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Abstract: This study proposes a framework to diagnose stock market crashes and predict the
subsequent price rebounds. Based on the observation of anomalous changes in stock correlation
networks during market crashes, we extend the log-periodic power-law model with a metric that is
proposed to measure network anomalies. To calculate this metric, we design a prediction-guided
anomaly detection algorithm based on the extreme value theory. Finally, we proposed a hybrid
indicator to predict price rebounds of the stock index by combining the network anomaly metric
and the visibility graph-based log-periodic power-law model. Experiments are conducted based
on the New York Stock Exchange Composite Index from 4 January 1991 to 7 May 2021. It is shown
that our proposed method outperforms the benchmark log-periodic power-law model on detecting
the 12 major crashes and predicting the subsequent price rebounds by reducing the false alarm rate.
This study sheds light on combining stock network analysis and financial time series modeling and
highlights that anomalous changes of a stock network can be important criteria for detecting crashes
and predicting recoveries of the stock market.

Keywords: stock market; crash; rebound; log-periodic power law; visibility graph; stock correlation
network; anomaly detection; extreme value theory

1. Introduction

A stock market crash is one of the most significant systemic risks of the modern
financial system, causing significant losses for investors. A recent example is the March 2020
stock market crash triggered by COVID-19 [1], during which the New York Stock Exchange
(NYSE) Composite Index plunged roughly 35% within a month. Meanwhile, rebounds of
the stock market after crashes usually signal the recovery of investors’ confidence or the
taking effect of bailout policies. Therefore, it is critical for investors and policy makers to
detect stock market crashes and predict price rebounds.

In the past decades, different methods have been proposed to diagnose the stock
market crashes and predict rebounds. One of the most representative methods is the log-
periodic power-law (LPPL) model [2]. Originally, the LPPL model was proposed to predict
the bursting point of financial bubbles. Yan et al. [3] adopt the LPPL model to study stock
market crashes by considering them as the “mirror images” of financial bubbles, which are
also known as “negative bubbles”. The fundamental insight of modeling financial crashes
with the LPPL model is to capture a particular pattern of the price time series, which
can be described as “the faster-than-exponential decline accompanied by accelerating
oscillations” [4]. The LPPL model and its extensions are successfully applied in diagnosing
negative bubbles of many types of assets, such as crude oil [5] and cryptocurrency [6].
Despite previous achievements, all the existing LPPL-based models only focus on the price
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time series itself. However, it may not be sufficient to use only the price time series of
the stock index when diagnosing stock market crashes. The price time series of the stock
index can describe the overall fluctuation of the stock market, but it ignores the complex
interactions among multiple assets.

Network analysis provides a novel tool for characterizing the complex interactions
and co-movements in the stock market [7–9]. In fact, it has been discovered that stock
market crashes and recoveries are accompanied by drastic changes in the topological
structure of stock correlation networks, which can be captured by some network statistics
such as assortativity [10], modularity [11], von Neumann entropy [12], the structural en-
tropy [13,14] and the graph motif entropy [15]. Although the above literature qualitatively
analyzes the dynamical changes of stock correlation networks during stock market crashes
and rebounds, there is still a lack of work that applies such phenomenon to quantitatively
diagnose stock market crashes and predict price rebounds.

This paper contributes to the literature by incorporating the analysis of a time-evolving
stock correlation network into the LPPL model. The contribution of this paper has three folds.
First, extending the LPPL model, we propose to characterize stock market crashes by two
distinct characteristics: (1) faster-than-exponential decline of the stock index price; (2) abnormal
changes in the market structure (i.e., the topology of the stock correlation network). Second,
we design a prediction-guided anomaly detection method based on the extreme value theory
(EVT) in order to define and detect “anomalies” for Characteristic (2). The intuition is that a
properly trained predictor can forecast most of the “normal” situations well, with significant
deviations when “abnormal” situations occur. The “normal” and “abnormal” deviations are
distinguished based on EVT. Third, we propose a framework by combining Characteristic (1)
and (2), where Characteristic (1) is captured by a visibility graph (VG)-based representation of
the LPPL model proposed by Yan et al. [16]. A hybrid rebound indicator is calculated, which is
a linear combination of Yan’s VG-based indicator and the anomalies of the stock correlation
network. Specifically, we normalize the anomalies to 0 to 1 based on EVT and treat them as
confidence levels (i.e., weights) of the VG-based rebound indicator.

Experiments are conducted based on the data of the New York Stock Exchange (NYSE)
Composite Index. We predict the subsequent price rebounds of the 12 major crashes in the
U.S. stock market from 4 January 1991 to 7 May 2021. Experimental results demonstrate that
our proposed prediction-guided anomaly detection algorithm is well capable of identifying
abnormal changes in stock correlation networks during market crashes and recoveries.
Furthermore, our proposed hybrid indicator outperforms Yan’s VG-based indicator by
reducing the false alarm rate. These findings imply that incorporating the analysis of the
time-evolving stock correlation network into the modeling of the stock index time series is
a promising direction for diagnosing and predicting financial markets.

The rest of this paper is organized as follows. Section 2 describes the data. Section 3
introduces our proposed framework for stock market crash diagnosis and rebound pre-
diction. Section 4 presents the experimental results. Section 5 discusses the main findings,
implications and limitations of this study. Section 6 concludes our work and provides
future research directions.

2. Data Description and Labeling
2.1. Data Description

This paper uses the daily closing price of the NYSE Composite Index, which is collected from
the Yahoo! financial database (http://finance.yahoo.com) (accessed on
25 November 2021). The time period is from 2 January 1986 to 7 May 2021, with the data
from 2 January 1986 to 3 January 1994 as the training set and the rest of the data as the testing
set. As shown in Table 1, there are 15 major crashes in the U.S. stock market, including 3 in the
training set and 12 in the testing set. The list of stock market crashes in the U.S. before 2008
is provided in [15], while the crashes after 2008 are manually collected from Wikipedia (https:
//en.wikipedia.org/w/index.php?title=List_of_stock_market_crashes_and_bear_markets) (ac-
cessed on 25 November 2021). Furthermore, we select 199 stocks out of the 347 stocks in the
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NYSE dataset [11], whose data are available for the entire time period from 1986 to 2021. Their
price time series are used to construct the time-evolving stock correlation network.

Table 1. Major stock market crashes in the U.S. from January 1986 to May 2021.

Name Date

Black Monday 19 October 1987
Friday the 13th mini-crash 13 October 1989
Early 1990s recession 3 July 1990
1997 Asian financial crisis 2 July 1997
Russian financial crisis 17 August 1998
Dot-com bubble 10 March 2000
September 11 attacks 11 September 2001
Stock market downturn of 2002 19 March 2002
Financial crisis of 2007–2008 31 October 2007
2009 Icelandic financial crisis 20 January 2009
European sovereign debt crisis 27 April 2010
August 2011 stock markets fall 1 August 2011
2015–2016 stock market selloff 18 August 2015
2018 cryptocurrency crash 20 September 2018
2020 stock market crash 24 February 2020

2.2. Labeling Rebounds of Price Time Series

The rebounds of the financial market are labeled based on the price time series of
the stock index. Following the definition in the existing literature [16,17], we define the
rebound as the time point at which a stock index turns from a downtrend to an uptrend
after a stock market crash. This paper labels the trend of the stock index based on a recently
proposed method [18]. The basic idea is that the price time series is considered to change
from an upward trend to a downward trend when the price falls by more than w compared
with the local peak. Similarly, when the price rises above w compared with the local trough,
the price time series is considered to change from a downward trend to an upward trend.
Here, w is a predetermined threshold for the proportion of price increases and decreases.
The detailed procedure is illustrated in Appendix A.

