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Abstract: The ultra-dense network (UDN) is one of the key technologies in fifth generation (5G)
networks. It is used to enhance the system capacity issue by deploying small cells at high density.
In 5G UDNs, the cell selection process requires high computational complexity, so it is considered to
be an open NP-hard problem. Internet of Vehicles (IoV) technology has become a new trend that
aims to connect vehicles, people, infrastructure and networks to improve a transportation system.
In this paper, we propose a machine-learning and IoV-based cell selection scheme called Artificial
Neural Network Cell Selection (ANN-CS). It aims to select the small cell that has the longest dwell
time. A feed-forward back-propagation ANN (FFBP-ANN) was trained to perform the selection task,
based on moving vehicle information. Real datasets of vehicles and base stations (BSs), collected
in Los Angeles, were used for training and evaluation purposes. Simulation results show that
the trained ANN model has high accuracy, with a very low percentage of errors. In addition, the
proposed ANN-CS decreases the handover rate by up to 33.33% and increases the dwell time by
up to 15.47%, thereby minimizing the number of unsuccessful and unnecessary handovers (HOs).
Furthermore, it led to an enhancement in terms of the downlink throughput achieved by vehicles.

Keywords: 5G; cell selection; IoV; machine learning; neural network; user association; small cell; Los
Angeles; ITS

1. Introduction

The 5G wireless network is a future technology which requires huge capacity, high
reliability, massive connectivity, and ultra-low latency [1,2]. The Internet of Things (IoT),
smart cities, intelligent transportation, and remote surgery are examples of emerging 5G
applications [3–6]. Internet of Vehicles (IoV) is a special form of the IoT where vehicles
are connected to the internet and they can transmit data [7,8]. The IoV communication
has four different types, which are Vehicle-to-Vehicle (V2V) communication, Vehicle-to-
Pedestrian (V2P) communication, Vehicle-to-Infrastructure (V2I) and Vehicle-to-Network
(V2N) communication [9,10]. Intelligent transportation system (ITS) refers to a smart
system that aims to enhance mobility and safety issues by integrating information and
communication technologies into the transportation field [11,12]. The IoV will play a
significant role in the future intelligent transportation system [13].

An ultra-dense network is an enabling technology, which aims to meet the require-
ments of increased capacity and low latency [14]. It is a wireless network that has a high
density of small cells that may exceed the number of active users [15]. However, UDNs
have many challenges to be overcome, as illustrated in Figure 1. The main issues related to
5G UDNs are cell selection, radio resource allocation, interference mitigation, and power
management [16–18]. Cell selection is the process of determining the small serving BS to
which a mobile terminal will associate [19,20]. It is an NP-hard optimization problem and
the computational complexity increases exponentially with increasing network size [14,21].
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High data rates and the efficient use of a spectrum are crucial requirements for IoT-based 5G
networks [22]. Maximizing the 5G data rate should be targeted so that the IoT transmission
rate constraints and interference to IoT are considered. In addition, improving the energy
efficiency by consuming less power is essential to meet communication requirements [23].

UDN

Cell Selection

Interference Mitigation

Power Management

Small BS

Radio Resource Allocation

Figure 1. Main issues related to 5G ultra-dense networks.

Nowadays, machine learning (ML) is becoming a promising method that can offer
fast processing and real-time predictions for complex and large-scale applications by
developing models and algorithms [24–26]. An artificial neural network (ANN) is a
machine learning algorithm that is based on processing elements (called neurons) to
simulate the concept of human neurons [27]. ANNs have proven their effectiveness in
solving many problems in different fields [28]. Fifth generation (5G) networks require the
application of machine learning techniques to operate effectively. Solving issues related to
5G wireless technology is an open direction for future research [29].

In this paper, we study the cell selection issue in 5G UDNs. A novel cell selection
strategy is proposed that is based on ANN to perform the multi-classification task of small
BSs, based on vehicle information. The main determinant in choosing a cell is the dwell
time spent inside the cell. In the experiment, actual datasets are used for training and
evaluation that were gathered in the city of Los Angeles.

The traditional scheme and most existing works give high priority to the small BSs
that have the maximum received signal strength indicator (RSSI). However, relying on this
principle is not effective in ultra-dense environments because it will lead to an increased
handover rate [16,30,31]. In addition, machine learning techniques are needed to speed up
processing time and to reduce computational complexity.

