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Abstract: Due to obvious disadvantages of the classical chemical methods, green synthesis of 

metallic nanoparticles has attracted tremendous attention in recent years. Numerous environ-

mentally benign synthesis methods have been developed yielding nanoparticles via low-cost, 

eco-friendly, and simple approaches. In this study, our aim was to determine the suitability of 

coffee and green tea extracts in green synthesis of silver nanoparticles as well as to compare the 

performance of the obtained materials in different biological systems. We successfully produced 

silver nanoparticles (C-AgNP and GT-AgNP) using coffee and green tea extracts; moreover, 

based on our comprehensive screening, we delineated major differences in the biological activity 

of C-AgNPs and GT-AgNPs. Our results indicate that although GT-AgNPs exhibited excellent 

antimicrobial activity against all the examined microbial pathogens, these particles were also 

highly toxic to mammalian cells, which limits their potential applications. On the contrary, 

C-AgNPs manifested substantial inhibitory action on the tested microbes but were nontoxic to 

human and mouse cells, indicating an outstanding capacity to discriminate between potential 

pathogens and mammalian cells. These results clearly show that the various green materials 

used for stabilization and for reduction of metal ions have a defining role in determining and 

fine-tuning the biological activity of the obtained nanoparticles.

Keywords: green synthesis, silver nanoparticles, antimicrobial activity, toxicity

Introduction
Due to the widespread applications of nanomaterials in various fields of industry, 

technology, as well as medicine, the global demand for nanomaterials is growing 

exponentially. In fact, owing to the commercial utilization of silver nanoparticles 

(AgNPs) in optics, electronics, catalysis, in household items, and in a broad range 

of medical applications, the yearly increase in AgNP production was estimated 

to be hundreds of tons worldwide.1 Although photochemical reactions,2 thermal,3 

radiation/sono-chemical,4 and microwave-assisted methods5 can be used successfully 

for efficient AgNP synthesis, the most general approaches are chemical reduction6 or 

electrochemical processes,7 which often involve the use of toxic chemicals causing 

harmful effects on the environment and human health.8,9 As an example, in bottom-up 

chemical preparation methods yielding stable colloidal AgNPs of desired sizes within 

the nanometer scale, sodium borohydride is frequently used as a reductant.10 NaBH
4
, 

apart from being a fairly expensive chemical, can also generate oxidized boron species 

during the synthesis process, which cannot be easily separated from the nanomaterial 

product.11 Such undesired chemical entities can severely limit the application possibili-

ties and the biocompatibility of the produced nanomaterials. Therefore, the utilization 
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of nanomaterials has to be accompanied with innovative, 

low-cost, eco-friendly production processes, which reduce 

the use of unsafe chemicals and minimize the generation of 

hazardous wastes.10,12

Green synthesis strategies of metal nanoparticles have 

recently gathered grounds, providing safer alternatives to 

conventional chemical methods and a low environmental 

footprint. Such approaches utilize mild experimental con-

ditions (ambient temperature and pressure), require careful 

considerations in selecting nontoxic, environmentally benign 

solvents, reducing agents as well as capping materials11,12 

and, therefore, frequently involve either living organisms, 

such as bacteria13 or fungi.14 Plants or natural extracts15 

obtained from plant leaf, root, seed, and stem are also fre-

quently applied for green nanomaterial production, as these 

extracts contain various polysaccharides, proteins, vitamins, 

or alkaloids, which are generally nontoxic, biodegradable, 

and can act both as reducing and capping agents, thereby 

promoting the formation and inhibiting the agglomeration 

of nanoparticles.9,11,12,15–18 Typically, such a synthesis is 

very straightforward, the metal salt solution needs to be 

mixed with the natural product extract, and nanoparticles 

form spontaneously within a few minutes up to 1 day.19 

One of the first approaches along this line by Shankar et al 

reported the rapid synthesis of metallic AgNPs at high con-

centrations by treating aqueous solutions of silver nitrate 

with neem (Azadirachta indica) leaf broth.20 These authors 

emphasized that the major advantage of this method was 

the rate of metal ion reduction by the plant extract, which 

proved to be much faster than those observed previously 

using microorganisms.20 Ever since, AgNPs of differ-

ent shapes and sizes were obtained using various plant 

extracts, such as Aloe vera,21 crop plants,12 Citrus limon,22 

Capsicum annuum,23 just naming a few, as reducing agents.24 

Active ingredients of coffee (C) or tea such as polyphenols 

or flavonoids can also be applied to render production routes 

green and cost-effective.25 Hydroalcoholic extract of dried 

roasted Coffea arabica seed,25 green tea (GT) and black 

tea26,27 extracts have already been used for the biosynthesis 

of AgNPs, where the phenolic acid-type caffeine and theo-

phylline were responsible for the stabilization of the obtained 

nanomaterials.