For each stock market crash in Table 1, we detect the first turning point when the trend
of the price time series changes from a downtrend to an uptrend. This turning point is
defined as the time point of the price rebound after the corresponding stock market crashes.
Here we choose w = 0.15, which is an empirical value proposed along with the trend
labeling method [18]. In other words, once the price rises by more than 15% from the local
trough after a financial crash, it is regarded as a switch from a downtrend to an uptrend,
and the local trough is labeled as a rebound. The labeling results are further manually
adjusted according to the historical records. Figure 1 shows the time series of the daily
closing price of the NYSE Composite Index, as well as the labeled price rebounds and the
corresponding stock market crashes.
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Figure 1. The NYSE Composite Index with labeled crashes and rebounds.
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3. Methodology

Our proposed framework predicts market rebounds by observing and quantifying a
specific phenomenon, which is a faster-than-exponential decline in the stock index price
time series accompanied by anomalous changes in the topology of the correlation network
of constituent stocks. Therefore, our proposed framework consists of the following four
steps: (1) quantifying faster-than-exponential decline in stock index price; (2) constructing
time-evolving stock correlation network; (3) detecting anomalous topological changes of
stock correlation networks; (4) calculating a rebound alarm index. In this section, we first
introduce our proposed framework and then describe each of these four steps.

3.1. Our Proposed Framework

Our proposed framework is illustrated in detail in Figure 2. We first measure the
faster-than-exponential decline of the price time series of the stock index based on Yan’s
VG-based LPPL model [16] (step a). The detailed procedures are described in Section 3.2.

The time series of the stock index can describe the overall fluctuation of the financial
market, but it ignores the complex interactions between different assets. In our proposed
framework, we exploit information of the market structure by investigating the time-
evolving topology of the stock correlation network (step b and c). In step b, we first select the
constituents of the stock index, then calculate the matrices of Pearson correlation coefficients
based on the logarithmic return of the constituents through a sliding window, and finally
extract the most important correlations in the matrix to form a stock correlation network.
In step c, topological measurements are extracted from the time-evolving stock correlation
network. Anomaly detection is performed on the extracted topological measurements to
identify the emergence and disappearance of anomalous network topology. Sections 3.3–3.5
describe the implementation of step b, c and step d, respectively.

Stock index

𝑡𝑡

Sliding windows

Constituents of the stock index

𝑡𝑡

Sliding windows

·
·

·

Correlation matrices of constituent stocks

···

𝑡𝑡

Stock correlation network

(a)

(b)

(c)

(d)

Extracting network statistics

···

Financial extreme forecast

𝑡𝑡

Anomaly detection

𝑡𝑡

Financial extreme forecast

𝑡𝑡

𝑡𝑡𝑡𝑡

Figure 2. Our proposed framework.
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3.2. Quantifying Faster-Than-Exponential Decline in Stock Index Price

We adopt the method based on the visibility graph [16] to quantitatively describe
the faster-than-exponential decline of the stock index prices. This subsection first briefly
introduces the basic idea of the visibility graph and then describes the quantification of the
faster-than-exponential decline of the stock index price based on the VG.

The visibility graph (VG) is first presented by Lacasa et al. [19] as an algorithm for
converting time series into complex networks. Its basic idea is to map each time point in
a discrete time series into a node in a network. The edges of the network are established
based on the visibility criteria. The detailed procedure of constructing the visibility graph
is introduced as follows.

For each pair of data points in the time series noted as (ti, yi) and
(
tj, yj

)
where i < j,

the VG algorithm first connects them with a straight line. If all the data points between i
and j are below the straight line, (ti, yi) and

(
tj, yj

)
are considered “visible” to each other,

and an edge is created between them in the visibility graph. A more formal expression is:
for a time series [(t1, y1), (t2, y2), · · · , (tN , yN)] of length N, the adjacency matrix W of its
visibility graph is defined as

ωij =

{
1, if yk < yi +

tk−ti
tj−ti

(
yj − yi

)
, ∀i < k < j

0, otherwise
, (1)

where ωij denotes the weight of the edge (i, j) in the visibility graph.
Yan et al. [16] first represent the log periodic power law (LPPL) model with the

visibility graph. Originally, the LPPL model characterizes the financial bubbles by the
faster-than-exponential growth of the stock market prices. Yan et al. construct the visibility
graph based on the logarithmic prices of stock indices. Since the exponential growth is a
straight line in the logarithmic-linear scale, faster-than-exponential growth is represented
as a convex curve. Therefore, as the price time series goes up super-exponentially, the
degree of the last node of its VG increases. Furthermore, if two nodes (ti, yi) and

(
tj, yj

)
are “visible” to each other, the growth rate from ti to tj can be roughly considered as
“faster-than-exponential”.

Since our goal is to characterize the financial crashes, we adopt the absolute invisibility
graph, which is exactly the opposite of the visibility graph. Its adjacency matrix W ={

ωij
}

i,j=1,··· ,N is defined as

ωij =

{
1, if yk > yi +

tk−ti
tj−ti

(
yj − yi

)
, ∀i < k < j

0, otherwise
. (2)

Similar to the visibility graph, if two nodes (ti, yi) and
(
tj, yj

)
are “absolutely invisible”

to each other, we can roughly conclude a faster-than-exponential decline from ti to tj. For
each data point (ti, yi) in a time series, we obtain TVG − 1 historical data before ti through a
sliding window of length TVG to construct the absolute invisibility graph. The magnitude
of the faster-than-exponential decline at time point (ti, yi) is defined as

IVG(i) =
1

TVG

i−1

∑
j=i−TVG

1[yi<yj]
· 1[

yk>yi+
tk−ti
tj−ti

(yj−yi)
], (3)

where 1[·] is the indicator function.

3.3. Constructing the Time-Evolving Stock Correlation Network

This paper studies the time-evolving nature of the correlation network, which is
formed by the constituents of a stock index. Our basic assumption is that the topology of
the stock correlation network changes significantly during financial crashes, and that the
recovery of the network topology implies the recovery of the financial market.
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The most straightforward way of studying a time-evolving network is to look at
snapshots of the network taken at different time points. By stacking the snapshots in
temporal order, a time-evolving network is denoted as G = (G1, . . . , GT). Each Gt =
{Nt, Et} is a snapshot recorded as time t, where Nt is the set of nodes and Et is the set of
edges. Since this paper considers the time-evolving correlations among the same set of
stocks, all the snapshots in G share the same set of nodes, that is, N1 = N2 = · · · = NT = N.

In this paper, each snapshot Gt is obtained from the correlation matrix Ct by a filtering
method. The construction procedure is composed of four steps: (1) dividing time windows;
(2) determining the constituents of the stock index; (3) calculating correlation matrices;
(4) extracting single layer networks from the correlation matrices. The detailed procedure
is illustrated as follows.