The main contributions of this work are:

1. proposing an intelligent ANN-based cell selection strategy for 5G UDNs, called ANN-
CS. It aims to select a small BS that has the longest dwell time in the range, using
a ML technique. A feed-forward back-propagation ANN (FFBP-ANN) was trained
based on real BS and vehicle datasets that were collected in the city of Los Angeles;

2. evaluating the performance of the trained FFBP-ANN in terms of accuracy, sensitivity,
specificity, precision, F-score, and geometric mean (G-mean). In addition, errors
are checked based on the root mean square error (RMSE) and the mean absolute
error (MAE);

3. evaluating the performance of the proposed ANN-CS scheme based on the following
performance metrics: the average (i) dwell time; (ii) number of handovers; (iii) number
of unsuccessful and unnecessary handovers; and (iv) achievable downlink throughput.
Then, the performance of the proposed ANN-CS approach is compared with the
traditional cell selection method and a recent related approach called Handover based
on Residence Time Prediction (HO RTP).

The rest of this paper is structured as follows. Section 2 presents related ML-based cell
selection works. The proposed machine-learning-based approach is explained in Section 3.
The simulation results are discussed in Section 4. The conclusion of the whole paper and
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suggestions for future work are given in Section 5. Appendix A gives lists of all abbreviations
and symbols that are mentioned in this paper.

2. Related Work

In this section, recent related user association methods are discussed. Some of these
works use machine learning (ML) techniques to solve the cell selection issue, while others
do not.

2.1. Non ML-Based Cell Selection Strategies

A cell selection approach was proposed by Kiishida et al. in [32] for 5G multi-layered
Radio Access Networks (RANs). It considers the direction and velocity of UE movement to
reduce the number of frequent handovers. The final decision is based on the value of SINR,
whereby the BS that has the maximum SINR value will be selected. Simulation results
proved that the proposed approach achieved an approximate 30% improvement in the
number of handovers while maintaining the average flow time.

In [33], Elkourdi et al. proposed a cell selection algorithm for 5G heterogeneous
networks that based on Bayesian game. There are two players, that is, user equipment
(UEs) and access nodes (AN). There are different types of UEs based on the traffic. Sim-
ulation results showed that the proposed scheme outperformed the traditional and cell-
range-expansion (CRE) methods in terms of the probability of proper connection and
end-to-end delay.

Waheidi et al. developed an approach called Cell Association, based on a Multi-Armed
Bandit game (CA-MAB) in [30]. There are two classes of devices, that is, UE and IoT, and
the proposed CA-MAB scheme was evaluated in static and mobile environments. The
evaluation results showed that the CA-MAB approach enhance the energy efficiency and
the throughput and the existence of mobility affected the energy savings, throughput,
and equilibrium.

Arshad et al. proposed topology-aware skipping approaches in [34], where various
skipping techniques are considered. The handover decision is taken based on the position of
a user and/or cell size. Simulation results showed that the proposed schemes outperformed
the conventional RSSI-based method by up to 47% in terms of the average user throughput.

Two cell selection strategies for HUDNs were proposed by Sun et al. in [35] that
depend on the coordinated multipoint (CoMP) technology. The first scheme is called
movement-aware CoMP handover (MACH), which select the cooperation BSs set that
has the strongest received signal with a dwell time greater than a specific threshold. The
second scheme is known as improved MACH (iMACH), which adds the nearest BS to the
MACH’s cooperation BSs set, instead of the BS that has the lowest RSSI value in the set.
The handover is triggered based on MACH, when the farthest BS in the set becomes the
nearest one. Conversely, in iMACH, the HO is initiated when the nearest BS becomes the
farthest one. Simulation results demonstrated that MACH and iMACH strategies enhanced
the average achievable throughput. In addition, they improve the coverage probability and
handover rate.

Qin et al. introduced a cell selection strategy for 5G ultra-dense networks in [36]. It is
called Handover based on Resident Time Prediction (HO RTP) and it aims to estimate the
residence time inside a cell and select the base station that has the strongest RSSI value with
a residence period longer than a predefined threshold. Simulation results demonstrated
that the HO RTP approach was superior to the traditional method in terms of achievable
mean user throughput.

In [16], Alablani and Arafah introduced an adaptive cell selection approach for 5G
Heterogeneous UDNs (HUDNs), called ADA-CS. It aims to select the best BS based on
the different features of HUDNs and vehicle movements. It passes through six phases to
achieve its goals; namely, configuration, decision-making, filtering, narrowing, selecting,
and HO triggering. Simulation results demonstrated that the ADA-CS strategy was supe-
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rior to the conventional and recent related approaches in terms of the average number of
handovers, average achievable downlink data rates and spectral efficiency.

