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A B S T R A C T

This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models (LLMs) in
scientific domains. The proposed domain-knowledge embedded prompt engineering method outperforms traditional prompt engineering strategies on various
metrics, including capability, accuracy, F1 score, and hallucination drop. The effectiveness of the method is demonstrated through case studies on complex materials
including the MacMillan catalyst, paclitaxel, and lithium cobalt oxide. The results suggest that domain-knowledge prompts can guide LLMs to generate more accurate
and relevant responses, highlighting the potential of LLMs as powerful tools for scientific discovery and innovation when equipped with domain-specific prompts.
The study also discusses limitations and future directions for domain-specific prompt engineering development.

1. Introduction

The rapid advancement in artificial intelligence (AI) has significantly
propelled its integration into natural science, specifically chemistry and
material science. Virtual screening contains thresholds determination
and properties labeling, which can exhaust known design space [1] and
guide experimental explorations [2]. Designing thresholds requires
thorough domain insights but the rate-determining step in virtual
screening is labeling the data. Early applications of AI in science were
focused on properties predictions (e.g. formation energy [3], selectivity
& permeability of membranes [4–6], protein structures [7,8] and bat-
teries’ life [9,10]). As machine learning advances, more variants of
artificial neural networks enabled AI to handle information in complex
modal and solve more sophisticated problems in computational chem-
istry. For example, MLP (multilayer perceptron) based machine learning
potentials for molecular dynamics [11,12], GNN based DFT (density
functional theory) functionals [13,14], CNN based electron microscope
images processing [15,16]. However, traditional high-throughput vir-
tual screening is limited to known molecules or materials. The emer-
gence of AI in inverse design emphasizes the need for innovative models
that can assist experts in discovering new structures [17]. Models con-
taining generating and predicting enable de novo design of molecules

[18,19], drugs [20] and proteins [21,22].
A key challenge in applying AI to science is the lack of experimental

data, which is often costly and time-consuming to gather. For example,
one manual hydrogen evolution measurement experiment takes half a
day and an average time of proceeding requires about several months
[23]. Even with automated instruments, perovskite crystal formation
experiments take 20 months to obtain 8470 datapoints [24].

Overcoming the ‘small data’ challenge is basic but essential. Among
tremendous approaches towards improving learning efficiency, large
language models (LLMs) open a new channel for more efficient virtual
screening apart from conventional methods, such as high-throughput
computational methods [25–27], autonomous wet experiments [28,
29], and data efficient algorithms (e.g. Bayesian optimization [30,31]
and active learning [32]). LLMs are capable of processing and analyzing
vast data amounts, which have notably advanced in addressing chal-
lenges like zero-shot reasoning, enabling them to handle tasks they have
not been explicitly trained for. They also excel in incorporating domain
knowledge across various fields and providing explanations in natural
language, thereby enhancing their adaptability and accessibility. The
LLM based AI agents [33] and pre-trained foundation models [34,35]
are considered as the next generation of AI scientific assistants.

Prompt quality affects LLMs’ outputs significantly, many studies
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focus on well-defined prompts for general purposes (e.g., chain of
thoughts reasoning [36], few shots learning [37]), known as prompt
engineering [38–40]. Enhancing LLMs for specific fields typically in-
volves fine-tuning, which can be complex and costly for those outside AI
community [41]. Although there are already some domain-specific
LLMs, they have not yet achieved the stability of general-purpose
models like ChatGPT, leading many to focus on how to effectively uti-
lize ChatGPT. Considering LLMs’ remarkable learning abilities, strategic
prompting or directing the LLM with specific instructions could be an
effective alternative. However, current prompt engineering is mostly
focused on general conditions such as academic writing [42] and science
popularizing [43]. For experts in non-AI disciplines, the true value of
these models lies in their domain-specific expertise, rather than their
general capabilities. The absence of prompt engineering for specific
areas makes LLMs user-unfriendly, especially for experimental chemists
and material scientists.

Our paper studies the overlooked gap in AI for chemistry and ma-
terials science, including small molecules, crystal materials and protein
enzymes, highlight the importance of prompting to researchers off-the-
shelve LLM. Our investigation shows the critical need for solutions that
combine AI’s generative capabilities with detailed materials science
insights, aiming to enhance model applicability and to address domain-
specific challenges across various research areas.

In this article, we introduced “domain-knowledge embedded prompt
engineering” as a novel approach to enhance LLM performance in
specialized areas, as depicted in Fig. 1. First, we created a set of domain-
specific datasets for the first time, supplementing the existing public
datasets. Second, we developed and tested specific prompts for various
tasks in three examples extracted from chemistry, materials science, and
biology. Third, we combined the general methods of the computer sci-
ence community for comparison, validating that the approach is correct.
This approach aligns with desired outcomes and involves developing
appropriate evaluation metrics. We also addressed the issue of LLMs
generating inaccurate or ’hallucinated’ responses and designed strate-
gies to mitigate this. Last, through a case study, we demonstrated how
our prompting strategies can address specific challenges in these fields.
Overall, we showed that domain-knowledge embedded prompt engi-
neering offers a cost-effective and efficient way to leverage the potential
of LLMs.

2. Methods

In this chapter, we first introduce the construction of tasks from three

domains: organic small molecules, enzymes and crystal materials, and
the answer evaluation scheme for numerical and verbal tasks (See Sec-
tion 2.1). We then formulate these tasks of domain question answering
to an LLM question answering problem (See Section 2.2) and introduce
various existing prompt engineering methods to address these tasks (See
Section 2.3). Finally, we put forward our domain-knowledge embedded
prompt engineering method (See Section 2.3).