Although the synthesis of nanoparticles using biological 

methodologies has received increasing attention in the 

last decade, only a few studies reported reliable data on 

the biological activities of the obtained green-synthesized 

nanomaterials, highlighting the differences of nanoparticle 

action in various biological host systems. Our approach is 

novel due to the fact that we aimed to compare above all 

the biological performance of two types of silver colloids 

obtained by totally green chemical reduction methods 

using GT and C extracts. The green-synthesized C-AgNP 

and GT-AgNPs were characterized, and in the frame of 

comprehensive screening, nanoparticles were tested against 

various microbes and mammalian cells to delineate major 

differences between the biological efficacy of C-AgNPs 

and GT-AgNPs.

Materials and methods
Preparation of plant extracts
To prepare the GT extract, 2 g of dry GT leaves (R. Twining 

and Company Limited, London, England) was soaked in 

100 mL deionized water and the solution was heated to 80°C 

for 20 min, thereafter the extract was cooled, vacuum-filtered, 

and this filtrate was further used as a reducing agent and also 

as a stabilizer of the as-synthesized AgNPs. A similar process 

was applied for the  C extract except that the purchased coffee 

(Tchibo Family) was boiled for 5 min.

synthesis of agNPs
Silver nanoparticles (GT-AgNP and C-AgNP) were synthe-

sized by adding the corresponding extracts to 0.1 M aqueous 

silver nitrate (AgNO
3
, $99.0%; Sigma-Aldrich) solution in 

a 1:1 volume ratio at room temperature, pH 7, by constant 

stirring for 24 h. Preliminary optimization experiments indi-

cated that the application of 1:1 green extract/AgNO
3
 ratio 

is required to achieve particles with spherical morphology. 

The obtained disperse system was then purified by repeated 

centrifugation at 1,730 ×g for 5 min. The supernatant was 

transferred to a clean dry beaker for further settlement of 

particles, and repeated cycles of centrifugation were carried 

out to further purify AgNPs. The final colloid samples were 

stored at 4°C.

characterization of nanoparticles
The morphological characteristics of AgNPs were exam-

ined by transmission electron microscopy (TEM) using a 

FEI Tecnai G2 20× microscope at an acceleration voltage 

of 200 kV. The crystal structures were analyzed by X-ray 

powder diffraction (XRD). The scans were performed with 

a Rigaku MiniFlex II powder diffractometer using Cu Kα 

radiation. A scanning rate of 2° min−1 in the 5°–80° 2θ range 

was used. The particle size distribution of the samples was 

assessed by dynamic light scattering (DLS) analysis using a 

Zetasizer Nano Instrument (Malvern, Worcestershire, UK). 

The optical properties of nanoparticles were studied by 
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spectral analysis. The absorbance spectra of nanoparticles 

were recorded within the range from 350 to 900 nm using 

an Ocean Optics 355 DH-2000-BAL UV–VIS spectropho-

tometer and a 10-mm path length quartz cuvette.

Fourier transform infrared spectroscopy (FT-IR) studies 

were carried out using a Bruker Vertex 70 spectrophotometer. 

The C-AgNP and the GT-AgNP samples were washed thor-

oughly three times with distilled water prior to FT-IR experi-

ments to remove organic compounds not bound to nanoparticles 

surfaces. The obtained samples were prepared using the KBr 

pellet technique and were analyzed to check the presence of 

biofunctional moieties of C and GT extracts and the surface 

chemistry of the reduced silver samples. The FT-IR spectra 

were collected at a spatial resolution of 4 cm−1 in the transmis-

sion mode, between 4,000 and 450 cm−1, respectively.

To determine the amount of silver ion released by 

green-synthesized AgNPs, inductively coupled plasma 

mass spectroscopy (ICP-MS, Agilent 7700x) was applied. 