2.2. ML-Based Cell Selection Strategies

In [37], Dilranjan et al. proposed a BS prediction strategy for 5G wireless networks
that uses a Recurrent Neural Network (RNN) classifier. Received Signal Strength (RSS)
values are used to train the RNN model. Simulation results showed that the proposed
scheme achieved 98% accuracy in predicting the optimal base station to be associated with.

Zhang et al. introduced a machine-learning-based cell selection scheme for drones in
wireless networks in [38]. A conditional random field (CRF) model is used to predict the
best serving cells depending on signal-to- interference-plus-noise ratio (SINR) values. Sim-
ulation results demonstrated that the proposed CRF-based method yielded 90% accuracy
in predicting the best cells and it outperformed two simple heuristic methods.

In [39], Perez et al. proposed a machine-learning-based framework to solve the user
association problem in 5G heterogeneous networks. The Q-learning algorithm was used
to achieve the model goal. 3-dimensional feature vectors were used that included the BS
identification (BSID) index, downlink (DL) SINR, and the DL cell load. Simulation results
showed the superiority of the proposed framework over alternative decision methods.

Zappone et al. introduced a user association method in [40] that was based on
machine learning. A feed-forward artificial neural network (ANN) was trained to perform
the optimal user association where the input was the geographical positions of users.
The use of the ANN reduced the computational complexity of the assignment procedure
compared to conventional methods.

In [41], a cell selection issue was solved by introducing two hidden Markov-model-
(HMM) based ML strategies that were proposed by Balapuwaduge et al. The reliability and
availability of network resources were the main targets of the proposed HMM-based ML
schemes. Simulation results showed the superiority of the proposed strategies compared
with a random cell selection method in terms of channel availability and reliability.

An intelligent machine-learning-based user association for 5G heterogeneous net-
works was developed in [14] by Zhang et al. The problem was treated as a supervised
learning task and a cross-entropy algorithm was used for labeling the best base station to
be associated with. A U-Net convolutional neural network (CNN) was trained to solve
the user association problem under the cell load constraint. Channel gain matrices were
mapped onto images to be the inputs of CNN, while the user association matrices were
the outputs of the ML model. Simulation results demonstrated that the proposed schemes
enhanced computation time and network robustness.

Table 1 represents a comparison among recent ML-based cell selection schemes in
terms of the ML model used and its inputs. Based on the cell selection works that are
represented in this section, we found the following limitations:

• The number of cell selection schemes that rely on applying machine learning technolo-
gies in predicting the serving BS is small compared with the number of non ML-based
works. However, using ML techniques seems to be essential in an environment that
has vehicle movement and ultra-high density BSs to decrease the computational
complexity of estimating the best BSs;

• Few works consider the estimation of the dwell time, which is, in fact, the main
determinant in selecting BSs. Moreover, these works did not give the dwelling period
a high priority compared to the value of the received signal strength. In addition, the
equations used to estimate the dwell time are inaccurate and assume that the user is
located at the edge of the cell, which is contrary to reality;

• The ML-based works did not give the model enough types of inputs to be able to
predict the best BS efficiently.
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Table 1. A comparison among recent ML-based cell selection schemes.

Ref Year Authors ML Model ML Inputs Model Performance

[37] 2017 Dilranjan et al. RNN RSS values Achieves high accuracy of 98%

[38] 2017 Zhang et al. CRF SINR values Achieves high accuracy of 90%

[39] 2017 Juan et al. Q-Learning
3D feature vectors formed by:
(1) BSID index. (2) DL SINR.
(3) DL cell load

Enhances load balancing

[40] 2018 Zappone et al. ANN Geographical positions of users Reduced computational complexity

[41] 2019 Balapuwaduge et al. HMM Initial HMM and
observation sequence

Improves channel availability
and reliability

[14] 2020 Zhang et al. U-Net CNN Channel gain matrices Enhances computation time and
network robustness

