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Purpose. Esophageal cancer (EC) is a lethal digestive tumor worldwide with a dismal clinical outcome. Endoplasmic reticulum
(ER) stress poses essential implications for a variety of tumor malignant behaviors. Here, we set up an ER stress-based risk
classifier for assessing patient outcome and exploiting robust targets for medical decision-making of EC cases. Methods. 340 EC
cases with transcriptome and survival data from two independent public datasets (TCGA and GEO) were recruited for this
project. Cox regression analyses were employed to create a risk classifier based on ER stress-related genes (ERGs) which were
strongly linked to EC cases’ outcomes. Then, we detected and confirmed the predictive ability of our proposed classifier via a
host of statistical methods, including survival analysis and ROC method. In addition, immune-associated algorithm was
implemented to analyze the immune activity of EC samples. Results. Four EGRs (BCAP31, HSPD1, PDHA1, and UBE2D1)
were selected to build an EGR-related classifier (ERC). This classifier could distinguish the patients into different risky
subgroups. The remarkable differences in patient outcome between the two groups were observed, and similar results were also
confirmed in GEO cohort. In terms of the immune analysis, the ERC could forecast the infiltration level of immunocytes, such
as Tregs and NK cells. Conclusion. We created a four-ERG risk classifier which displays the powerful capability of survival
evaluation for EC cases.

1. Introduction

Esophageal cancer (EC) is a malignant neoplasm originat-
ing from the digestive system in humans with a growing
incidence rate [1]. Since the early symptom of EC is not
obvious, many cases are diagnosed at a late stage, missing
the optimal opportunity for treatment and leading to a
dismal prognosis [2]. With the evolution of precision med-
icine, molecular targeted therapy has become an increas-
ingly valuable research direction for tumor management.
Therefore, it is urgent to develop favorable biomarkers
for prognosis prediction in EC.

Protein metabolism is the basic process of biological
activities. The endoplasmic reticulum is the “largest process-
ing plant,” which can precisely control the whole process of
protein transport and process cellular signals [3]. Numerous
abnormal cellular states, such as glucose starvation, intracel-
lular calcium abnormalities, disrupted glycosylation modifi-

cations, and redox disorders, can disrupt ER function and
induce endoplasmic reticulum stress (ER stress) [4]. It could
evoke three different effects, namely, the unfolded protein
response (UPR), the endoplasmic reticulum-overload
response (EOR), and the sterol regulatory cascade response.
Both the UPR and EOR can be triggered through the aggre-
gation of unfolded proteins [5]. Moreover, EOR can also
attribute to the abnormal accumulation of normal proteins.
The sterol cascade regulatory response is caused by deple-
tion of cholesterol synthesized on the surface of the endo-
plasmic reticulum [6].

Under nonstressed state of ER, GRP78 on the ER mem-
brane binds to three transmembrane proteins, including
ATF6, PERK, and IRE1. In response to abnormal environ-
mental stimuli that induce ER stress in cells, GRP78 sepa-
rates from these transmembrane proteins and activates the
corresponding target genes, resulting in a series of patholog-
ical responses [7]. During ER stress, PERK could detach
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from BIP/GRP78 and interact with eIF2, which in turn
enhances the phosphorylation of eIF2α [8]. Phosphorylated
eIF2α promotes the expression of ATF4 mRNA and upregu-
lates CHOP at the protein level [9]. Also, IRE1α activates
caspase4, caspase12, ASK1, and JNK to induce cell apopto-
sis [10].

With ER stress, cancer cells produce a heat-resistant
cytokine that affects the immune cells infiltrating the tumor,

which in turn modify the local immune properties and facil-
itate tumor viability [11]. Mounting studies have shown that
the regulation of ER stress is closely bound up with the
growth, metastasis, and recurrence of various tumors [12].
Furthermore, ER stress-related genes (ERGs) are proved to
display a central part role in the aggravation of cancer. In
lung cancer, USP35 could regulate apoptosis triggered by
ER stress through stabilization of RRBP1 [13]. DDX5, also
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Figure 1: Characterization of ERGs in EC. (a) Volcano plot of DEGs in EC. (b) Venn plot of DEGs and ERGs. (c) GO enrichment analysis.