2.1. Dataset construction and answer evaluation scheme

In task construction process, each of the three material categories
(small molecule, enzyme and crystal material), holds significant rele-
vance in academic research and practical applications. Organic small
molecules are commonly utilized in pharmacy [44], while enzymes play
a critical role in biocatalysis [45,46], and crystalline materials are
essential in semiconductor technology and photovoltaic devices [47,
48]. While mainstream benchmark datasets such as MMLU [49],
Big-Bench [50] and GSM8k [51] have been widely applied to LLM
performance evaluation, the composition of these datasets are usually
generic math or reasoning questions, lacking a concentrated focus on
some specific knowledge domains or subjects. Compared to these data-
sets, our datasets could provide a more comprehensive evaluation of
LLM’s performance (using different prompt engineering methods) on
specific chemistry domains.

We collected and curated a dataset of 1280 questions and

Fig. 1. The Whole process of prompt engineering framework.

Table 1
The composition of prompt engineering datasets.

Datasets Tasks Number of
Molecules

Number of
Tasks

Crystal
Material

Space Group Number, Lattice
Angle (α,β,γ), Lattice Vector (a,b,
c), Density, Formation Energy,
Energy Above Hull, Stability, Band
Gap, Direct Gap, Metallic, Total
Magnetization, Ordering

40 640

Organic
Small
Molecule

Molecular Formula, Melting Point,
Density, Solubility, Molecular
Weight, H-bond Acceptors, H-bond
Donors, LogP, Drugability

40 360

Enzyme Category, Substrate, Product,
Active Site, Biological Process,
Number of Amino Acids, Ligand

40 280

Total 32 120 1280
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corresponding solutions (See Table 1) for the evaluation of LLM’s
capability, as described below. There are two most important criteria in
molecule selection: practical applicability (for the purpose of assisting
scientific application research) and the balance of various molecular
types in the specific domain.

Organic Small Molecules: 40 molecules proven to have significant
drug properties or potentials are selected and curated from Pubchem
[52], each containing 9 crucial structural and physical-chemical
properties.

Enzymes: 40 enzymes involved in significant metabolic pathways in
vivo are selected and curated from UniProt database [53], each with 7
crucial sequence and functional information.

Crystal Materials: 40 representative crystals from some of the most
critical structural and functional categories in materials science are
collected from the Materials Project database [54], each with 16 crucial
structural and energy properties.

A detailed enumeration and classification of all task types are con-
tained in Appendix S.2. Due to the limitations in API callings of pro-
prietary LLMs, it is very hard to test molecules on a larger scale (like for
thousands of molecules), but we believe that the selected molecules are
already very representative to demonstrate LLM’s performance, and
could pave the way for further applications in the future.

In evaluating the performance of LLM prompt engineering methods
on different tasks, 4 significant metrics are introduced:

Capability: To measure LLM’s capability to provide an answer for a
certain task, regardless of its correctness. Its value takes 1 if the answer is
effective otherwise 0.

Accuracy:To evaluate the extent to which LLM’s answer is identical
or close to the ground truth.

F1 Score: to measure LLM’s predictive performance on multiple-
choices questions, combining precision and recall. As a widely used
metric in Statistics and Machine learning, F1 Score offers a more
comprehensive evaluation compared to Accuracy, especially in cases of
imbalance of precision and recall where accuracy might be high but does
not reflect the true performance of LLM. A high F1 score is usually
accompanied by high precision and recall, indicating stronger model
performance.

Hallucination Drop: A metric put forward specifically for this work
to quantify the discrepancy between an LLM’s ability to answer ques-
tions (Capability) and the accuracy of those answers (Accuracy). It takes
1 minus the ratio of Accuracy and Capability as the value. This metric
helps identify the hallucination level of LLM, as when the hallucinaton
drop is high, the LLM tends to be trapped in generating hallucinated
answers or scientific facts.

A detailed implementation of these metrics are listed in Appendix
S.3.

In our approach, we utilize an LLM plugged-in automatic scheme to
evaluate the metrics above. According to Table S.2 in Appendix, tasks
can be divided into numerical and verbal ones, each of which takes a
different manner to evaluate, respectively.

Numerical Tasks: All numerical tasks are transformed to the form of
multiple-choices questions, as straightforward error estimation of the
answer from ground truth can be strongly affected by unit and scale, and
the form of multiple-choices makes it easier and more reasonable in
evaluation across various tasks. Detailed implementation of tasks’
transformation into multiple-choices questions are described in Ap-
pendix S.3. Metrics involved in numerical task evaluation are: Capa-
bility, Accuracy, F1 Score and Hallucination Drop.

While Capability, F1 Score and Hallucination Drop are evaluated in
the normal form, the Accuracy of multiple choices questions is specif-
ically defined. Full mark (1) is given if the option is exactly the ground
truth. A partial score (0.4) is given if the value or range of the chosen
option is adjacent to the ground truth. The complete scoring policy is
listed in Appendix S.3.

Verbal Tasks: For verbal answers, the LLM is guided by a series of
grading examples coordinated to the specific question types and then

required to give a grade to an answer. Detailed prompts for LLM’s
grading tasks are listed in Appendix S.4. Metrics involved in verbal task
evaluation are: Capability, Accuracy and Hallucination Drop.