The nanoparticles were dissolved and incubated for 24 h 

in culture medium (Dulbecco’s Modified Eagle’s Medium 

[DMEM containing 1 g/L glucose] supplemented with 

10% fetal bovine serum [FBS], 2 mM l-glutamine, 0.01% 

streptomycin, and 0.005% ampicillin) in a 17.5 mg/mL 

concentration. The following day the solutions were centri-

fuged for 20 min at 10,285 ×g, and the supernatants of the 

respective samples were prepared for ICP-MS analysis by 

acid digesting using 1% nitric acid (analytical quality cc. 

HNO
3
 in Milli-Q water).

cell culture
Human cervical cancer HeLa cells and mouse NIH/3T3 non-

cancerous fibroblast cells were purchased from ATCC. HeLa 

cells were maintained in DMEM containing 1 g/L glucose, 

supplemented with 10% FBS, 2 mM l-glutamine, 0.01% 

streptomycin, and 0.005% ampicillin. NIH/3T3 cells were 

grown on high glucose (4.5 g/L) DMEM medium, contain-

ing 10% FBS, 2 mM l-glutamine, 0.01% streptomycin, and 

0.005% ampicillin. Cells were cultured under standard condi-

tions in a 37°C incubator at 5% CO
2
 in 95% humidity.

cell proliferation and cytotoxicity assays
To measure cell proliferation, MTT mitochondrial activ-

ity assay was performed: 5,000 HeLa cells/well and 2,000 

NIH/3T3 cells/well were seeded into 96-well plates and 

treated with AgNPs in different concentrations on the follow-

ing day. After 24 h treatments, cells were washed with PBS 

and incubated with culture medium containing 0.5 mg/mL 

MTT reagent (Sigma-Aldrich) for an hour at 37°C. Formazan 

crystals were solubilized in dimethyl sulfoxide, and extinction 

was measured at 570 nm using a Synergy HTX plate reader. 

Absorption corresponding to the untreated control samples 

was considered as 100%. MTT assays were performed at least 

three times using four independent biological replicates.

Cytotoxicity of the green-synthesized nanoparticles 

was assessed by crystal violet staining. Cells were seeded 

into 24-well plates and were left to grow until they reached 

confluence. Then, cell layers were treated with nanoparticles 

for 24 h. After each treatment, cells were washed three 

times with PBS and fixed using methanol/acetone (70:30) 

mixture. Fixed cells were then stained using 0.5% crystal 

violet, washed with distilled water, and then air-dried. Plates 

were photographed and crystal violet was solubilized using 

400 µL of 10% acetic acid. A volume of 100 µL solution 

from each well was transferred to 96-well plates, and then, 

absorbance was determined at 590 nm using a Synergy HTX 

microplate reader.

screening of antibacterial and antifungal 
activity
GT-AgNPs and C-AgNPs were tested for antimicrobial 

activity against Escherichia coli SZMC 0582, Pseudomonas 

aeruginosa SZMC 0568, Micrococcus luteus SZMC 0264, 

Bacillus cereus var. mycoides SZMC 0042, Cryptococcus 

neoformans IFM 5844, Candida albicans ATCC 10231, 

Candida parapsilosis CBS 604, and Saccharomyces cer-

evisiae SZMC 20733 by agar diffusion method as described 

previously.28 The growth medium for cultivation of yeasts 

was yeast extract-peptone-D-glucose (YPD) (1% peptone, 

1% glucose, 0.5% yeast extract, and 2% agar), whereas for 

bacteria nutrient agar supplemented with glucose (0.1% 

meat extract, 0.5% peptone, 1% glucose, 0.2% yeast extract, 

and 2% agar) was used. AgNP suspensions were prepared 

in 17.5 mg/mL final concentrations and 5 µL of each was 

loaded directly onto the surface of agar plates seeded with 

the test strains. The plates were incubated at 30°C, and the 

inhibition zones were determined after 24 h.

The colony-forming units of Cr. neoformans and E. coli 

were established to quantify the antimicrobial effectiveness 

of AgNPs prepared by C or GT extracts. Briefly, 4×106 yeast 

or 2×107 bacterial cells were exposed to C-AgNPs or to 

GT-AgNPs at concentrations of 17.5; 70; 175; 350; and 

1,750 µg/mL for 24 h. After the incubation time, cells were 

washed out from the suspension and then were suspended 

in sterile water. A dilution series was prepared, and 25 µL 

aliquots of each dilution were spread onto YPD or nutrient 

agar medium in triplicates. Plates were incubated at 30°C 

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2017:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

874

rónavári et al

for 48 h, and the number of the colonies was counted. The 

experiments were carried out always in triplicates.