3.3.1. Dividing Time Windows

In terms of dividing time windows, three parameters need to be determined: (1) the
length Ttw of the time window, (2) the step size ∆ between two consecutive windows. The
choice of time window length Ttw is a trade-off between over-smoothed and too noisy
data [20]. In order to capture the dynamics of stock market correlations, we need to choose
the smallest possible window length. On the other hand, the time window needs to be
long enough to avoid the Epps effect [21]. Here, we choose a commonly used empirical
value Ttw = 25 [15], meaning that each time window contains 25 trading days. To have a
continuous tracking of the stock correlations, the step size is set as ∆ = 1, shifting the time
window 1 day forward at each step.

3.3.2. Determining Constituents of the Stock Index

In this step, we determine the name list of the stocks to track, that is, the set of nodes
N. Notice that the constituents of the stock index are constantly adjusted over time. To
ensure continuous and stable tracking of the market structure, we select the constituents of
the stock index whose historical data are available during the entire experimental period.
In this paper, we select N = 199 stocks from the NYSE dataset [11,22], whose daily closing
prices are available from 2 January 1986 to 7 May 2021.

3.3.3. Calculating Correlation Matrices

For stock i in Mt, its logarithm return at time t is defined as

ri(t) = ln pi(t)− ln pi(t− 1), (4)

where pi(t) is the adjusted closure price of stock i at time t. Then the Pearson correlation
coefficient between stock i and stock j is calculated as

cij(t) =
E[ri(t)� rj(t)]−E[ri(t)]E

[
rj(t)

]√(
E
[
r2

i (t)
]
− (E[ri(t)])2

)(
E
[
r2

j (t)
]
− (E

[
rj(t)

]
)2
) , (5)

where E(·) represents the sample mean, � denotes element-wise multiplication of vec-
tors and

ri(t) = [ri(t− Ttw + 1), ri(t− Ttw + 2), · · · , ri(t)] (6)

is the logarithm return series of stock i within the time window. Thus a N × N correlation
matrix C(t) is obtained.

3.3.4. Extracting Single-Layer Networks from Correlation Matrices

The threshold-based method [23] is applied to extract the strong correlations and
construct the network. For the correlation matrix C(t), we choose a threshold ρ(t) and only
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keep cij(t) > ρ(t) as the edges of the network Gt. This paper sets ρ(t) as the 85th percentile
of all elements in C(t). The connection criterion of network Gt is formally defined as

gt
ij =

{
1, if cij(t) > ρ(t)
0, otherwise

, (7)

where gt
ij denotes the weight of the edge (i, j) in the network Gt.

3.3.5. Calculating Singular Value Decomposition Entropy

We further measure the topology of each layer Mt by the singular value decomposition
(SVD) entropy, which has been applied to the analysis of financial market networks [24–27].
The definition of the SVD entropy is introduced below. It is worth noting that the topologi-
cal characteristic is not limited to the SVD entropy, any proper network statistic, such as the
von Neumann entropy [28] or the graph motif entropy [15], is applicable to our proposed
framework.

The SVD entropy is based on the singular value decomposition of the N × N adjacent
matrix A of the network G,

A = UΣVT , (8)

where Σ is a diagonal matrix of singular values,

Σ = diag(σ1, · · · , σN), (9)

The SVD entropy is defined as

Entt = −∑
i

σ̄i ln(σ̄i), (10)

where σ̄i is the normalized singular value defined as

σ̄i =
σi

∑j σj
. (11)

By calculating the topological characteristics, we transform the time-evolving network
into a time series, which is much easier to interpret. Based on the time series of the SVD
entropy, we identify and measure anomalous changes in the topology of the stock temporal
network in the following subsections.

3.4. Prediction-Guided Anomaly Detection Based on Extreme Value Theory

In this subsection, we detect the anomalous value of each of the topological indicators
based on the extreme value theory (EVT) and time series prediction. Our intuition is that
we first train advanced time series forecasting algorithms only based on “normal” values.
We assume that such predictors are able to capture the “normal” dynamics properly, while
being completely unaware of abnormal changes in the dynamics. Based on the commonly
adopted normal distribution assumption of the forecasting error, the residuals between the
predicted and true value should be small and normally distributed for “normal” data, while
the residuals of “abnormal” data should be large and their distribution can be portrayed by
EVT. We determine the threshold between the “normal” and “abnormal” residuals based
on the training dataset, as well as the parameters of the distribution of the extreme values.

Subsequently, we make predictions and calculate the residual for each day in the
testing dataset. If the residual exceeds the threshold, we treat it as an “abnormal” value and
calculate its “anomaly score” based on the extreme value distribution. Inspired by [29], our
designed method can be divided into an initialization step and an execution step, whose
detailed procedures are described below.
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Initialization Step

In the initialization step, we first generate the training set that only contains “normal”
data. The detailed procedure is described in Appendix B. The training set is generated
to train a predictor F(·). Without loss of generality, we assume that the predictor makes
single-step predictions based on data from the previous d days as

It = F(It−d, · · · , It−1) + ε(t), (12)

where ε(t) is a normally distributed error term.
To ensure that the predictor only learns the “normal” dynamics of the time series, we

generate a training set that only contains the “normal” values. We first split time series I
into different segments based on the date of the financial crashes. For example, the first
segment is the “normal period” from 1 January 1986 to 15 October 1987, which is followed
by the financial crash from 19 October 1987 to 4 December 1987. We then extract training
samples from the “normal periods” using a sliding window of length d + 1, where the data
of the first d days are the inputs to the predictor, and the last datum is the expected output.
Finally, we obtain the set of the training inputs Sx and its corresponding target output set
Sy based on which the predictor F(·) is trained.

After training the predictor, for each day t in the first N days, we make the prediction
based on the previous d days as

Ît = F(It−d, · · · , It−1). (13)

Since we are looking for extremely small values, the residual is calculated as Xt = Ît − It.
Notice that here we consider both the “normal” periods and the financial crashes, so the set
of the residuals should contain the extreme values corresponding to the financial crashes.
Therefore, we analyze the tail distribution of the residual based on the EVT.

According to the EVT, the extreme values always follow the same type of distribution,
regardless of the initial distribution of the data. It can be regarded as a theorem for the
maximum values, which is similar to the central limit theorem for the mean values [30]. A
mathematical formulation is provided by the Pickands–Balkema–de Haan theorem [31,32],
which can be written as:

F̄t(x) = P(X− τ > x | X > τ) ∼
(

1 +
ξx
σ

)− 1
ξ

. (14)

This theorem shows that, for a random variable Xt, the excess over a sufficiently large
threshold τ tends to follow a generalized Pareto distribution (GPD) with parameters ξ and
σ [29].

A practical implication of EVT is that extreme and non-extreme events follow different
distributions because they are often generated by different driving forces [33]. This is the
theoretical basis for our use of EVT to identify abnormal changes in network topology.
We argue that normal and abnormal residuals are caused by different driving forces, thus
we aim to find the outliers that follow GPD. Based on the idea of EVT, we select the most
appropriate threshold τ that allows GPD to fit the distribution of X − τ properly. This
means that any value greater than τ can be regarded as an extreme value. Therefore, we
consider a residual above the threshold τ as an anomalous value. The detailed procedure
for obtaining the optimal value of τ is described in Appendix C.