While Capability and Hallucination Drop are evaluated in the normal
form, the Accuracy of verbal tasks take discrete values among {0, 0.2,
0.4, 0.6, 0.8, 1}. Score 0 means that the answer is completely irrelevant
to the ground truth, while the scores {0.2, 0.4, 0.6, 0.8} imply part of the
answer aligned with the ground truth, extent to which increases with the
value. Score 1 corresponds to answers intrinsically the same as ground
truth.

It is worth emphasizing that we believe the LLM plugged-in auto-
matic scheme above for evaluation could bear skepticism on fairness and
effectiveness, as LLM’s evaluation process is independent from LLM’s
predictive task performing in the last step, implying the LLM would not
take past memories of task performing or “know” the answers were
generated by itself, and thus is unlikely to “cheat” on the grading
process.

Fig. 2 shows the flow chart of question construction and answer
evaluation process. Data from 3 material categories are extracted and
combined to form proper questions (some are in the form of multiple-
choices questions). When the raw answers are acquired, they need to
be checked for validity, and then aligned to proper answer forms. Ulti-
mately the answers are automatically graded.

2.2. Scientific prediction as a LLM question answering problem

In the LLM era, scientific prediction can be considered as a question
answering task leveraging the zero-shot/few-shot reasoning power of
LLM. It is demonstrated that by providing in-context hints to language
model with size large enough for emergence to happen, the model can
excavate knowledge learned from pre-trained data and well-perform the
question answering task [55]. As an approach to enhance LLM’s capa-
bility on specific domains or tasks, prompt engineering significantly
reduces the need for extensive task-specific datasets as required in LLM
fine-tuning paradigm, making it an effective in-context learning method
for LLM enhancement.

The process of prompt engineering could be mathematically
formalized [56]. Let Q be the question, P be the prompt, A be the answer
by LLM, prompt engineering process is to determine the context of
prompt words P such that the answer A could be given effectively by
LLM:

A= f(P,Q) (1)

where f is the LLM.
A prompt optimization objective is to find:

arg maxP g(f(P,Q), S) (2)

where S is the ground truth solution, and g is a evaluation function
which measures how much the LLM answer A is in accordance with the
ground truth solution S.

For our dataset D = {Qi, Si}ni , the general prompt optimization
objective is to find the P that maximizes the expectation over the dataset:

arg maxP EQ,S∈Dg(f(P,Q), S) (3)

2.3. Common prompt engineering techniques and domain-knowledge
embedded prompt engineering

The essence of prompt engineering is to harness the full potential of
LLMs in diverse applications by ensuring they respond in a manner that
is most aligned with the user’s intent and the task at hand. We give a
brief introduction to several mainstream prompt engineering methods:

Zero-shot Prompting: Zero-shot Prompting requires LLM to answer
the given question directly without providing any data or example
questions in the context (See Fig. 3 (a)).

H. Liu et al.
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Fig. 2. Question construction, answer alignment and grading process.

Fig. 3. Mainstream prompt engineering methods Illustration
(a) zero-shot prompting; (b) few-shot prompting; (c) expert prompting; (d) zero-shot CoT prompting; (e) few-shot CoT prompting.
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Few-shot Prompting: In Few-shot Prompting, an LLM is presented
with several demonstrations, (i.e. question-answer pairs within the
prompt context), better equipping the LLM to understand and replicate
the response format and content. The demonstrations in prompt can be
formalized to:

P={(Q1,A1),…, (Qm,Am)} (4)

where m is the number of examples [55]. (See Fig. 3 (b))
Expert Prompting: Role-play instructions have demonstrated their

effectiveness in harnessing the potential of LLMs [56]. By guiding LLMs
step-by-step into assuming the role of domain experts, they can generate
responses akin to those written by experts (See Fig. 3 (c)).

Zero-shot CoT (Chain-of-Thought) Prompting: By eliciting a
sequential, step-by-step reasoning process to effectively address com-
plex tasks, CoT enables the model to break down a task into its con-
stituent parts, offering a clear and logical pathway to the solution [36].
In particular, Zero-shot CoT prompting involves adding “Let’s think step
by step” to the prompt as a trigger-sentence (See Fig. 3 (d)).

Few-shot CoT Prompting: In addition to adding “Let’s think step by
step” to the prompt like Zero-shot CoT, Few-shot CoT provides several
examples of Thought-Chain in solving similar problems to assist LLM
perform the current task in a similar manner [57]. The demonstrations in
prompt (See Fig. 3 (e)) can be formalized to:

P={(Q1,C1,A1),…, (Qm,Cm,Am)}. (5)

A significant limitation of these prompt engineering methods is that
they do not incorporate domain expertise as guidance for problem-
solving, which considerably restricts the capabilities of LLMs in
numerous domain-specific tasks. Moreover, since addressing many
domain-specific challenges involves intricate cognitive processes, it is
imperative to strategically combine various prompt engineering tech-
niques at different stages to achieve optimality.

Here we propose a domain-knowledge embedded prompt engineer-
ing strategy that integrates chemistry knowledge into language model.
The prompting scheme takes the form of multi-expert mixture. Each
expert takes part in role playing and are given a few shots of CoT
demonstrations integrated with expertise domain knowledge or
instructions.

Here, incorporating domain knowledge essentially involves inte-
grating the thought processes of chemistry/materials experts. This
contrasts with the conventional zero-shot CoT approach, which merely
prompts LLMs to engage in a chain of thought. By doing so, it offers more
precise background knowledge and exemplifies more accurate human
reasoning. In Algorithm 1 and Algorithm 2, we illustrate how Domain-
knowledge embedded prompts are typically structured.