3. Proposed ML-Based Cell Selection Strategy
3.1. Problem Formulation

The proposed ML-Based cell selection, the ANN-CS scheme, aims to reduce the
handover rate in 5G UDNs by prolonging the dwell time of vehicles within small cells.
Millimeter-Wave (mmWave) communication in UDNs has been considered, which operates
in a high-frequency band. The association in downlink with single connectivity between
small BSs and vehicles is considered. The small BSs located in the Central cluster of
Los Angeles are denoted by Bsmall = {B1, B2, . . . , BK}. The vehicles, which move with
different movement-related information, are represented by V = {V1, V2, . . . , VJ }. The BS
association vector is expressed as A = {a11, a12, . . . , aKJ }, where the BS association variable
that indicates the connection between small BS k and vehicle j is defined as shown in
Equation (1).

akj =
{

1 If there is association between Bk and Vj
0 Otherwise

(1)

3.2. Proposed Framework

The framework of the proposed ANN-based small cell selection is represented in
Figure 2. The framework is composed of two main components: a 5G ultra-dense environ-
ment and an ANN-based agent. In training and testing processes, there is an interaction
between the two components. The vehicle-related information, which includes geographi-
cal locations, azimuths, and speeds, is entered in the ANN-based agent. The ANN is used
to predict the best small BS to be associated with, based on the longest dwell time, by
generating BS-association vectors. A converting unit is used to convert the predicted BS
association vector to the corresponding BS’s ID.

Vehicle Info (Latitude, Longitude Azimuth, Speed)

Predicted BS ID

5G Ultra-Dense Environment
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Figure 2. The framework of the proposed ANN-CS scheme.
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The pseudocode for the proposed ANN-CS scheme is shown in Algorithm 1.

Algorithm 1: Pseudocode for the proposed ANN-CS approach
input : Bsmall.
output :BID .
while Vehicle moves do

if RSSI < Th || len(BID) == 0 then
x = [V.lat V.lon V.azimuth V.speed];
ŷ = ANNMdl (x);
A = Round (ŷ);
BID = Vector2ID (A);
Initiate HO to BS# BID ;

end
end

3.3. 5G Network Model

A 5G ultra-dense network has been modeled in this paper based on real datasets.
In the city of Los Angeles, the distribution of small BSs is in three clusters: (a) Burbank, (b)
Central, and (c) Long Beach [42]. The Central cluster is considered due to the high density
of the small BSs.

The system model is shown in Figure 3, where the black crosses represent the distribu-
tion of small BSs and the series of green squares shows the locations of vehicles in LA City.
There are 621 small base stations and 48,864 vehicles.

Figure 3. The system model in the city of Los Angeles.

3.4. Machine Learning Model

This study is based on using a machine learning technique to solve the 5G small cell
selection issue. There are three main phases involved in building the proposed ML model,
as represented in Figure 4. These phases are (1) data preparation, (2) ML model training,
and (3) ML model evaluation. The raw data consist of two databases; a dataset of small
base stations located in the city of Los Angeles [42], and a dataset of vehicle information,
which was collected in LA City [43].
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ML Model Training

Raw 

Data

Data Preparation

Data Curation

Data Labeling

Data Splitting

ML Model Evaluation

Figure 4. Building phases of the proposed ANN-based model.

3.4.1. Data Preparation

The data preparation phase is composed of three steps:

• Data curation step: the collected data are organized and information that does not
serve the proposed ML model is cleared up in this step. From the LA small BS and
vehicle datasets, the samples corresponding to the Central cluster area of LA were
taken, due to the high density of small cells. In addition, the columns that are used
in calculating the longest dwell time within each small cell are kept. Figure 5 shows
snapshots of LA small BS and vehicle tables after the data curation step, where the
number of small base stations and vehicles are 621 and 48,864, respectively. The LA
small BS table has three columns; latitude (lat), longitude (lon), and the identification
numbers of the small BS (IDs). The LA vehicles table has four columns; lat, lon,
azimuth, and kspeed, where azimuth is the angle between the vehicle direction and
the north in degrees. The kspeed is the speeds of the vehicles, which are randomly
assigned in the range from 10 to 80 km/h.

(a)

Figure 5. Cont.
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(b)

Figure 5. Snapshots of LA small BSs and vehicles tables after data curation step. (a) Snapshot of LA
small BSs table. (b) Snapshot of LA vehicles table.

• Data labeling step: This is a process of tagging LA vehicles data samples to solve a
multi-classification problem via supervised learning. It is performed by generating a
BS association vector for each vehicle, where 1 is assigned to the small BS that has the
longest dwell time and 0 to the other BSs. The dwell time of a vehicle within small
cells, Tdwell, is estimated as represented in Equation (2).