2 Journal of Oncology



named P68, is required for EC suppression in an ER stress
relevant way [14]. In addition, Li et al. reported that RSK2
could inhibit the ER stress resistance of breast cancer by
blocking cellular autophagy [15]. Despite a growing num-
ber of studies suggesting the crucial effect of ER stress in

malignancy development, it has not been adequately stud-
ied in EC.

Currently, prognostic model based on multiple biomark-
ers in EC has gained growing interest owing to their robust
forecasting reliability [16–18]. Nevertheless, prognostic
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Figure 2: Development of risk classifier based on ERGs. (a) Univariate Cox proportional hazard regression. (b, c) LASSO regression method
according to patients’ survival.
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classifier according to ERGs has not been developed in EC.
In this project, we applied gene matrix of EC samples to cre-
ate a risk classifier to forecast outcome of EC case. In the
future, personalized treatment for the EC patients will bene-
fit from our proposed classifier tool.

2. Methods

2.1. Data Acquisition. The gene matrix and clinical features
of two EC sets (TCGA-ESCA and GSE53625) were collected
from the public websites: TCGA and GEO. Each sample in
the two EC cohorts with follow-up time < 30 days was elim-
inated. Then, we included 1350 ERGs with relevance score
> 5 from GeneCards (Supplementary Table S1).
Differentially expressed genes (DEGs) in EC tissues and
normal controls were analyzed by the R software “limma”
package (∣log2 ðFCÞ ∣ = 0:5 and p < 0:05) [19]. Next,
differentially expressed ERGs (DEERGs) were obtained by
interacting with the list of DEGs.

2.2. Development of ER Stress-Related Classifier. Firstly,
TCGA cohort was selected as the discovery set to determine
prognostic ERSRGs via univariate analysis. Next, candidate
model genes were enrolled into LASSO regression designed
to minimize the overfitting impact of the signature. Finally,
we employed multivariate analysis to create the ER stress-
related classifier (ERC). The ERC equation was as follows:
risk factor =∑n

i=1ðCoef i × ERSRGiÞ. In this formula, Coef is
the coefficient of the ERC generated by Cox analyses.

2.3. Survival Analysis and Determination of a Nomogram.
The outcome of EC cases was compared between two groups
by the Kaplan-Meier (KM) method. The area under the
curve (AUC) generated by ROC analysis was applied to
detect the accuracy of the ERC. In addition, univariate and
multivariate methods were applied to determine the inde-
pendence of the ERC. Furthermore, we set up a nomogram
to reinforce the predictive capacity of the ERC based on var-
ious clinical traits. Verification of the nomogram was
assessed via calibration curve.

2.4. Verification of ERC Markers by the HPA Database.
Human Protein Atlas (HPA) is a database which could offer
various proteomics data in clinical specimens by immuno-
histochemistry (IHC) [20]. We confirmed the expression of
model genes at protein level between EC and normal
control.

2.5. Gene Ontology (GO) and Gene Set Enrichment Analysis
(GSEA). GO annotation was instrumental in exploring the
biological function of ERSRGs by package “clusterProfiler.”
We employed GSEA to identify the tumor hallmarks
between two subgroups (p < 0:05 and FDR < 0:25). Hall-
mark gene set (h.all.v7.5.symbols.gmt) was collected from
the MSigDB website [21].

2.6. Tumor Immune Microenvironment Analysis. To charac-
terize the immune landscape of the EC samples, we con-
ducted single sample gene set enrichment analysis
(ssGSEA). It is an algorithm determining the immunocyte

infiltration and immune function activity via the normalized
enrichment score (NES).

2.7. Exploration of the Clinical Potency of the Prognostic
Classifier. The mRNAsi is a measure of stem cell properties
of tumor calculated from mRNA matrix data and has a pos-
itive correlation with stem cell properties. Additionally, we
also detect the correlation between microsatellite instability
(MSI) and two groups.

3. Results

3.1. Characterization of Differentially Expressed ERSRGs.
Performing analysis of the EC dataset by differential expres-
sion method, a total of 5254 DEGs were obtained in EC
specimen compared with normal counterparts
(Figure 1(a)). Next, we screened 358 DEERGs by interacting
with 5254 DEGs. Moreover, the function of 358 ERGs was
annotated based on GO terms. We found that these genes
were associated with oxidative stress, endoplasmic reticulum
stress, and calcium ion transport (Figure 1(c)).