3.5. Execution Step and Hybrid Rebound Indicator

The detailed procedure of the execution step is shown in Algorithm A4. It is de-
signed to deal with the streaming data. For each day t, we calculate the residual Xt =
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F(It−d, · · · , It−1) − It. If the residual exceeds the threshold τ, we raise an alarm while
calculating the corresponding alarm index by

IAlm(t) = Alm(Xt) = 1−
[

1 +
ξ(Xt − τ)

σ

]− 1
ξ

. (15)

Notice that our alarm index is actually the CDF of the generalized Pareto distribution
Fξ,σ(Xt − τ).

Considering the development of the financial market, the internal dynamics of the
topological changes of the stock correlation network may also be changing. Therefore, we
need to constantly update the predictor based on the new data. Because the predictor is
not expected to learn any information about the abnormal changes of the network, we
only include the “normal” data into the training set. After every K new samples are added
into the training set, the predictor is retrained to ensure that it keeps tracking the latest
dynamics of the system.

We finally propose an indicator to characterize the phenomenon of “faster-than-
exponential decline in the stock index price accompanied by anomalous changes in the
market structure”. The alarm index defined in Equation (15) has a value range of (0, 1), and
its magnitude indicates the extent to which we believe the network structure is anomalous.
Therefore, it can be considered as a “confidence level”, which is used as a mask to multiply
the indicator defined in Equation (3). Considering that the anomalous changes in the stock
correlation network are not necessarily perfectly synchronized with the plunge in the stock
index, we make a moving average smoothing of IAlm(t) with sliding window length TAlm.
Notice that TAlm should be a small integer. Based on the intuition that information from
two weeks ago is hardly useful for forecasting, here we take TAlm < 10. Since our proposed
rebound indicator considers both the time series and the network, it is named as a hybrid
indicator, whose formal definition is given as

IHybrid(t) = IVG(t) ·
(

1
TAlm

TAlm−1

∑
i=0

IAlm(t− i)

)
. (16)

4. Experimental Results

In this section, we first qualitatively compare our proposed hybrid indicator with the
baseline method [16] to give a general idea of how the analysis of the time-evolving stock
correlation network helps to improve the prediction performance. We further quantitatively
analyze the predictive power of our proposed framework based on the commonly adopted
error diagram method. Experimental results demonstrate the effectiveness and robustness
of our proposed method.

4.1. Qualitative Observation

In this subsection, we construct three indicators: (1) the VG-based indicator IVG(t);
(2) the alarm index IAlm(t); (3) the hybrid indicator IHybrid(t). The look-back scope of
IVG(t) is set as TVG = 262, which is the same as the original paper [16]. The predic-
tion algorithm for calculating IAlm(t) is the Prophet forecasting model [34], whose open-
source implementation is available at https://github.com/facebook/prophet (accessed on
25 November 2021). We use the data from 2 January 1986 to 3 January 1994 as the training
set, and use the rest of the data as the testing set. The free parameter TAlm is set as TAlm = 4.

Figure 3 demonstrates the result of the prediction-guided anomaly detection proce-
dure. The solid blue line in the figure indicates the SVD entropy of the stock correlation
network for each day. The green dashed line indicates the alarm thresholds obtained based
on the one-day ahead prediction, and each red dot indicates that an alarm is issued on that
day. An alarm for the financial crisis will be raised on day t, if the SVD entropy on day t
falls below the predicted alarm threshold on that day.

Figure 4 shows the price time series of the NYSE Composite Index as well as the
three indicators. For the alarm index IAlm(t) ∈ (0, 1), a higher value indicates the higher

https://github.com/facebook/prophet
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confidence that the network structure on day t is anomalous. Thus, we can see that most
of the financial crashes are accompanied by an anomalous change in the topology of the
stock correlation network. However, an abnormal network topology does not necessarily
imply the occurrence of a financial crisis. Similarly, a high IAlm(t) usually implies that
the stock index is close to a local trough, but there also exists a large number of false
alarms. Our approach effectively suppresses the false alarms by considering both the
faster-than-exponential decline in the stock index (i.e., IVG) and the anomalous changes in
the topology of the stock correlation network (i.e., IAlm).
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Figure 3. Result of the prediction-guided anomaly detection procedure.
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Figure 4. The NYSE Composite Index with three indicators.

4.2. Error Diagram

In this subsection, the predictive power of our proposed framework is evaluated based
on the widely-adopted error diagram [4,16]. We also compare the short-term and long-term
prediction performance of our proposed framework with the VG-based baseline method.

Error diagrams are often used to decide whether an indicator has predictive power
for events that are difficult to predict, such as earthquakes [35–37] and financial ex-
tremes [3,16,38]. Just like the ROC (receiver operating characteristic) curve, the error
diagram demonstrates the prediction performance of a certain indicator under different
determination criteria (e.g., thresholds). Its x-axis is the “alarm ratio” RAlarm, which is
defined as the total number of alarms divided by the length of the testing period. The
y-axis is the ratio of missed events RMiss, which is defined as the number of missed events
divided by the total number of events in the testing period. Therefore, the prediction
performance of a random guess is represented by the straight line y = 1− x in the error
diagram. Any prediction method that is better than a random guess follows a curve below
the anti-diagonal y = 1− x. Furthermore, the p-value of the hypothesis that the prediction
indicator is better than a random guess is p = A/Aunit = A, where A is the area under a
curve (AUC) of the error diagram and Aunit = 1 [16].

The error diagram of predicting financial rebounds of a stock index is created in the
following way [4]:

1. Determine the forward-looking period a, that is, if a rebound occurs within a days after
an alarm being raised, we consider the rebound has successfully predicted the alarm.

2. Count the number of rebounds in the testing set according to the definition in Section 2.
3. Sort the values of the rebound indicator time series in a decreasing order and save

them in Isort. The largest value in Isort is the first threshold.
4. We check the rebound indicator of each day during the testing period. If the rebound

indicator on day t exceeds the predetermined threshold, an alarm is raised. If a
rebound occurs during day t to day t + a, we consider the alarm successfully predicts
the rebound.

5. We compare the successful predictions of the current threshold and the previous
threshold. If there is no new successful prediction, the threshold is moved down to
the next value in Isort.



Entropy 2021, 23, 1612 12 of 23

6. If new predictions are made based on a threshold, we count the missed rebounds and
calculate the ratio of missed events as

RMiss =
Number of missed rebounds

Total number of rebounds
(17)

The alarm ratio is calculated as

RAlarm =
Number of alarms

T − a
, (18)

where T is the length of the testing period. We further plot (RAlarm, RMiss) in the error
diagram.

7. Steps 4 to 6 are continuously repeated until all the rebounds are successfully predicted.

Figure 5 compares the short-term and long-term prediction performance of our pro-
posed method (i.e., the hybrid indicator) with the VG-based indicator. We use the same
color to represent the same forward-looking period a. Solid lines with circular icons cor-
respond to the VG-based method, while dashed lines with triangular icons represent the
results for the hybrid indicator. It can be observed that our proposed hybrid indicator
outperforms the benchmark VG-based indicator for any forward-looking period.
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Figure 5. Error diagrams. (a) Short-term prediction of VG-based and hybrid indicator. (b) Long-term prediction of VG-based
and hybrid indicator.