Determination of yeast killer activity
An overnight culture of the K1 killer toxin29 producing 

strain S. cerevisiae SZMC 20733 was diluted to a density of 

1×106 cells/mL. 1 mL aliquots of the suspension were pel-

leted by centrifugation and resuspended in 1 mL of either 

1.75 mg/mL C-AgNP or 17.5 µg/mL GT-AgNP solution. 

Samples were placed in a rotary shaker at 30°C for 24 h. After 

incubation, cells were collected by centrifugation, washed, 

and suspended in 1 mL water. A volume of 50 µL aliquots 

were plated on malt agar (3% malt extract, 0.5% yeast extract, 

and 2% agar) and incubated at 30°C for 4 days. At least 50 

single colonies were randomly selected and transferred to 

malt agar plates. After 2 days of incubation at 37°C, colonies 

were replica plated onto the surface of a medium (2% glu-

cose, 2% peptone, 1% yeast extract, and 2% agar, buffered to 

pH 4.5 with citrate–phosphate buffer) previously inoculated 

with a turbid solution of S. cerevisiae SZMC 23464 killer 

sensitive strain.

Five colonies with altered killer phenotype were isolated 

from C-AgNP-treated plates. The colonies were inoculated 

into YPD broth and were cultivated for 24 h at 30°C with 

vigorous shaking. After the incubation time, 50 µL aliquots 

were transferred into 2 mL fresh YPD broth and further incu-

bated for 24 h at 30°C with vigorous shaking. The transfer 

of the cells into fresh YPD media was repeated over 7 days 

and, finally, their killer activity was determined by loading 

10 µL suspensions onto the surface of the above-mentioned 

medium inoculated with the killer sensitive strain.

For viral RNA isolation, cells from 3-day-old cultures 

of the isolates with altered phenotype and of the untreated 

control strain were washed and resuspended in PBS and dis-

rupted in French-press at 20,000ψ, and then cell debris was 

pelleted by centrifugation (25,000× g, 4°C, 30 min). About 

200 µL of supernatant was digested with RNase A (Sigma-

Aldrich) (50 µg/mL, 30 min at 37°C), proteins were removed 

by phenol–chloroform extraction, and viral RNA from the 

supernatant was resolved by agarose gel electrophoresis.

Results
characterization of agNPs
AgNPs were visualized by TEM, which indicated that both 

the GT-AgNPs and the C-AgNPs have spherical morphology. 

According to TEM images, C-AgNPs were monodisperse, the 

particles were well separated from each other, however, were 

trapped in the matrix of the residual C extract. In contrast 

to C-AgNPs, GT-AgNPs were larger, minor polydispersity 

was observed, and the particles formed loose aggregates 

(Figure 1A). Based on image analysis, the average size 

of the particles proved to be 3.2±1.2 nm for C-AgNP and 

12.7±5.8 nm for GT-AgNP, respectively.

XRD studies were performed to confirm the crystalline 

structure of the synthesized nanoparticles. The XRD pattern 

(Figure 1B) of both AgNPs showed four intense characteristic 

reflections at the 2θ angles of 38.2°, 44.3°, 64.4°, and 77.4°, 

respectively, corresponding to (111), (200), (220), and (311) 

planes of face-centered cubic lattice structure of metallic 

silver (JCPDS No. 87-0717).30

DLS measurements were carried out to determine 

hydrodynamic particle sizes (Figure 1C). The average size 

of C-AgNP was between 8 and 20 nm, whereas the hydro-

dynamic size of GT-AgNPs was between 20 and 50 nm. 

GT-AgNPs manifested an additional peak at around 400 nm 

indicating mild agglomeration.

UV–VIS spectra of AgNPs prepared by C and GT extracts 

are shown in Figure 1D. Peak maxima at 456 nm for GT-

AgNPs and at 469 nm for C-AgNPs characteristic to surface 

plasmon resonance also supported the formation of AgNPs.

The quality and the stability of the AgNP colloid solu-

tions were frequently monitored during the timeframe of the 

biological experiments. AgNPs were stable, no aggregation 

was detected. Figure 1C and D and Figure S1 verify that no 

significant changes occurred in the prepared nanoparticle 

samples throughout the experimental period.