Algorithm 1. Domain-knowledge embedded prompting

H. Liu et al.
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Algorithm 2. GetResponse Function

The domain-knowledge embedded prompting first involves
leveraging multiple role-playing experts, to receive background
knowledge and adapt into the role. These experts apply domain-specific
problem-solving capability through few-shot CoT examples, which uti-
lizes more detailed instructions and knowledge to break down the
problem into smaller steps. Finally, the outputs from all experts would
be assembled through the principle of "minority submission to the
majority".

The full documentation of all domain-knowledge prompts are listed
in Appendix S.4. The high-level schemes of these strategies are delin-
eated in Figs. 3 and 4.

In the following chapters, we compare this prompt engineering
method proposed above to other generic prompt engineering methods
including zero-shot prompting, few-shot prompting, expert prompting,
and CoT prompting.

3. Results

In this section, we first present the overall benchmarks of prompt
engineering methods over all tasks. Then we make detailed comparisons
over different task types, CoT complexities and material types. In the last
section, 3 case studies on representative molecules are conducted using
our tailored domain-knowledge embedded prompt engineering method
to illustrate the effectiveness of prompt engineering in assisting crucial
scientific research topics.

3.1. Summary of overall performance

In our study, we evaluated 5 different prompt engineering strategies
across three datasets (small molecule, enzyme, and crystal material),
each yielding 3 sets of answers for robustness. The LLM model being
evaluated is ‘gpt-3.5-turbo-1106’ [58] through official API calling. The
prompt engineering strategies included zero-shot, few-shot, expert, and
zero-shot CoT, along with domain-knowledge expert CoT (ours).

The overall evaluation results on 3 datasets are shown in Figs. 5 and
6.

Our domain-knowledge embedded prompt engineering method
outperforms other conventional prompt engineering techniques on most
tasks and metrics. In nearly all tasks on enzymes and crystal materials,
and more than 50 % of the tasks on small molecules, our method’s
performance is very significantly higher than other methods, while on
tasks: Molecular Density, Molecular Weight, Number of Amino Acids
and Active Sites, our method does not demonstrate obvious advantages.

In the following sections, we make more detailed comparisons for
different tasks and molecules. Due to space limitation, we only present
the key findings in the following sections. In Section 3.2, we compare
these method’s performance on different task types, while in Section 3.3,
we delve into the correlation between prompt engineering method’
performance and CoT complexity. Finally we compare prompt engi-
neering methods’ effectiveness on different types of materials.

3.2. Comparison by task types

In this section, we compare various prompt engineering methods
performance on different types of tasks, and the detailed classifications

Fig. 4. The Whole Process of Domain-Knowledge Prompt Engineering Method
(N experts are assembled to give answers separately, and “eg.i” represents few-shot examples integrated with CoT knowledge).

H. Liu et al.
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can be referred to in Table S2 and S.3 in supplementary materials. Each
task type presents unique challenges and necessitates different infer-
encing abilities from the LLM. After aggregation, the performances of 5
prompt engineering methods on different question groups are shown in
Fig. 7.

(1) Domain-knowledge embedded prompt engineering method
outperforms traditional prompt engineering methods on all
question types. Through a comprehensive evaluation across
various groups of prediction tasks, focusing on four crucial
indices - "Capability", "Accuracy", "F1 Score" and "Hallucination
Drop", our domain-knowledge embedded prompt engineering
method consistently outperforms traditional prompt engineering
strategies. This superiority is evident in the substantial
enhancement of both capability and accuracy metrics, with the
most notable improvements exceeding a 100 % boost. Such
findings unequivocally demonstrate that integrating domain-
specific knowledge into prompt engineering substantially ele-
vates the effectiveness of generic prompt engineering techniques.

(2) LLM performs better for answers derived from logical
reasoning than answers based on experimental data. This
tendency is further amplified in our domain-specific prompt

engineering method, where a more tailored prompt engineering
strategy is applied. As shown in Fig. 7(a) and (b) and (c), it
consistently leads to more significant improvements in tasks
involving logical deduction compared to other prompt engi-
neering methods. This disparity in performance can be attributed
to the fact that LLMs, with refined prompt engineering, can
engage in a sophisticated Chain-of-Thought process, enabling
LLMs to excel in tasks that demand intricate reasoning and
problem-solving skills. However, despite being trained on various
scientific databases, LLMs do not excel in precisely replicating
exact data values. This brings about their ability to process and
reason through information well rather than serve as direct
conduits for data retrieval.

(3) LLM performs better on verbal tasks compared to numerical
tasks. When faced with tasks that require a numerical response,
(actually in formats involving multiple choices), LLMs tend to
exhibit weaker performance. This is evident in both capability
and accuracy metrics across various prompt engineering
methods, with numerical answers derived from experimental
data showing the least favorable results (Fig. 7 (a), (b), (c)). When
LLMs engage in numerical reasoning, their capability scores are
notably higher (Fig. 7 (a)), but this advantage is tempered by

Fig. 5. Capability and Accuracy for All Tasks
(a) Capability on Small Molecules; (b) Accuracy on Small Molecules; (c) Capability on Enzymes; (d) Accuracy on Enzymes; (e) Capability on Crystal Materials; (f)
Accuracy on Crystal Materials
(The abscissa is each task under each data set; the ordinate is the metric scores of different prompt engineering methods under the task.).
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significant issues with hallucinations, which adversely affect the
accuracy of these responses. In fact, even when the most
advanced prompt engineering methods are applied, the accuracy
of logical numerical answers is surpassed by that of logical an-
swers. This trend underscores a recognized weakness of LLMs in
number-related tasks, as evidenced by several research studies
[59,60].