Table 2 shows the p-values of the predictions for all the forward-looking periods
a = 2, 3, 5, 10, 15, 25. It can be observed that, for each forward-looking period a, the p-value
of the VG-based indicator is smaller than 0.03. This indicates that the VG-based indicator
is superior to a random guess on a significance level 3%. In other words, the predictability
of the VG-based indicator is significant on a significance level 3%, which matches the
result in the previous paper [16]. Similarly, our proposed hybrid indicator is superior to
a random guess at a 2% significance level. We can conclude that the predictability of our
proposed hybrid indicator is significant at a significance level of 2%. We can further observe
that the p-value of our proposed indicator is smaller than the p-value of the VG-based
indicator for each a, indicating that our proposed method constantly outperforms the
benchmark method.
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Table 2. The p-values of the predictions for all the forward-looking periods.

Forward-Looking Period a VG-Based Indicator Our Proposed Hybrid Indicator

2 0.026930 0.016197
3 0.024044 0.013115
5 0.024051 0.012719

10 0.016664 0.011346
15 0.015487 0.008927
25 0.015352 0.007980

We finally test the robustness of our proposed method. We choose TAlm from {2, 3, · · · ,
10} and calculate the nine corresponding p-values for each forward-looking period a. The
box plot in Figure 6 shows the statistics of the p-values for different TAlm. In this figure,
each box represents the nine p-values for a forward-looking period a. The green dots are
the mean, while the orange solid lines are medians. The lower and upper edges of each
box are the first and third quartiles, which are denoted as Q1 and Q3, respectively. The
top and bottom boundaries are Q3 + 1.5IQR and Q1 − 1.5IQR, where IQR = Q3 −Q1 is
the interquartile range. Points out of the upper and lower boundaries are outliers. For
the convenience of comparison, we label the p-value of VG-based indicator with the blue
dashed line for each a. It can be observed that the p-values of our method are constantly
smaller than the VG-based benchmark, indicating that the performance of our proposed
framework is consistently better. We can conclude that our proposed framework is robust
to the choice of the free parameter TAlm.
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Figure 6. Statistics of the p-values for different parameters.

5. Discussion

The findings of this study indicate that incorporating the analysis of a time-evolving
network can improve the performance of traditional time series models. Qualitative
observations show the rapid decline of SVD entropy during financial crashes and suggest
that the network-based indicator helps with reducing the false alarm rate. Quantitative
comparisons further confirm that the predictive power is improved by combining the
network-based indicator.
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According to the qualitative observations, the SVD entropy of the stock correlation
network of the NYSE Composite Index decreases significantly during stock market
crashes. This is consistent with the existing studies of various stock indices based on
different definitions of network entropy [13–15,39]. For example, Zhang et al. [15]
have observed decreases in the von Neumann entropy and the graph motif entropy
of the NYSE network during financial crashes. Furthermore, it is also observed that
the structural entropy declines rapidly during crisis periods in the stock correlation
network of FTSE100 and NIKKEI225 [13]. Since “entropy” can be interpreted as “di-
versity”, such observations suggest that the “structural diversity” of the stock market
commonly declines during financial crashes, and the recovery of structural diversity
reflects the recovery of the market. We may further interpret this econophysics phe-
nomenon from the perspective of behavioral finance. The structural diversity of the
stock market may represent investors’ perceptions in the heterogeneity of different
firms. During financial crashes, spillover effects and investors’ herding behavior may
erase the differences between “good” and “bad” firms, and thus can eliminate the
structural diversity of the stock market.

In addition, it can be observed that the network-based indicator helps with reducing
the false alarm rate of the time series-based indicator. This finding can shed light on a better
understanding of the stock market crashes. Traditionally, research on stock market crashes
focuses on modeling the price time series of stock indices [16,17,40–43]. In particular, the
benchmark indicator of this study (i.e., the VG-based LPPL indicator) [16] captures the
faster-than-exponential decline in stock index price. However, our experimental results
show that detection and prediction based on the time series alone can contain a number
of false alarms. In other words, a rapid decline in stock index prices does not necessarily
mean a financial crash. An intuitive explanation is that the plunge of highly weighted
sectors or companies may drive down the stock index, but as long as the plunge is not
propagated through the stock network, it will not trigger the crash of the whole market.
By combining network-based and time series-based indicators, this study contributes
to the LPPL-related literature and highlights that anomalous topological changes of
the stock correlation network can be important criteria for confirming the occurrence and
predicting the recovery of stock market crashes.

Quantitative comparisons confirm that the incorporation of SVD entropy im-
proves the predictive power of the time series-based model. This finding agrees with
the existing literature on the predictive power of SVD entropy for stock market dy-
namics [24–27]. For a number of representative stock indices such as the Dow Jones
Industrial Average [24], the Shenzhen Component Index [25] and the Shanghai Com-
ponent Index [27], it has been found that the SVD entropy of the constituent stock
network has a predictive ability to the dynamics of the stock index. However, the
existing literature mainly focuses on examining the predictive power of SVD entropy
using the Granger causality test, without developing methods or models to practically
leverage such predictive ability. This study contributes to this research gap by propos-
ing a framework that jointly considers the SVD entropy and the stock index price. It is
demonstrated that the predictive power of the SVD entropy can be practically applied.

It should be acknowledged that this work has several limitations. First, this
study transforms the time-evolving stock correlation network into the time series of
a network statistic (i.e., the SVD entropy) and therefore ignores the finer topology
in the network. In particular, our proposed framework is not able to recognize the
potential micro- and meso-level structural changes. This limitation also hinders a more
in-depth observation of the topological changes during and after financial crashes.
As a consequence, a number of critical research questions are left unanswered. For
example, it is still unclear if similar micro- and meso-level patterns can be observed
among multiple financial crashes throughout history. If so, developing models and
methods based on such patterns to detect crashes and predict rebounds can be another
interesting research topic. Another limitation of this study is that an in-depth analysis
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of the mechanism is not performed. For example, this study focuses on the diagnosis
of major financial crashes. However, we have also observed rapid declines in stock
indices accompanied by anomalous network changes during some periods that are not
regarded as major financial crashes. Furthermore, the topological changes in the stock
correlation network have become increasingly drastic from 1968 to the present. The
causes of these phenomena are still unclear.

This study has several practical implications for professionals in a variety of
fields. For both institutional and individual investors, our proposed rebound indicator
provides a referential signal for market timing strategies. It can be observed that weak
signals start to appear when a stock market crash occurs. As the stock market crash
progresses, the rebound indicator gradually gets stronger and clusters around certain
dates. When the rebound indicator reaches the peak and starts to decline, a change
of regime is more likely to occur. Therefore, in the aftermath of stock market crashes,
investors can start applying long strategies after observing the clustering and peaking
of the rebound indicator. For policymakers, this study provides useful information
that can help with the detection and management of market risks. When abnormal
changes in the stock network are detected, policymakers can be alerted to conduct
further in-depth research to determine whether a systemic risk exists. Furthermore,
this study recommends introducing policies to stabilize key firms and sectors once a
systemic risk occurs, since the contagion of risks may destroy the market structure
and trigger herding behavior of investors. From a broader perspective, this study also
has practical implications for machine learning researchers and algorithm developers.
Our findings highlight the importance of incorporating stock network analysis into
traditional time series models. Novel algorithms can be developed along this direction
to better diagnose and forecast extreme financial events.