FT-IR analysis was performed on biological extracts and 

on the AgNP samples obtained by the application of these 

extracts to identify the functional groups of the chemical 

components of these samples (Figure 1E). All samples contain 

alcoholic, phenolic, and carboxylic groups, indicated by an 

intense broad band around 3,400 cm−1, corresponding primarily 

to O–H stretching of hydroxyl groups, as well as to primary 

and secondary amines and amides denoted by N–H stretching 

vibrations. This band can be attributed to the nondissociatively 

adsorbed water molecules as well, the existence of the latter can 

be unambiguously proven by the presence of a band at 1,620 

cm−1 due to the deformation vibration of the water molecules. 

The peak around 1,145 cm−1 is attributed to the C–N stretching 

vibration of aromatic primary and secondary amines, and the 

bands at 900–600 cm−1 correspond to primary and secondary 

amines and amides (–NH
2
 wagging). The presence of ketones, 

aldehydes, quinines, and esters could be indicated by the peaks 

between 1,700 and 1,600 cm−1, assigned to the C=O vibration 

of carbonyl groups. The band at 2,920 cm−1 is attributed to C–H 

stretching of alkanes. The peak at about 1,630 cm−1 is credited 
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to the C=C vibration of aromatic structures, whereas the peak 

at 1,245 cm−1 is assigned to C–O stretching of phenolic groups. 

Another broad band centered around 1,040 cm−1 is attributed 

to aromatic ethers and polysaccharides (C–O–C stretch).31 

Carbonyl groups suggested the presence of proteins, and OH 

functional groups indicated phenolic compounds in our C and 

GT extracts. Our FT-IR results are in good agreement with the 

literature data, that is, the surface of the AgNPs is covered by 

organic compounds derived from C and GT extracts (see the 

900–1,800 cm−1 region).

Toxicity on human cells
We evaluated the antiproliferative propensity and the cyto-

toxicity of C-AgNP and GT-AgNPs using human cancer-

ous HeLa and mouse noncancerous NIH/3T3 cells. MTT 

assays revealed that GT-AgNPs inhibited the proliferation 

of both cell types with a greater extent than C-AgNPs 

(Figure 2A and B). According to the calculated IC
50

 values, 

NIH/3T3 fibroblasts (GT-AgNP: ~5 µg/mL; C-AgNP: 

272.14±0.09 µg/mL) were more sensitive to AgNP exposures 

than cervical cancer HeLa cells (GT-AgNP: 14.26±0.05 µg/mL; 

Figure 1 Physicochemical characterization of the obtained silver nanoparticles.
Notes: representative transmission electron microscopic images (A), X-ray diffraction patterns (B), size distribution by dynamic light scattering (C), and ultraviolet–visible 
spectra (D) of silver nanoparticles synthesized by coffee (c-agNP) and green tea extracts (gT-agNP). (E) FT-Ir spectra of coffee extract (c), gT, green-synthesized 
c-agNPs and gT-agNPs.
Abbreviations: c, coffee; FT-Ir, Fourier transform infrared spectroscopy; gT, green tea; NP, nanoparticle.

θ
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C-AgNP: 655.3±0.12 µg/mL). Furthermore, in both cell 

types, GT-AgNPs exhibited ~50 times higher inhibition on 

cell proliferation than C-AgNPs (Figure 2A and B).

Toxicity of both AgNPs was analyzed by crystal violet 

staining method (Figure 2C–F). AgNPs synthesized by C 

extract were nontoxic to the applied human and mouse cells 

in the tested concentration range. On the contrary, GT-AgNPs 

proved to be significantly cytotoxic to both HeLa as well as 

to NIH/3T3 fibroblast cells; however, the latter cells were 

more sensitive to the toxic effects of GT-AgNP. These results 

indicate that GT-AgNPs exhibit stronger antiproliferative 

activity and cytotoxicity than C-AgNPs.