(4) Domain-knowledge embedded prompt engineering method
effectively reduces hallucination. The metric of hallucination
drop serves as a barometer for the average quality of answers
produced by LLMs under different prompt engineering strategies.
As shown in Fig. 7 (d), the question type of numerical answer by
logic is the only category where an increase in hallucination is
observed as the domain-knowledge embedded prompt engineer-
ing is applied. In the other three question types, the incorporation
of domain-specific knowledge into the prompt engineering pro-
cess effectively curtails the occurrence of hallucinations. Notably,
the question types ’numerical answer by experimental data’ and
’verbal answer by logic’ emerge as frontrunners, registering the
top two lowest scores in hallucination drop. This outcome un-
derscores the precision and effectiveness of domain-knowledge

embedded prompt engineering methods in enhancing the reli-
ability and accuracy of LLM responses.

The results from a more detailed classification based on reasoning
paradigm also draw some intriguing conclusions below, showing the
distinctive strengths and drawbacks in LLM reasoning.

(5) LLM performs poorly on arithmetic tasks. These tasks
revolving around basic counting, adding, and multiplying abili-
ties, ostensibly require less sophisticated cognitive skills
compared to tasks that necessitate spatial imagination or intense
domain-knowledge based reasoning, but the performance of
LLMs in these arithmetic tasks is unexpectedly subpar. Despite
scoring high in capability, LLMs do not exhibit a corresponding
lead in accuracy, showing higher occurrence of hallucinations in
these tasks. In fact, the accuracy of LLMs in arithmetic tasks is not
only significantly outpaced by domain knowledge literal
reasoning tasks but also closely rivalled by spatial relationship
tasks (Fig. 8 (b)). Notably, even the application of CoT heuristics
in the reasoning process does not substantially mitigate this issue.
This is evident in the Hallucination Dropmetric, where both zero-

Fig. 6. F1 Score and Hallucination Drop for All Tasks
(a) F1 Score on Small Molecules; (b) Hallucination Drop on Small Molecules; (c) F1 Score on Enzymes; (d) Hallucination Drop on Enzymes; (e) F1 Score on Crystal
Materials; (f) Hallucination Drop on Crystal Materials
(The abscissa is each task under each data set; the ordinate is the metric scores of different prompt engineering methods under the task.).
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shot-CoT and domain-knowledge embedded method exhibit a
higher incidence of hallucination phenomena in arithmetic tasks
compared to others (Fig. 8 (d)).

(6) LLM is incapable on many information retrieval tasks. These
tasks, which cannot be effectively addressed through reasoning
alone, generally exhibit poorer performance compared to those
based purely on reasoning. As depicted in Fig. 8(a) and (b) and
(c), tasks involving the retrieval of both common and uncommon
properties record the lowest capability and accuracy scores, with
tasks involving uncommon information faring slightly worse.
Prompt engineering falls short in information retrieval, primarily
due to its inability to provide direct access to external databases,
but a well-crafted, domain-specific prompt can still marginally
improve LLM performance by encouraging a more detailed
response, as indicated by the higher capability scores for domain-
knowledge prompt engineering. Despite this, the challenge of
mitigating hallucinations remains formidable, with the highest
incidence of hallucination observed in these types of tasks when
using domain-knowledge prompts.

(7) Verbal reasoning tasks get largest boosting with domain-
knowledge embedded prompt engineering method. In 5
question types classified by reasoning paradigms, "Domain
Knowledge Literal Reasoning Tasks" distinctly stand out, espe-
cially when enhanced by domain-knowledge embedded prompt
engineering methods. This category of tasks not only achieves the
highest capability and accuracy scores overall but also maintains
a relatively low level of hallucinations.This demonstrates well-
crafted prompts can, in a remarkably efficient manner, stimu-
late the latent capabilities of LLMs, enabling them to generate
answers with heightened confidence and precision.

3.3. Comparison by CoT complexity

In this section, we compare different prompt engineering methods’
distinction under a variety of CoT complexities, in order to depict our
tailored prompt engineering method’s superiority under different CoT
complexities. We propose that the quantity of additional properties
added in CoT prompts serves as a viable metric for gauging the
complexity of the CoT process. This metric reflects the extent of extra
information that is integrated into the CoT reasoning, which in turn
influences the complexity and depth of the reasoning required. To
operationalize this, we have categorized tasks based on the number of
additional properties provided in each question, as shown on Table S.4
in Appendix.

It is, however, worth noticing that the number of additional prop-
erties provided (namely, the complexity of CoT) does not necessarily
correlates to the difficulty of questions. The aggregated results are
shown in Fig. 9.

(1) Domain-Knowledge Embedded Prompt Engineering pro-
duces greatest performance lift in tasks with most compli-
cated CoT formulation. In scenarios where LLMs are presented
with different amounts of additional information for task execu-
tion, the domain-knowledge embedded prompt engineering
method emerges as the most effective, outshining others in three
key performance metrics: "Capability", "Accuracy", and "F1
Score". Specifically, it excels remarkably in "Tasks with Multiple
Additional Properties" (Fig. 9 (a), (b), (c)). This highlights the
advantage of domain-knowledge prompts in enhancing LLM
performance in tasks that demand a complex CoT formulation.
Furthermore, even for simpler zero-shot CoT method, this benefit
makes it reverse the lead of few-shot method in "Tasks with
Multiple Additional Properties", especially on F1 Score (Fig. 9
(c)). This aligns well with the intuitive understanding of CoT in
enhancing inference-related capabilities.