6. Conclusions

This study proposes a framework to diagnose stock market crashes and predict the
subsequent price rebounds by jointly modeling plunges in the stock index price and
abnormal changes in the stock correlation network. Experiments based on the NYSE
Composite Index show that our proposed framework outperforms the benchmark VG-
based LPPL model. In line with the existing literature, we observe rapid declines of the
stock network’s SVD entropy during market crashes. It suggests that the elimination of
structural diversity in the stock market can be an important characteristic of financial
crashes. In addition, it is observed that we reduce the false alarm rate of the LPPL-based
indicator by incorporating the network anomaly-based indicator. This finding can shed
light on bridging the gap between stock network analysis and financial time series
modeling, which are often considered as two relatively independent research directions.
From the perspective of market participants (e.g., policymakers and investors), this
study can provide referential signals for risk management and market timing strategies.

The main limitation of this paper is the conversion of the time-evolving network
into a time series, thus losing the micro- and meso-level topological patterns. Future
research can benefit from using representation learning methods (e.g., graph neu-
ral network and tensor decomposition) that can directly process dynamic networks.
Techniques for interpretable machine learning can also be applied to identify specific
topological patterns in the course of market crashes and recoveries. Moreover, future
research can be conducted to reveal the mechanism of abnormal topological changes in
stock correlation networks during market crashes. Finally, practitioners can integrate
our proposed rebound indicator into their trading strategies to control risk and make
profits in the aftermath of stock market crashes.
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Appendix A. Trend Labeling Algorithm

For completeness, we illustrate the detailed algorithm for labeling the trend of
the stock index price time series, which is proposed by Wu et al. [18]. The detailed
procedure is introduced in Algorithm A1. The input of this algorithm is the time se-
ries of daily prices P = [p1, p2, p3, · · · , pT ], as well as the predetermined proportion
threshold w ∈ (0, 1). The output of the algorithm is the corresponding label vector
Y = [ label 1, label 2, label 3, . . . , label T ], where

labelt =


1, if a rebound occurs on day t.
−1, if day t is a turning point from uptrend to downtrend.
0, otherwise

(A1)

Before executing the labeling algorithm, the local peak and the local trough are
initialized as LP = p1 and LT = p1. The trend label is initialized as trend = 0, where
trend = 1 indicates an upward trend and trend = −1 indicates a downward trend. The
label vector Y is initialized as Y = [0, 0, · · · , 0]. The index of the first financial extreme t
is initialized as t = 0.

http://finance.yahoo.com
http://finance.yahoo.com
https://en.wikipedia.org/w/index.php?title=List_of_stock_market_crashes_and_bear_markets
https://en.wikipedia.org/w/index.php?title=List_of_stock_market_crashes_and_bear_markets
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Algorithm A1 Method for labeling rebounds

Input:
P = [p1, p2, p3, · · · , pT ];
w = 15

Output:
Y = [ label 1, label 2, label 3, . . . , label T ].

1: for i = 1 to T do
2: if P[i] > LP(1 + w) then
3: Labeling the first peak: LP = P[i], trend = 1, t = i, Y[i] = 1.
4: break
5: end if
6: if P[i] < LT(1− w) then
7: Labeling the first trough: LT = P[i], trend = −1, t = i, Y[i] = 1.
8: break
9: end if

10: end for
11: for i = t to T do
12: if trend == 1 then
13: if P[i] > LP then
14: Updating the local peak: LP = P[i]
15: end if
16: if P[i] < LP(1− w) then
17: Labeling the turning point: LT = P[i], Y[i] = −1, trend = −1.
18: end if
19: end if
20: if trend == −1 then
21: if P[i] < LT then
22: Updating the local trough: LT = P[i]
23: end if
24: if P[i] > LT(1 + w) then
25: Labeling the turning point: LP = P[i], Y[i] = 1, trend = 1
26: end if
27: end if
28: end for
29: return Y;

Appendix B. Algorithm for the Generation of a Training Set

This appendix describes the algorithm for the generation of training set, whose de-
tailed procedure is described in Algorithm A2. The input of this algorithm is the first N
data points of the indicator time series I = [I1, I2, · · · , IN ] with labeled financial crashes
L = [l1, l2, , · · · , lT ], where

lt =
{

1, if day t is during a financial crash.
0, otherwise

(A2)
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Algorithm A2 Generating training set

Input:
First N indicators I = [I1, I2, · · · , IN ];
Corresponding event labels L = [l1, l2, , · · · , lN ];
The sliding window length d.

Output:
Training input set Sx and target output set Sy.

1: i, j = 0, W← []
2: while i < N do
3: while j < N − 1 and lj == lj+1 do
4: j = j + 1
5: if li == 0 then
6: Wi = I[i : j], W← W ∪Wi
7: end if
8: j = j + 1, i = j
9: end while

10: end while
11: Sx, Sy ← []
12: for i = 1 to length(W) do
13: for j = d + 1 to length(Wi) - 1 do
14: Sx ← Sx ∪Wi[j− d : j]
15: Sy ← Sy ∪Wi[j + 1]
16: end for
17: end for
18: return Sx, Sy

Appendix C. Obtaining Optimal Threshold Based on Extreme Value Theory

In this appendix, we describe in detail the method of obtaining the optimal threshold
for residuals, which is used to distinguish normal residuals from abnormal residuals. The
training data that we are using are the SVD entropy of the NYSE financial network from
10 February 1986 to 3 January 1994. The residuals are calculated as

Xt = F(It−d, · · · , It−1)− I(t). (A3)

In this case, we use the Prophet forecasting model [34] as the predictor F(·), whose
open-source implementation is available at https://github.com/facebook/prophet (ac-
cessed on 25 November 2021).

The general procedure for obtaining τ is summarized in Algorithm A3. Such algo-
rithm mainly contains three key steps: (1) generating possible candidates, (2) estimating
parameters for GPD; (3) selecting the optimal threshold based on the Kolmogorov–Smirnov
statistic. The detailed procedure is described as follows.

Appendix C.1. Generating Possible Candidates

The possible candidates for the threshold are selected based on a hybrid approach
combining EVT and observation of the data. The two most common methods for selecting
thresholds in EVT applications are the mean residual life (MRL) plot and the parameter
stability plot [44,45]. The MRL plot shows the relationship between the mean excess (i.e., the
average of Yτ) and τ. Its theoretical foundation is the conclusion proved by [46], that is,
if the threshold τ0 enables X − τ0 to be the GPD excess, for any higher threshold τ > τ0,
the average value of X− τ (i.e., the mean excess) is E(X− τ | X > τ) = (σ + ξτ)/(1− ξ),
which is linear to τ. Therefore, the MRL plot is approximately linear within a suitable range
of τ. Meanwhile, too low a threshold τ would violate the assumption of extreme value
theory and thus lead to a tail distribution that does not obey the GPD. Too high a threshold
will lead to too few excesses, which brings a large uncertainty to the parameter estimation.
Therefore, the MRL plot is not a straight line for a too high or too low threshold τ.

https://github.com/facebook/prophet
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Algorithm A3 Finding the threshold τ based on EVT

Input:
The residuals for the first N days X = [X1, X2, X3, · · · , XN ].