antibacterial and antifungal activity
To determine whether the prepared AgNPs are effective 

against selected bacteria and fungi and to identify which 

of the two green-synthesized AgNPs exhibit better antimi-

crobial features, we tested the C-AgNPs and GT-AgNPs 

against B. cereus var. mycoides, M. luteus, E. coli, and 

P. aeruginosa in addition against nonpathogenic and patho-

genic yeasts S. cerevisiae, C. parapsilosis, C. albicans, and 

Cr. neoformans. Figure 3 shows that nanoparticles prepared 

either by C or GT extracts proved to be effective against 

all the examined bacterial strains (Figure 3A). Similar to 

bacteria, the tested pathogenic fungi, namely C. parapsilosis, 

Figure 2 antiproliferative and cytotoxic effects of green-synthesized silver nanoparticles on mammalian cell lines.
Notes: c-agNP and gT-agNP treatments inhibit the proliferation of human hela (A) and mouse NIH/3T3 fibroblast cells (B). cytotoxic effects of c-agNP and gT-agNP 
treatments were determined on hela (C) and NIh/3T3 (D) cells using crystal violet staining. crystal violet was resolubilized and the absorbance of each sample was 
determined spectrophotometrically (E, F). *P#0.001, two-way aNOVa.
Abbreviations: aNOVa, analysis of variance; c, coffee; gT, green tea; NP, nanoparticle; OD, optical density.
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Figure 3 antimicrobial activities of green-synthesized silver nanoparticles.
Notes: agar diffusion assay. Plates were inoculated with Bacillus cereus var. mycoides, Micrococcus luteus, Pseudomonas aeruginosa, and Escherichia coli strains (A) and 
with Saccharomyces cerevisiae, Candida parapsilosis, Candida albicans, and Cryptococcus neoformans (B). survival rate of c-agNP- and gT-agNP-treated E. coli (C) and 
Cr. neoformans (D).
Abbreviations: c, coffee; gT, green tea; NP, nanoparticle.
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C. albicans, and Cr. neoformans, were also susceptible to both 

nanoparticles, as large inhibition zones could be recorded 

around these yeasts (Figure 3B; Table S1). The nonpatho-

genic S. cerevisiae was neither affected by C-AgNPs nor by 

GT-AgNPs in the applied concentration, as in this case no 

inhibition zones could be observed (Figure 3B).

As the agar diffusion method is not able to reveal quantita-

tive differences in the effectiveness of C-AgNPs and GT-Ag-

NPs, microbe survival rates were determined at different AgNP 

concentrations on E. coli and on Cr. neoformans strains. As it is 

demonstrated in Figure 3C and D, C-AgNPs killed E. coli and 

Cr. neoformans cells in a dose-dependent manner; however, 

GT-AgNP treatments resulted in complete loss of viability even 

in the lowest tested concentration (Figure 3C and D).

antiviral activity
The antiviral activity of C-AgNPs and GT-AgNPs was 

investigated using S. cerevisiae dsRNA viruses, which are 

responsible for the killer phenotype of the host strain. Using 

this model system, the possible influence of AgNPs on viral 

replication can be detected easily by observing the loss of 

killer phenotype of the host strain (Figure S2) and monitor-

ing the presence or absence of the viral genome. Five strains 

with altered phenotype were isolated after C-AgNP treatment 

(Figure S2B, indicated by numbers 1–5), while GT-AgNP 

treatment resulted in three nonkiller strains (Figure S2C, 

indicated by arrows).

The stability of the altered phenotype was further exam-

ined in the strains originated from C-AgNP treatment. After 

transferring the strains day-to-day into fresh culture medium 

over 7 days (~112 generations), only one strain maintained 

the nonkiller phenotype (Figure 4A – #2), whereas two strains 

produced narrow inhibition zones (Figure 4A – #1 and #4) 

compared with the control (Figure 4A [K]). Interestingly, 

viral genomes could be detected in all the five strains 

(Figure 4B), including the nonkiller one (Figure 4B – #2), 

indicating that the loss of killer phenotype was not due to 

viral eradication.

release of silver ions
To reveal the possible explanation behind the differences in 

biological activities between C-AgNP and GT-AgNP, we 

measured the concentration of silver released from nanopar-

ticles after 1-day incubation period in cell culture medium 

by ICP-MS. C-AgNPs as well as GT-AgNPs were dissolved 

in serum containing DMEM medium in a final concentra-

tion of 17.5 mg/mL, respectively. After 24 h incubation at 

37°C, supernatants were obtained by centrifugation and 

prepared for ICP-MS. According to these measurements, 

the concentration of dissolved silver was 0.59±0.02 mg/mL 

for C-AgNPs and 1.92±0.07 mg/mL for GT-AgNPs, which 

indicated that ~3.5 times more silver ions can be released 

from GT-AgNPs than from C-AgNPs. These results suggest 

that although C-AgNPs are approximately four times smaller 

than GT-AgNPs, less Ag+ can be dissolved from the surface 

of C-AgNPs, probably due to the stabilizing matrix sur-

rounding the particles, which also accounts for their reduced 

toxicities compared with GT-AgNPs.