(2) In-Context Information Could Effectively Reduce Hallucina-
tion Level. Tasks supplied with the most in-context extra infor-
mation consistently exhibit the lowest levels of hallucination
across all prompt engineering methods, as shown in Fig. 9 (d).
This trend holds true regardless of whether the prompt engi-
neering method incorporates domain-knowledge features. A
notable observation is that many tasks in the "Tasks with Multiple
Additional Properties" category are inherently complex and
challenging. For example, predicting the drugability of a small
molecule often necessitates a thorough and intricate examination
under Lipinski’s Rule of Five. Similarly, calculating the crystal
density of a substance involves complex computations, including
the determination of relative molecular mass of a unit cell, the
measurement of unit cell volume, and intricate unit trans-
formations. The surprisingly low hallucination levels is indicative
of the effectiveness of providing additional in-context informa-
tion, suggests that enriching LLM prompts with more contextual
information and factual details may substantially enhance the
robustness and reliability of the generated content.

3.4. Comparison by material differences

In this section, a detailed comparison of prompt engineering accu-
racy on three types of materials will be portrayed. For clarity, we only
focus on our tailored prompting method (namely the domain-knowledge
embedded prompting)’s performance on small molecules, enzymes and
crystal materials with divergent material traits. The methodology
employed to quantify the differences among these materials will be
elaborated upon in the following paragraphs.

For small molecules, we propose two indicators—molecular weight
and elemental composition—to differentiate the complexity of various
molecules. This is predicated on the rationale that more complex

Fig. 7. Prompt engineering performances by output Type
(a) capability on different tasks; (b) accuracy on different tasks; (c) F1 score on
different tasks; (d) hallucination drop on different tasks.
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molecules typically necessitate a higher level of analytical effort, which
could inversely affect accuracy. We aim to investigate whether this
assumption aligns with the empirical results obtained from our study.

For enzymes, we also employ two indicators to discern the difficulty
in predicting properties among different enzymes: enzyme scale,
quantified by the number of amino acids, and the current depth of
research, denoted as the number of reviewed publications recorded on
Uniprot [53]. It is hypothesized that more complex enzymes, charac-
terized by longer peptide chains and a lesser degree of comprehensive
research, necessitate a higher analytical effort, potentially reducing
accuracy. We intend to explore whether this hypothesis is consistent
with the overall findings of our analysis.

For crystalline materials, we utilize two indicators to gauge
complexity: formula complexity, which reflects the complexity of a
single unit cell, and unit cell symmetry, denoted by the crystal system
to which it belongs. The underlying premise is that more complex
crystalline materials demand a more substantial analytical effort, which
could, in turn, diminish accuracy. We will investigate whether this
premise aligns with the collective results of our study.

(1) The prediction accuracy of LLMs deteriorates for larger and
more complex organic molecules. As the molecular weight

increases and the elemental composition becomes more diverse,
we observe a gradual decline in the LLM’s prediction accuracy.
Specifically, molecules comprising more than five distinct ele-
ments exhibit significantly poorer performance compared to
those with fewer components. Moreover, when the molecular
weight exceeds 300 g/mol, the overall accuracy for single
molecule predictions generally falls below 30 %, as shown in
Fig. 10 (a). Furthermore, large organic molecules are less
commonly found in literature compared to smaller molecules,
exacerbating the difficulty of LLM’s information retrieval.

(2) The accuracy of LLMs in predicting properties of specific
enzymes aligns closely with the depth of current research on
these enzymes but shows a weak correlation with the en-
zymes’ size. The number of reviewed publications recorded on
Uniprot, which signifies the academic community’s past research
focus on an enzyme, demonstrates a strong correlation with the
LLM’s prediction performance. The more thoroughly an enzyme
is researched and understood, the higher the accuracy of LLM
predictions. Most enzymes with low prediction accuracy
concentrate in areas with low number of reviewed publications,
as shown in Fig. 10 (b). However, there appears to be no explicit
relationship between the size of the enzyme, measured by the

Fig. 8. Prompt engineering performances by reasoning Paradigm
(a) capability on different tasks; (b) accuracy on different tasks; (c) F1 score on different tasks; (d) hallucination drop on different tasks.
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number of amino acids, and the accuracy of LLM predictions. This
outcome suggests that the predictive ability of LLMs for enzymes
primarily relies on information retrieval, specifically from sci-
entific literature reports, rather than on the direct analysis of the
enzyme’s structure.

(3) The prediction accuracy of LLMs decreases for crystalline
materials with larger, more complex compositions. As the
prediction target’s gauge complexity increases, indicated by
formula complexity, there is a gradual decline in the LLM’s pre-
diction accuracy. Crystals comprising more than four elements
perform significantly worse than those with fewer components.
Additionally, when the number of formula atoms exceeds 10, the
overall accuracy for single crystal predictions generally falls
below 15 %, as shown in Fig. 10 (c). Apart from the intrinsic
complexity of crystals to bring difficulty in analysis, since most
prediction tasks for crystalline materials in our datasets do not
require inference and mainly rely on data retrieval, the rarity of
large crystals in the literature compared to more common crys-
talline materials increases the difficulty of LLM’s information
retrieval.