Output:
τ∗, ξ(τ∗), and σ(τ∗).

1: Generating possible candidates for the threshold τ = [τ1, τ2, τ3, · · · ].
2: for τ in τ do
3: Yτ ← {Xi − τ | Xi > τ};
4: Estimating parameters ξ̂(τ) and σ̂(τ) based on Yτ ;
5: Calculating the Kolmogorov–Smirnov statistic KS(τ) between GPD

(
ξ̂(τ), σ̂(τ)

)
and

Yτ ;
6: end for
7: return τ∗ with the smallest KS(τ), as well as two parameters ξ(τ∗) and σ(τ∗) of the

GPD.

Generally, the MRL plot can provide a rough range of the proper threshold. However,
the MRL plot in practical applications may not be ideally straight. In fact, it is widely
recognized by researchers that the interpretation of practical MRL plots can be challeng-
ing [33]. As a supplementary method, the parameter stability plot involves plotting the
estimated parameters σ̂(τ) and ξ̂(τ) of the GPD model against τ. Within the proper range
of τ, σ̂(τ) and ξ̂(τ) should be near-constant, so the parameter stability plot should be an
approximately horizontal straight line.

In addition, observing the probability density function (PDF) and complementary cu-
mulative distribution function (CCDF) of the data also gives us an intuitive understanding
of the appropriate threshold values. Therefore, we plotted these four figures (i.e., PDF,
CCDF, the MRL plot and the parameter stability plot) in Figure A1.
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Figure A1. Selecting the threshold for the NYSE Composite Index. (a) Empirical PDF. (b) Empirical
CCDF. (c) MRL Plot. (d) Parameter Stability Plot.
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In this figure, (a), (b), (c) and (d) are the PDF, CCDF, the MRL plot and the parameter
stability plot of the residual. From the PDF, it can be observed that the major part of this
distribution approximates a normal distribution, which is consistent with our assumptions
on the residual ε(t). Furthermore, the distribution has a heavy tail where the outliers are
located. The CCDF is also obviously heavy-tailed, which supports our hypothesis based
on EVT. Combining the approximately linear part of the MRL plot and the near-constant
part of the parameter stability plot, we determined the search interval for the threshold τ
as (0.075, 0.125). It is worth noting that we actually relax the search interval. The possible
candidates for the threshold are the data points that lie within the search interval, that is,
T = {Xt | 0.075 < Xt < 0.125}.

Appendix C.2. Estimating Parameters for GPD

For each possible candidate τ ∈ T, we assume that the threshold excesses Yτ =
{Xi − τ | Xi > τ} follow the GPD. The parameters ξ̂(τ) and σ̂(τ) are estimated based
on the maximum likelihood estimation (MLE), which is considered as a more efficient
and robust approach compared with the method of moments (MOM) method and the
probability weighted moments (PWM) method [47].

We follow the parameter estimation procedure illustrated by [29], which is based on
Grimshaw’s trick [48]. The MLE method aims at maximizing the log-likelihood function
of GPD:

`(ξ, σ) = logL(ξ, σ) = −Nt log σ−
(

1 +
1
ξ

) Nt

∑
i=1

log
(

1 +
ξ

σ
Yi

)
(A4)

where Yi ∈ Yτ are the threshold excesses. The global optimal solutions ξ∗ and σ∗ that
maximize `(ξ, σ) must satisfy

∇`(ξ∗, σ∗) = 0. (A5)

Grimshaw [48] has demonstrated that the solutions of Equation (A5) satisfy the
following conditions 

u(x)v(x) = 1

u(x) = 1
Nt

∑Nt
i=1

1
1+xYi

v(x) = 1 + 1
Nt

∑Nt
i=1 log(1 + xYi)

, (A6)

where x = ξ∗/σ∗. Solutions of Equation (A6) can be obtained by performing numerical root
searches in the interval (xmin, xmax). The lower bound of the interval is
xmin = −1/ max{Yτ} and the upper bound is

xmax = 2
Yτ −min{Yτ}
(min{Yτ})2 , (A7)

where Yτ is the mean of Yτ . For each solution x of Equation (A6), the corresponding ξ and
σ can be calculated as, {

ξ = v(x)− 1

σ = ξ/x
(A8)

For all solutions of Equation (A6), we compute their corresponding ξ and σ, which
are substituted into Equation (A4) to compute `(ξ, σ). We select the ξ and σ that maximize
`(ξ, σ) as the estimated parameters of the GPD.

Appendix C.3. Threshold Selection Based on the Kolmogorov–Smirnov Statistic

In the previous step, we estimated the parameters ξ̂(τ) and σ̂(τ) of GPD for each
possible threshold τ ∈ T. Here we calculate the Kolmogorov–Smirnov (KS) statistic
between the empirical distribution function (EDF) of Yτ and the cumulative distribution
function (CDF) of GPD with parameters ξ̂(τ) and σ̂(τ). Figure A2 plots the KS statistics
against the threshold τ for the residual. We choose the optimal threshold τ∗ such that the
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corresponding KS statistic is minimized, which means that EDF and CDF are the closest
and the best fit is obtained. As is shown in Figure A2, the optimal threshold is τ∗ = 0.1164,
with ξ(τ∗) = 0.3004 and σ(τ∗) = 0.0276.
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Figure A2. Threshold selection based on the Kolmogorov–Smirnov statistic.

Appendix D. Execution Step

This appendix presents the detailed procedure of the execution step. With the in-
put of streaming data, we keep updating the training set, which is used to continuously
fine-tune the predictor. It is worth noting that we distinguish between “normal” and “ab-
normal” data based on EVT, and only include “normal” data into the updated training set.
In this way, the predictor is capable of tracking the "normal" changes in the dynamics of
the time series.

Algorithm A4 Execution step

1: The set for new training samples W ← [].
2: c = 0
3: for t > N do
4: Ît = F(It−d, · · · , It−1)
5: Xt = Ît − It
6: if Xt > τ then
7: Raise an alarm with the alarm index Fξ,σ(Xt − τ).
8: Empty new training sample set: W ← []
9: else

10: Append new training sample set: W ←W ∪ It.
11: if length(W) > d then
12: Sx ← Sx[1 : ] ∪W[1 : d]
13: Sy ← Sy[1 : ] ∪W[d + 1]
14: W ← []
15: c← c + 1
16: end if
17: end if
18: if mod(c, K) == 0 then
19: Train the predictor F(·) by the updated training set Sx and Sy.
20: end if
21: end for
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30. Bień-Barkowska, K. Looking at extremes without going to extremes: A new self-exciting probability model for extreme losses in
financial markets. Entropy 2020, 22, 789. [CrossRef]

31. Balkema, A.A.; De Haan, L. Residual life time at great age. Ann. Probab. 1974, 2, 792–804. [CrossRef]
32. Pickands, J., III. Statistical inference using extreme order statistics. Ann. Stat. 1975, 3, 119–131.
33. Scarrott, C.; MacDonald, A. A review of extreme value threshold estimation and uncertainty quantification. REVSTAT–Stat. J.