3.2. Construction and Verification of the ERC. We first
applied the univariate model in the discovery cohort to
determine 27 candidate ERGs greatly associated with patient
outcome (Figure 2(a)). Next, LASSO analysis was conducted
to remove overfitting genes of the model (Figures 2(b) and
2(c)). Untimely, we identified four hub ERGs (BCAP31,
HSPD1, PDHA1, and UBE2D1) to build the ERC
(Table 1). An ERC-based equation was generated as follows:
risk score = ð0:8036 × BCAP31Þ + ð0:5864 × HSPD1Þ + ð
0:7123 × PDHA1Þ + ð0:5768 × UBE2D1Þ. Selecting the
median risk score as the threshold, all the EC cases were
classified into high- and low-risk groups.

Figure 3 suggests the predictive value of the ERC in
terms of clinical outcome in EC cases. In discovery cohort,
survival curves unearthed patients with low risk presented
a favorable outcome (Figure 3(c)). Further ROC analysis
indicated the high AUC for 1-, 3-, and 5-year survival rate
(0.797, 0.793, and 0.776, respectively, Figure 3(d)). Mean-
while, we observed similar findings in verification cohort
(GSE53625) by the same analyses (Figures 3(e)–3(h)).

3.3. Exploration of the Prognostic Values and Protein
Expressions of the ERC. On the basis of the HPA online tool,
the expression patterns of ERGs were confirmed via IHC.
We observed that all model genes were highly expressed in
EC specimens (Figures 4(a)–4(d)).

3.4. Development of a Prognostic Nomogram. Following the
univariate and multivariate methods, we found the risk score

Table 1: Multivariate analysis of the four prognostic ERGs in EC.

Gene Coefficient Hazard ratio (95% CI) p value

BCAP31 0.8036 2.23 (1.11-4.51) 0.002

HSPD1 0.5864 1.80 (1.07-3.01) 0.002

PDHA1 0.7123 2.04 (1.18-3.53) 0.011

UBE2D1 0.5768 1.78 (0.91-3.46) 0.089
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Figure 3: Continued.
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of the ERC had a favorable independence of prognosis. In
the univariate regression, high ERC score was greatly associ-
ated with dismal outcome of cases with EC (Figure 5(a)).
Multivariate method revealed that ERC could be an inde-
pendent indicator for forecasting survival in EC
(Figure 5(b)). Moreover, we selected the clinical variables
and ERC to set up a nomogram which in turn generated a
value for each case. The lower the case value is, the better
the patient outcome (Figure 5(c)). The calibration curves
uncover a satisfying reliability of the classifier-based nomo-
gram (Figure 5(d)).

3.5. GSEA Determines ERC-Associated Hallmarks. The
results of GSEA presented five specific hallmarks of ERC,
including “epithelial-mesenchymal transition,” “glycolysis,”
“hypoxia,” “MTOR pathway,” and “TNF-beta signaling”
(Figure 6).

3.6. Immune Activity Analysis. In order to mirror the
immune status of two groups, we estimated enrichment
value of different immunocytes and immune function. As
shown in Figure 7(a), dendritic cells (DCs), macrophages,
and Treg were mainly enriched in ERC-high cohort, while
mast cells and NK cells were downregulated in ERC-low
cohort. In addition, there were eight immune functions dra-
matically enriched and only IFN-II response had higher
activity in ERC-low cohort (Figure 7(b)).

3.7. Exploration of the Clinical Potency of the Prognostic
Classifier. Given the importance of MSI in predicting prog-
nosis for patients with EC, we observed MSS had a higher
proportion in ERC-high cohort, suggesting patients with
high risk tend to have dismal clinical outcome
(Figures 8(a) and 8(b)). In addition, the mRNAsi score tends
to grow as risk score increases, pointing out that ERC-high
cases might have higher cancer stemness.
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4. Discussion

EC is a type of uncontrollable tumor originating in the diges-
tive system with dismal patient outcome [1]. Consequently,
exploiting novel prognostic indicators and therapeutic
approaches is particularly crucial. Numerous researchers
have made efforts on biomarker-based classifier and
obtained encouraging achievements in assessing the survival
outcome of EC [22, 23]. Nevertheless, these prognostic
models are more or less flawed and we need to discover
more powerful signature for prognosis prediction. Accumu-
lating evidence reveals that ER stress is connected to EC
malignant behaviors and treatment failure. As uncovered
by Liu et al., IFI6 could affect aggressive cell phenotype of
EC by mediating ROC accumulation in an ER stress way
[24]. Also, Pang et al. indicated that ER stress triggered by
tunicamycin boosts the radiosensitivity of EC [25]. However,
the underlying effects of ER stress in EC need more compre-
hensive analyses. In our project, we tried to develop an ERG-
based classifier to enhance risk prediction for EC patients.