(4) The prediction accuracy of LLMs concerning crystalline
materials demonstrates a notable correlation with unit cell

symmetry. Specifically, crystals belonging to the Trigonal,
Cubic, or Hexagonal lattice systems are more likely to yield
better predictions. The reason for this is twofold: first, these
structures are inherently more regular and defined, making them
easier subjects for inferential analysis. Secondly, these types of
crystal structures are more readily studied and characterized by
modern crystallography instruments and techniques, such as X-
ray diffraction and electron microscopy, leading to a richer
presence in scientific literature. This abundance of data enhances
the LLM’s ability to retrieve relevant information, thereby
improving prediction accuracy for crystals with these
symmetries.

In conclusion, these empirical evidences presented supports the
intuitive notion that domain-knowledge embedded prompts
enhance the performance of LLMs to different extents. Firstly, the
prompts’ inferential capabilities are closely tied to the complexity of the
analytical subject matter. Secondly, their proficiency in retrieval is
correlated with the depth of contemporary academic research, sug-
gesting that well-crafted prompts can effectively mine the latent
knowledge absorbed during the LLM’s pre-training phase.

Ultimately, these findings pose future challenges for leveraging LLMs

Fig. 9. Prompt engineering performances by CoT Complexity
(a) capability on different tasks; (b) accuracy on different tasks; (c) F1 score on different tasks; (d) hallucination drop on different tasks.
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to aid scientific inquiries into complex and novel molecules that are
rarely encountered or underrepresented in the academic literature. By
addressing these challenges, LLMs could potentially revolutionize the
approach to research in the synthesis, analysis, and applications of such
molecules, thereby expanding the frontiers of scientific knowledge.

3.5. Case studies

To elucidate the efficacy of the domain-knowledge embedded
prompt engineering method in addressing highly domain-specific tasks,
we have meticulously designed three case studies. These studies
centerpiece the investigation of three materials of profound chemical
importance, both in terms of academic research and industrial applica-
tions, utilizing our bespoke prompt engineering method that in-
corporates chemistry-specific domain knowledge. To enhance clarity
and conciseness, we illustrate a single expert’s prompt engineering
workflow, omitting the assembly of contributions frommultiple experts,
as this singular demonstration already effectively showcases how our
prompt engineering method significantly impacts the performance of
the LLM.

In the first case study, we direct our attention to the MacMillan’s
imidazolidinone 2nd generation catalyst, (2S, 5S)-(− )-2-tert-Butyl-3-
methyl-5-benzyl-4-imidazolidinone. The MacMillan catalyst, a ground-
breaking advancement in the field of chemistry, was distinguished by
the Nobel Prize in Chemistry in 2021 for its seminal contributions to the
development of organocatalysis [61,62]. This innovation has had a
transformative impact on both synthetic chemistry and the broader

chemical industry, enabling more efficient and environmentally friendly
catalytic processes that are pivotal in the synthesis of complex
molecules.

The first case study aims to assess the capability of LLMs in assimi-
lating the intricate details of this molecule and in delineating its po-
tential applications. By employing our domain-knowledge embedded
prompt engineering method, we seek to uncover how LLMs can be
leveraged to provide insights into the reactivity, selectivity, and scope of
application of the MacMillan catalyst, thereby enhancing the efficiency
and productivity of chemical research in this area.

As shown in Fig. 11, by utilizing our tailored prompts, the LLM
effectively elucidated the fundamental attributes of MacMillan’s second-
generation imidazolidinone catalyst, demonstrating its proficiency in
the analysis of SMILES sequences and elementary arithmetic operations.
Additionally, armed with the catalyst’s mechanism and illustrative ex-
amples, the LLM was able to accurately anticipate the catalytic products
from specified substrates, thereby highlighting the model’s capacity to
inform and potentially guide practical and industrial applications of
catalysts. In light of this case study, it is evident that LLMs, embedded
with domain-knowledge prompts, have the potential to significantly
facilitate the development and optimization of catalysts for chemical
reactions, thereby enhancing the efficiency and selectivity of synthetic
processes in the field of chemistry. The complete interactive dialogue
with LLM could be found in Appendix S.5.

The next material under examination in our case study is paclitaxel
(PTX, C47H51NO14), a compound of profound significance in the field of
oncology and a critical component in the treatment of various cancers.

Fig. 10. Prompt engineering performances on different Materials
(a) accuracy distribution on small molecules; (b) accuracy distribution on enzymes; (c) accuracy distribution on crystal materials.
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Paclitaxel’s discovery and subsequent development mark a pivotal
moment in the history of cancer therapy, as it introduced a novel
mechanism of action that targets microtubules, thereby inhibiting the
growth and division of cancer cells. Its efficacy in the treatment of
breast, ovarian, and other cancers has established paclitaxel as a
cornerstone in the chemotherapy arsenal [63]. The importance of
paclitaxel extends beyond its direct clinical applications; it has also
served as a template for the development of other taxane derivatives and
has been a subject of extensive research in organic synthesis [64]. The
complex structure of paclitaxel presents a significant challenge in the
synthesis process, leading to the development of various strategies to
improve yield, reduce cost, and enhance accessibility to this life-saving
compound.