2012, 10, 33–60.

http://doi.org/10.1051/jp1:1996135
http://dx.doi.org/10.1016/j.phpro.2010.07.004
http://dx.doi.org/10.1016/j.physa.2011.09.019
http://dx.doi.org/10.1016/j.enpol.2016.06.020
http://dx.doi.org/10.1016/j.irfa.2016.02.008
http://dx.doi.org/10.1073/pnas.1819449116
http://dx.doi.org/10.1038/s42254-021-00322-5
http://dx.doi.org/10.1007/s00181-021-02036-0
http://dx.doi.org/10.1016/j.physa.2013.08.053
http://dx.doi.org/10.1103/PhysRevE.80.045102
http://dx.doi.org/10.1038/s41598-019-47210-8
http://dx.doi.org/10.3390/e22060614
http://dx.doi.org/10.1109/TNNLS.2020.3027426
http://dx.doi.org/10.1371/journal.pone.0128908
http://dx.doi.org/10.1155/2019/5320686
http://dx.doi.org/10.3390/e22101162
http://dx.doi.org/10.1073/pnas.0709247105
http://dx.doi.org/10.1103/PhysRevE.68.056110
http://dx.doi.org/10.1155/2019/1817248
http://dx.doi.org/10.1016/j.jempfin.2010.04.008
http://dx.doi.org/10.1016/j.physa.2013.08.071
http://dx.doi.org/10.1016/j.physa.2015.07.028
http://dx.doi.org/10.1016/j.physa.2016.02.030
http://dx.doi.org/10.1016/j.physa.2015.12.070
http://dx.doi.org/10.1093/comnet/cny028
http://dx.doi.org/10.3390/e22070789
http://dx.doi.org/10.1214/aop/1176996548


Entropy 2021, 23, 1612 23 of 23

34. Taylor, S.J.; Letham, B. Forecasting at scale. Am. Stat. 2018, 72, 37–45. [CrossRef]
35. Molchan, G.M. Earthquake prediction as a decision-making problem. Pure Appl. Geophys. 1997, 149, 233–247. [CrossRef]
36. Han, P.; Zhuang, J.; Hattori, K.; Chen, C.H.; Febriani, F.; Chen, H.; Yoshino, C.; Yoshida, S. Assessing the potential earthquake

precursory information in ULF magnetic data recorded in Kanto, Japan during 2000–2010: Distance and magnitude dependences.
Entropy 2020, 22, 859. [CrossRef] [PubMed]

37. Wang, R.; Chang, Y.; Miao, M.; Zeng, Z.; Chen, H.; Shi, H.; Li, D.; Liu, L.; Su, Y.; Han, P. Assessing earthquake forecast performance
based on b value in Yunnan Province, China. Entropy 2021, 23, 730. [CrossRef] [PubMed]

38. Sornette, D.; Zhou, W.X. Predictability of large future changes in major financial indices. Int. J. Forecast. 2006, 22, 153–168.
[CrossRef]

39. Shi, Y.; Zheng, Y.; Guo, K.; Ren, X. Relationship between herd behavior and Chinese stock market fluctuations during a bullish
period based on complex networks. Int. J. Inf. Technol. Decis. Mak. 2021, 1, 1–17. [CrossRef]

40. Zhang, Q.; Zhang, Q.; Sornette, D. Early warning signals of financial crises with multi-scale quantile regressions of log-periodic
power law singularities. PLoS ONE 2016, 11, e0165819. [CrossRef]

41. Jiang, Z.Q.; Canabarro, A.; Podobnik, B.; Stanley, H.E.; Zhou, W.X. Early warning of large volatilities based on recurrence interval
analysis in Chinese stock markets. Quant. Financ. 2016, 16, 1713–1724. [CrossRef]

42. Jiang, Z.Q.; Wang, G.J.; Canabarro, A.; Podobnik, B.; Xie, C.; Stanley, H.E.; Zhou, W.X. Short term prediction of extreme returns
based on the recurrence interval analysis. Quant. Financ. 2018, 18, 353–370. [CrossRef]

43. Ghosh, B.; Kenourgios, D.; Francis, A.; Bhattacharyya, S. How well the log periodic power law works in an emerging stock
market? Appl. Econ. Lett. 2021, 28, 1174–1180. [CrossRef]

44. Cirillo, P.; Taleb, N.N. Tail risk of contagious diseases. Nat. Phys. 2020, 16, 606–613. [CrossRef]
45. Mehrnia, N.; Coleri, S. Non-stationary wireless channel modeling approach based on extreme value theory for ultra-reliable

communications. IEEE Trans. Veh. Technol. 2021, 70, 8264–8268. [CrossRef]
46. Davison, A.C.; Smith, R.L. Models for exceedances over high thresholds. J. R. Stat. Soc. Ser. B (Methodol.) 1990, 52, 393–442.

[CrossRef]
47. Beirlant, J.; Goegebeur, Y.; Segers, J.; Teugels, J.L. Statistics of Extremes: Theory and Applications; John Wiley & Sons: Hoboken, NJ,

USA, 2006.
48. Grimshaw, S.D. Computing maximum likelihood estimates for the generalized Pareto distribution. Technometrics 1993, 35, 185–191.

[CrossRef]

http://dx.doi.org/10.1080/00031305.2017.1380080
http://dx.doi.org/10.1007/BF00945169
http://dx.doi.org/10.3390/e22080859
http://www.ncbi.nlm.nih.gov/pubmed/33286630
http://dx.doi.org/10.3390/e23060730
http://www.ncbi.nlm.nih.gov/pubmed/34201205
http://dx.doi.org/10.1016/j.ijforecast.2005.02.004
http://dx.doi.org/10.1142/S0219622021400010
http://dx.doi.org/10.1371/journal.pone.0165819
http://dx.doi.org/10.1080/14697688.2016.1175656
http://dx.doi.org/10.1080/14697688.2017.1373843
http://dx.doi.org/10.1080/13504851.2020.1803484
http://dx.doi.org/10.1038/s41567-020-0921-x
http://dx.doi.org/10.1109/TVT.2021.3091378
http://dx.doi.org/10.1111/j.2517-6161.1990.tb01796.x
http://dx.doi.org/10.1080/00401706.1993.10485040

	Introduction
	Data Description and Labeling
	Data Description
	Labeling Rebounds of Price Time Series

	Methodology
	Our Proposed Framework
	Quantifying Faster-Than-Exponential Decline in Stock Index Price
	Constructing the Time-Evolving Stock Correlation Network
	Dividing Time Windows
	Determining Constituents of the Stock Index
	Calculating Correlation Matrices
	Extracting Single-Layer Networks from Correlation Matrices
	Calculating Singular Value Decomposition Entropy

	Prediction-Guided Anomaly Detection Based on Extreme Value Theory
	Execution Step and Hybrid Rebound Indicator

	Experimental Results
	Qualitative Observation
	Error Diagram

	Discussion
	Conclusions
	Trend Labeling Algorithm
	Algorithm for the Generation of a Training Set
	Obtaining Optimal Threshold Based on Extreme Value Theory
	Generating Possible Candidates
	Estimating Parameters for GPD
	Threshold Selection Based on the Kolmogorov–Smirnov Statistic

	Execution Step
	References