Discussion
The application of nontoxic, biocompatible agents renders 

green nanoparticle synthesis eco-friendly and cost-effective. 

Just as the awareness and the interest in green methodologies 

increases, so expands the scientific literature describing the 

various biological entities exploited for the green biosyn-

thetic route of metal nanoparticles. Phototrophic eukaryotic 

organisms, like algae or plants, or their extracts, heterotrophic 

eukaryotic cell lines and numerous prokaryotes, as well as 

Figure 4 antiviral effect of silver nanoparticles.
Notes: Killer phenotype of Saccharomyces cerevisiae sZMc 20733 (K) and c-agNP-treated strains (1–5) after ~112 generations (A). Viral rNa extracted from sZMc 
20733 (K) and from c-agNP-treated strains (1–5). arrows indicate the presence of l-a (4.6 kb) and M1 (1.8 kb) virus genomes (B).
Abbreviations: c, coffee; NP, nanoparticle.
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biocompatible macromolecules are of enormous impor-

tance for nanoparticle synthesis.12,32,33 Although these green 

methods yield metal nanoparticles, the sizes, the shapes, the 

dispersity grades of the obtained colloids may vary from one 

to another green approach. In correlation with these physical 

and chemical properties the biological activity of the pro-

duced particles may differ significantly as well. Even though 

the biological entities used for the nanomaterial synthesis are 

composed of similar or of the same active ingredients, very 

often the effects of the obtained nanoparticles especially on 

living cells might fluctuate substantially. Therefore, in this 

present work our goal was not to prove that GT or C extracts 

are more advantageous for AgNP synthesis than another 

green materials, but rather to emphasize that the biological 

activity or the toxicity profiles of the prepared nanomaterials 

might differ considerably depending on the applied green 

extract. Thus, we have not only produced two types (C-AgNP 

and GT-AgNPs) of AgNPs using green technologies based on 

two extracts with similar active components, and character-

ized the physicochemical properties of the particles, but as 

well compared them in an extensive screening against various 

microbes and mammalian cells to feature major differences 

between their biological efficiencies and toxicities.

Both C and GT extracts have been successfully applied 

in our environmentally benign production of AgNPs. Gener-

ally, natural extracts contain a large number of biologically 

active components, many of which can be responsible for 

the reduction of silver ions as well as for the stabilization of 

the obtained nanoparticles. It would be a major challenge 

to identify all the chemical constituents of either extract; 

however, according to previous studies the key phytochemi-

cals responsible for converting silver ions into AgNPs thus 

functioning in this green synthesis approach as bioreductants 

could be phenolics, coumarins, ubiquinones, terpenoids, 

glycosides, alkaloids, and tannins. Furthermore, peptides 

and proteins in C and GT extracts with their cysteine amino 

acid side chains could also act to favor silver ion reduction 

and nanoparticle production.25,34,35 Moreover, the carbonyl 

groups of proteins have strong binding ability to metal 

nanoparticles and thus proteins can form a coating layer on 

the surface of the AgNPs, thereby preventing agglomeration 

and enhancing the stability of the synthesized nanoparticles 

in aqueous media.25,34–36

In this study, we found that both AgNPs proved to be 

effective in the examined concentrations against nearly all 

the tested microbes; however, GT-AgNPs performed always 

markedly better in toxicity and antimicrobial screens than 

C-AgNP counterparts. It is also noteworthy that apart from 

their antimicrobial activity, GT-AgNPs were also highly 

toxic against mammalian cells, which limits their poten-

tial applications. On the contrary, C-AgNPs exhibited an 

extensive inhibitory action on Cr. neoformans as well as on 

E. coli; however, these particles were biocompatible with 

the tested HeLa and NIH/3T3 cells, showing no mammalian 

cytotoxicity.

Apart from antibacterial and antifungal features, we 

tried to assess the antiviral activity of the produced AgNPs. 

As there is no ideal experimental model for screening the 

antiviral propensity of any nanomaterial produced via con-

ventional or green synthesis approaches, we have tested 

GT-AgNPs and C-AgNPs on S. cerevisiae dsRNA viruses. 