In the current research, we successfully set up a risk clas-
sifier according to four ERGs (BCAP31, HSPD1, PDHA1,
and UBE2D1) for survival outcome evaluation in EC. Our
proposed ERC was proved to show promising independence
in terms of the prognosis of patients. Furthermore, KM
curves illustrated that ERC can accurately categorize the
patient’s risk classification in EC. At the same time, verifica-
tion set (GSE53625) was applied to test the features of the
ERC. Then, we unearthed a nomogram to exploit the fore-
casting potential of the classifier through combination of risk
score and a host of clinical variables. The potency of our
established nomogram was confirmed by calibration plots.

Our nominated ERC was composed of four ERGs which
were all risky indicators for prognosis in EC. After checking
the previous literatures, we found both four model genes are
tightly bound up with various malignancies.

BCAP31, a member of the BCAP family, is shown to be
correlated with ER membrane and exerts a crucial role in
enhanced cellular adhesion. Accumulating experimental
data indicates the oncogenic effects of BCAP31 in numerous
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Figure 6: Continued.
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tumors. In breast cancer, BCAP31 could foster BC cell
aggressive behaviors by binding with EGFR and in turn pro-
moting downstream pathways [26]. Dang et al. reported that

inhibiting BCAP31 could block the cell viability and metas-
tasis, suggesting the potential carcinogenic role in cervical
cancer [27]. As a target mRNA of miR-451a, BCAP31 may
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Figure 6: GSEA determines ERC-associated hallmarks: (a) epithelial-mesenchymal transition; (b) glycolysis; (c) hypoxia; (d) MTORC1
pathway; (e) TNF-beta signaling.
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Figure 7: Immune activity analysis. (a) The immunocyte infiltration differences between two groups. (b) The immune function differences
between two groups (∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001).
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be a barrier to colorectal cancer development through acti-
vation of ER stress [28]. PDHA1 is the E1 subunit of PDHc
which mediates glycolysis and the tricarboxylic acid cycle
[29]. Li et al. observed that PGC1α could boost cholangio-
carcinoma migration through regulation of PDHA1 expres-
sion [30]. In EC, silencing PDHA1 could facilitate cell
growth and migration via metabolic reprogramming effect
[31]. In addition, Liu and his colleagues suggested that
PDHA1 participates in the activation of glycolysis and fos-
ters cancer cell viability by binding with miR-21-5p [32].
HSPD1, also named Heat Shock Protein Family D
(HSP60), might play a central part in innate immune system.
Fan and his team detected the expression pattern of HSPD1
in head and neck cancer specimens and observed that its
downregulation was related to dismal patient outcome
[33]. Also, HSPD1 was proved to be highly expressed in lung
cancer and displays worse patients’ outcome. Depletion of
HSPD1 could block cancer cell viability in an oxidative

phosphorylation manner [34]. Moreover, the poor prognos-
tic value of HSPD1 was confirmed in Kang et al.’s cohort. At
the same time, they found that silencing HSPD1 could sup-
press metastasis of oral carcinoma via upregulation of E-
cadherin expression [35]. UBE2D1, also known as UBCH5,
belongs to the E2 ubiquitin-conjugating enzyme family. It
mainly serves in the ubiquitination of p53 and HIF1alpha
by binding with two ubiquitinating enzymes. Zhou et al.
demonstrated that higher UBE2D1 expression could drive
liver cancer aggravation through inhibition of p53-related
ubiquitination [36]. In addition, Li and his team showed that
lncRNA HCG11 could reverse the chemotherapy resistance
of stomach cancer via the miR-144-3p/UBE2D1 path-
way [37].

