/10.1016/j.trac.2018.11.005
http://doi.org/10.1093/pcp/pcy084
http://www.ncbi.nlm.nih.gov/pubmed/29860378
http://doi.org/10.1105/tpc.113.117465
http://www.ncbi.nlm.nih.gov/pubmed/24668747
http://doi.org/10.1016/j.tplants.2015.06.012
http://doi.org/10.3732/ajb.1100335
http://www.ncbi.nlm.nih.gov/pubmed/22174336
http://doi.org/10.1111/1755-0998.12176
http://www.ncbi.nlm.nih.gov/pubmed/24119022
http://doi.org/10.3389/fpls.2018.00418
http://www.ncbi.nlm.nih.gov/pubmed/29706973
http://doi.org/10.1093/bib/bbx120
http://doi.org/10.1021/acs.jafc.1c00708
http://www.ncbi.nlm.nih.gov/pubmed/33797894
http://doi.org/10.1055/s-0043-113449
http://www.ncbi.nlm.nih.gov/pubmed/28651291
http://doi.org/10.1186/s12859-015-0632-y
http://www.ncbi.nlm.nih.gov/pubmed/26062548
http://doi.org/10.1128/MRA.00576-19
http://doi.org/10.1186/s13059-020-02154-5
http://www.ncbi.nlm.nih.gov/pubmed/32912315
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://doi.org/10.1093/aobpla/pls037
http://doi.org/10.1186/gb-2012-13-12-r122
http://doi.org/10.1016/j.jesp.2013.03.013
http://doi.org/10.1186/s13059-019-1891-0
http://doi.org/10.1186/s12864-015-1419-2
http://doi.org/10.1101/gr.210641.116
http://www.ncbi.nlm.nih.gov/pubmed/27852649
http://doi.org/10.1101/530188


Foods 2021, 10, 1794 14 of 14

50. Mirdita, M.; Steinegger, M.; Breitwieser, F.; Karin, E.L. Fast and Sensitive Taxonomic Assignment to Metagenomic Contigs.
Bioinformatics 2021, btab184. [CrossRef]

51. Ramachandran, P.; Mammel, M.; Ottesen, A.; Pava-Ripoll, M. MitochonTrakr: A Reference Collection of High-Quality Mitochon-
drial Genomes for Detecting Insect Species in Food Products. Mitochondrial DNA Part B 2019, 4, 292–293. [CrossRef]

52. Kalyuzhnaya, M.G.; Lapidus, A.; Ivanova, N.; Copeland, A.C.; McHardy, A.C.; Szeto, E.; Salamov, A.; Grigoriev, I.V.; Suciu, D.;
Levine, S.R.; et al. High-Resolution Metagenomics Targets Specific Functional Types in Complex Microbial Communities. Nat.
Biotechnol. 2008, 26, 1029–1034. [CrossRef] [PubMed]

53. Firetti, F.; Zuntini, A.R.; Gaiarsa, J.W.; Oliveira, R.S.; Lohmann, L.G.; Sluys, M.-A.V. Complete Chloroplast Genome Sequences
Contribute to Plant Species Delimitation: A Case Study of the Anemopaegma Species Complex. Am. J. Bot. 2017, 104, 1493–1509.
[CrossRef] [PubMed]

54. Maurya, S.; Darshetkar, A.M.; Yi, D.-K.; Kim, J.; Lee, C.; Ali, M.A.; Choi, S.; Choudhary, R.K.; Kim, S.-Y. Plastome Comparison
and Evolution within the Tribes of Plantaginaceae: Insights from an Asian Gypsyweed. Saudi J. Biol. Sci. 2020, 27, 3489–3498.
[CrossRef] [PubMed]

55. Kreis, W. The Foxgloves (Digitalis) Revisited. Planta Med. 2017, 83, 962–976. [CrossRef]

http://doi.org/10.1093/bioinformatics/btab184
http://doi.org/10.1080/23802359.2018.1542986
http://doi.org/10.1038/nbt.1488
http://www.ncbi.nlm.nih.gov/pubmed/18711340
http://doi.org/10.3732/ajb.1700302
http://www.ncbi.nlm.nih.gov/pubmed/29885220
http://doi.org/10.1016/j.sjbs.2020.09.040
http://www.ncbi.nlm.nih.gov/pubmed/33304160
http://doi.org/10.1055/s-0043-111240

	Introduction 
	Materials and Methods 
	Sample Acquisition 
	DNA Extraction and Sequencing 
	Companion Data from Public Archives 

	Nuclear Enrichment of Digitalis WGS Data 
	Composite Genome Assembly 
	Nuclear Digitalis Read Mapping and SNP Dataset Development 
	Background Species Mapping and Data Filtration 
	Generating Mixed Samples 
	Screening Mixed Samples for Digitalis SNPs 
	Genus-Level Digitalis Detection 
	Species-Level Digitalis Detection 


	Results 
	Assembly of the Nuclear Digitalis Composite Genome 
	Nuclear Digitalis Mapping and SNP Dataset Generation 
	Screening Mixed Samples 
	Genus-Level Screening 
	Species-Level Screening 


	Discussion 
	Conclusions 
	References