There are some major advantages of using this model sys-

tem, namely that the host strain S. cerevisiae itself is less 

susceptible to C-AgNP or GT-AgNP treatments than other 

yeast strains. Furthermore, the possible influence of the 

AgNPs on viral replication can be detected easily by loss 

of killer phenotype of the host strain and by checking the 

presence of the viral genome. We detected killer-curing 

capacity of both AgNPs, as in some cases the loss of killer 

phenotype was observed after AgNP exposures. However, 

as viral genomes could be identified in the nonkiller strains 

as well after multiple cycles of cultivation, the alteration in 

phenotype is not the consequence of the eradication of the 

viruses themselves.

Generally, it is accepted that smaller nanoparticles 

possess higher toxicity due to their larger relative surface 

area, which enables the more intensive release of reactive 

silver ions. The mechanism of AgNP action is in fact driven 

mainly by these ions, leading to the generation of reactive 

oxygen species finally causing cell death.37,38 Therefore, the 

less silver ions are released, the weaker will be the AgNP-

induced cellular toxicity. Surprisingly, in every biological 

test we performed, bigger sized GT-AgNPs resulted to be 

more effective than smaller C-AgNPs. This phenomenon 

might be the direct consequence of the thick matrix, where 

C-AgNPs seem to be completely embedded (Figure 1A). This 

moiety of multicomponent matrix on the surface and in the 

environment of C-AgNPs supposedly attenuates or retards 

the release of silver ions from the nanoparticle surface; thus, 

this inhibitory effect on nanoparticle dissolution results in 

reduced cytotoxicity. In fact, ICP-MS measurements veri-

fied that ~3.5 times more silver ions can be released from 

GT-AgNPs than from C-AgNPs. Therefore, we concluded 

that the lower Ag-ion-releasing capability of C-AgNPs is 

responsible for the weaker biological activity. However, it has 

to be emphasized that C-AgNPs were also effective against 
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microbes without being cytotoxic, which renders C-AgNPs 

as attractive potential candidates for further applications.

These results clearly show that the various green mate-

rials used for stabilization and for the reduction of metal 

ions have a defining role in determining or fine-tuning the 

biological activity of the obtained nanoparticles. Therefore, 

more careful considerations in selecting green substances for 

the nanomaterial production and thorough screening regi-

mens of the obtained nanomaterials are required to estimate 

their efficiencies.

Conclusion
Nanomaterial industry produces enormous amounts of 

materials for electronics, optics, diagnostics, and therapy. 

Therefore, a shift to green synthesis approaches for nano-

material production using renewable resources, eco-friendly, 

and biocompatible substances directly from nature, avoiding 

toxic chemicals and leaving only innocuous waste materials 

behind would support sustainable development and reduce 

the ecological footprint of this industry. It should be noted, 

however, that since the given green material or entity used 

for the nanomaterial synthesis can largely define the physical, 

chemical, and biological characteristics of the obtained nano-

material, a comprehensive screen of the products should be 

carried out prior their applications to delineate their behavior 

in the presence of living systems.
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Table S1 Inhibition zones in the presence of agNPs

Microorganisms C-AgNP inhibition zone (mm) GT-AgNP inhibition zone (mm)

Bacillus cereus var. mycoides 1.38±0.24 1.63±0.13
Micrococcus luteus 3.00±0.00 4.00±0.00
Escherichia coli 1.75±0.14 2.25±0.14
Pseudomonas aeruginosa ,1.00 1.00±0.00
Candida albicans 4.00±0.00 4.00±0.57
Cryptococcus neoformans 4.50±0.20 4.75±0.14
Candida parapsilosis ,1.00 1.66±0.57
Saccharomyces cerevisiae 0.00 0.00

Notes: The concentration of c-agNP and gT-agNP was 17.5 mg/ml. Number of samples (n=4).
Abbreviations: c, coffee; gT, green tea; NP, nanoparticle.

Figure S1 Dls (A) and UV-VIs spectra (B) of gT-agNPs and c-agNPs 3 months after synthesis.
Abbreviations: c, coffee; gT, green tea; NP, nanoparticle.

Figure S2 Killer activity of untreated (A), c-agNP-treated (B), and gT-agNP-treated Saccharomyces cerevisiae sZMc 20733 cells (C). Numbers (1–5) indicate the colonies 
of c-agNP-treated cells where no killer phenotype was observed, whereas gT-agNP-treated colonies with lost killer activity are indicated with black arrows.
Abbreviations: c, coffee; gT, green tea; NP, nanoparticle.
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