Enhanced glycolysis is an adaptation of malignant tumor
cells to hypoxic microenvironment. Its antiapoptotic effect
may render tumors tolerant to radiotherapy and chemother-
apy [38]. Hypoxia could induce the increased expression of
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Figure 8: Exploration of the clinical potency of the ERC. (a, b) The MSI infiltration differences between two groups. (c) Cancer stemness
feature analysis.
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HK-II, GLUT1, and LDHA at both mRNA and protein
levels in EC cells. The disturbance of HIF-1 α could block
the expression of these three glycolytic enzymes, which
may not be corrected by hypoxia [39]. Sawayama et al. dem-
onstrated that silencing GLUT1 could inhibit cell growth
and confer cisplatin resistance to EC via phospho-ERK1/2
[40]. Epithelial tumors can acquire the ability of migration
and invasion through epithelial mesenchymal transforma-
tion (EMT). After EMT, epithelial cells lost their polarity
and obtained mesenchymal phenotype [41]. The study
showed that downregulation of ASPP2 could significantly
promote the EMT process of EC cells, fostering the metasta-
tic ability of esophageal cancer cells [42]. TGF-β, an impor-
tant regulator of EMT, could promote the process of cellular
EMT, contributing to the hypermetastases of various tumors
[43]. It was reported that TGF-β induced LMO1 via the
Smad-dependent signaling pathway, which in turn mediates
TGF-β-induced EMT and plays a central part in controlling
the metastasis of cancer [44]. MTOR signaling is generally
enriched in numerous tumors, which could regulate cell pro-
liferation and survival. Li and his team found that miR-195
could suppress mediate the viability and apoptosis of EC
cells by binding with HMGA2 and weakening the mTOR
signaling pathway [45].

According to the immune landscape analysis, we
observed that Treg was greatly enriched in the ERC-high
group. Treg, an immunosuppressive cell, could block cellular
messages stemming from effector T cells by secretion of
cytokines [46]. Additionally, Treg suppresses the activity of
B cell through the activation of programmed cell death
[47]. In effect, the presence of Treg has been shown to fore-
cast dismal prognosis of cases with EC [48]. Moreover,
patients in the ERC-high group showed a lower proportion
of NK cell. Previous research has reported that immune
compromise is the primary cause of high mortality in tumor
patients [49]. NK cells depend on the microenvironment of
the bone marrow for their maturation and development
[50]. NK cell is considered to be the first line of defense in
immune surveillance as it kills tumors without antigen sen-
sitization. It has been suggested that the tumor microenvi-
ronment is more reflective of the body’s immune function
than peripheral blood, and therefore, the detection of NK
cell infiltration in tumor tissue should be an ideal approach
to determine the immune status of the host [51].

Tumor immune escape (TIE) is the major driver of
tumor development. Immune checkpoints are pivotal mole-
cules involved in TIE, turning out to be a hot topic of basic
and clinical research recently. Immune checkpoints, through
receptor-ligand interactions, transmit inhibitory signals to
immunosuppressive cells, thereby inhibiting the latter from
performing antitumor effects [52]. Studies show that
patients with high expression of PD-L1 are a superior popu-
lation for immunotherapy [53]. Combined with our previ-
ous analysis, we speculated that the high-risk group tends
to benefit from immunotherapy.

Heterogeneity is the effect of a subpopulation of cells
with cancer stem cells (CSC) on the grade structure of
tumor. CSC possesses infinite proliferative capacity, involv-
ing both symmetric and asymmetric divisions. The former

refers to the ability to self-renew, while the latter is spectral
limitation which is attributed to the generation of heteroge-
neous cells [54]. CSC accounts for approximately 0.1% of
overall tumor data and is considered a key source of tumor
initiation, progression, metastasis, and treatment resistance
[55]. Cancer stemness analysis according to our classifier
indicated that the mRNAsi score tends to grow as risk score
increases, revealing that patients have a higher probability of
tumor metastasis and recurrence.

MSI is an increase or loss of repetitive sequences in the
genome due to gene duplication errors, resulting in changes
in DNA length [56]. MSI was first identified in hereditary
nonpolyposis colon cancer and was subsequently found to
be expressed to varying degrees in gastric cancer, liver can-
cer, and EC [57]. Several projects have concluded that the
outcome of EC patients with MSI is better than that of those
without MSI. The reason may be that MSI occurs under the
stimulation of tumor invasion, which mobilizes the body to
produce the corresponding resistance mechanism and sub-
sequently has an optimal clinical outcome [58]. In agree-
ment with these findings, our results suggest that MSS had
a higher proportion in the ERC-high cohort.

In summary, our project uncovered a four ERG-based
risk classifier which might not only exert an essential role
in prognosis evaluation for EC cases but also be utilized to
assess the immune status and offer promising reference in
therapeutic decision-making of patients with EC.
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