In this prompt engineering case study, we focus on a crucial step in
the synthesis of an active intermediate of paclitaxel. Our objective is to
assess the ability of LLMs to analyze and provide insights into the
pathway of organic synthesis. By utilizing our domain-knowledge
embedded prompt engineering method, we aim to demonstrate the
potential of LLMs in assisting chemists in the design and optimization of
synthetic routes for complex molecules, such as paclitaxel and its de-
rivatives, thereby contributing to the advancement of both chemical
research and pharmaceutical development.

As shown in Fig. 12, by utilizing custom-designed prompts, the LLM
adeptly dissected a critical step in the synthesis of paclitaxel. It not only
identified the reactive groups within the substrates that are capable of
engaging in the chemical transformation but also correctly discerned the

type of reaction and reconstructed the entire reaction scheme. This
accomplishment underscores the LLM’s potential in providing guidance
for the synthesis of chemical compounds, suggesting that such models
could play a pivotal role in streamlining the process of chemical syn-
thesis, offering insights into reaction of complex molecules. This has
implications for the advancement of medicinal chemistry and the
development of pharmaceuticals, where efficient synthesis routes are of
paramount importance. The complete interactive dialogue with LLM
could be found in Appendix S.5.

In the concluding case study, we examine lithium cobalt oxide
(LiCoO2), a material of great importance in lithium-ion battery tech-
nology. Recognized by the 2018 Nobel Prize in Chemistry, LiCoO2’s
contribution to energy storage has been transformative, enabling the
widespread use of portable electronics and electric vehicles [65]. As a
cathode material, LiCoO2 offers high energy density and stability,
although research continues to address its lifecycle, cost, and environ-
mental footprint.

In this prompt engineering case study, we delve into the analysis of
LiCoO2 crystals and their application advantages. We aim to harness the
capabilities of LLMs to provide detailed insights into the crystallo-
graphic properties, electrochemical behavior, and optimization strate-
gies for LiCoO2. By employing our domain-knowledge embedded
prompt engineering method, we expect to demonstrate the potential of
LLMs in aiding researchers in the design and refinement of battery
materials, thereby contributing to the progress of energy storage tech-
nologies and supporting the global transition towards sustainable

Fig. 11. Prompt engineering case study on MacMillan’s imidazolidinone 2nd generation catalyst.
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energy solutions.
In this case study, the LLM meticulously analyzed the fundamental

properties of lithium cobalt oxide (LiCoO2), accurately determining its
lattice volume and stability, as shown in Fig. 13. This achievement is of

significant importance in the field of crystallography and future devel-
opment of lithium-ion battery technologies. The complete interactive
dialogue with LLM could be found in Appendix S.5.

Fig. 12. Prompt engineering case study on paclitaxel.

Fig. 13. Prompt engineering case study on lithium cobalt oxide.
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4. Conclusion and future directions

The integration of domain-specific knowledge into prompt engi-
neering has demonstrated its effectiveness in enhancing the perfor-
mance of LLMs across various tasks in chemistry, materials science, and
biology. Our proposed domain-knowledge embedded prompt engi-
neering method outperforms traditional generic prompt engineering
strategies on metrics such as capability, accuracy, F1 score, and hallu-
cination drop. The incorporation of domain expertise into prompts not
only guides the LLM to synthesize more relevant knowledge but also
provides a clear reasoning path for complex tasks. Our case studies
further validate the effectiveness of this approach in analyzing intricate
materials like the MacMillan catalyst, paclitaxel, and LiCoO2, demon-
strating the potential of LLMs to assist experts in molecular design and
optimization when equipped with domain-specific prompts. The com-
plete code implementation of our work is listed in Appendix S.1.

Limitations and potential future directions of our work is also
concluded below:

Expansion of Domain Coverage: While our study has focused on
chemistry, materials, and biology, the concept of domain-knowledge
embedded prompt engineering can be extended to other scientific do-
mains. Future work can explore the development of tailored prompts for
fields such as physics, geology, and medicine to unlock the full potential
of LLMs in diverse scientific applications.

Integration of Datasets and Tools: To further enhance the
reasoning capabilities of LLMs, future prompt engineering can integrate
external datasets and domain-specific tools. Linking prompts to chemi-
cal databases, computational chemistry software, or biological sequence
analysis tools could enable the LLM to leverage additional information
for more accurate predictions.

Multi-Modal Prompting: Incorporating visual information, such as
molecular structures or crystal images, into prompts can provide a more
intuitive understanding for LLMs. Multi-modal prompting techniques
combining textual and visual cues can potentially lead to even stronger
performance gains.

Human-in-the-Loop Refinement: Iteratively refining prompts with
input from domain experts can help to uncover more effective prompt-
ing strategies. Human-in-the-loop systems that leverage the comple-
mentary strengths of LLMs and human experts have the potential to
achieve highly optimized prompts.

Prompt Engineering Benchmarking: To ensure comprehensive and
fair evaluation of prompting strategies, it is meaningful to establish
standardized benchmarks across multiple LLMs, especially the recently
released ones. This approach allows researchers to compare the per-
formance of prompt engineering on different LLMs, thereby driving
innovation in the field. Creating diverse datasets with a wide range of
tasks and molecules will enable robust evaluation and facilitate the
development of more effective prompting techniques for various LLMs.

In summary, domain-knowledge embedded prompt engineering has
shown great promise for unlocking the potential of LLMs in scientific
domains. By integrating domain expertise into prompts, LLMs can
generate more accurate and contextually relevant responses. As prompt
engineering techniques continue to evolve, LLMs have the potential to
become powerful allies for scientists, assisting in the exploration and
discovery of new materials, molecules, and biological entities.
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