Tdwell =
C
s

=
d cos(θ) +

√
r2 – d2 sin2(θ)

s
, (2)

where C is the chord of a small cell, which indicates the length of the dwelling distance
within the small cell. The vehicle speed and the distance between the vehicle and
small BS are identified by s and d, respectively. The angle between the small BS and
the direction of the vehicle is represented by θ and r is the radius of the small cell.

• Data splitting step: The labelled data were split into training and testing sets with
percentages of 80% and 20%, respectively. Table 2 shows the number of training and
testing samples that are used to train and evaluate the proposed ANN-based model.

Table 2. Number of training and testing samples.

Training Set Testing Set

Number of samples 39,091 9773

3.4.2. ML Model Training

A feed-forward back-propagation ANN (FFBP-ANN) is used to achieve the multi-
classification task, as shown in Figure 6. In the proposed FFBP-ANN structure, there are
three layers; input, hidden, and output. The input vector has four values related to vehicles;
latitude, longitude, azimuth, and speed. The training data set contains 39,091 feature
vectors with different vehicle information. The hidden layer is composed of ten neurons,
while the output layer includes K neurons to generate the small BSs association vector.
Based on the target vector, the errors are estimated to update the weights of the proposed
neural network. Table 3 shows the training parameters that were used for training the
proposed FFBP-ANN model.
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Figure 6. Illustration of the proposed neural network architecture.

Table 3. The training parameters.

Training Features Training Parameters

Neural network type Feed-forward backprop

Number of layers 3 (Input, Hidden, and Output)

Number of hidden layer neurons 10

Activation functions tansig

Initial weights [0–1]

Number of iterations 1000

Number of epochs 1

Learning rate 0.01

Training time (days) 14

3.4.3. ML Model Evaluation

The root mean square error (RMSE) is a common measure, which calculates the error
distance between the predicted values. The mean absolute error (MAE) is a measure used
to compute the average of the absolute difference between the predicted and the target
values. RMSE and MAE are defined as shown in Equations (3) and (4), respectively [44].

RMSE =

√
1
N Σ

N
i=1(ŷi – yi)2 (3)
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MAE =
1
N Σ

N
i=1|yi – ŷi|, (4)

where the number of testing samples is denoted by N and the predicted and the target
small BSs are represented by ŷ and y, respectively.

To evaluate the performance of the proposed ANN-based model, a confusion matrix
is constructed, which is sometimes called a contingency table [45]. The confusion matrix is
an effective tool that reports the numbers of true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) [46]. Based on the constructed confusion matrix,
accuracy, sensitivity, specificity, precision, F-score, and geometric mean (G-mean) are
calculated as defined in Equations (5)–(10).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Sensitivity =
TP

TP + FN
(6)

Specificity =
TN

FP + TN
(7)

Precision =
TP

TP + FP
(8)

F-score =
2TP

2TP + FP + FN
(9)

G-mean =
√(

Sensitivity× Specificity
)
. (10)

3.5. Propagation Channel Model

The parameters used in the propagation channel model, that is, path loss (PL), fading
and shadowing, are shown in Table 4. The PL model used is the 3rd Generation Partnership
Project (3GPP) model, which is given by the 3GPP technical report (specification #38.901,
version 16.1.0) [47]. Urban microcell-line-of-sight (UMi-LOS)/street canyon model is
considered in this study. In the Central cluster of LA city, streets are flanked by buildings
on both sides, resulting in canyon-like environments, and the small BSs are shorter than
the buildings. The path loss function, γ(d), is associated with the distance between a small
base station and a vehicle, where the distance (d) is measured in meters and the carrier
frequency (fc) is expressed in GHz. The breakpoint distance is represented by dBP and
the height and the effective height of the small BS are denoted by hB and h

′
B, respectively.

The height and the effective height of the vehicle are expressed as hV and h
′
V. The velocity

of light in free space is represented by c. The Rayleigh fading model is a common model
that can represent multipath fading in real-world environments [48,49]. In this work,
multipath fading is modeled as Rayleigh fading to represent the LA city environment,
which follows the exponential distribution with unit mean. In this paper, frequency-
selective fading is not considered because measurements made in [50] demonstrate that
the delay spread is generally small. Moreover, using techniques like orthogonal frequency-
division multiplexing (OFDM) or frequency domain equalization limits the effect of the
frequency-selectivity in fading [51]. In addition, small-scale fading at mmWave cellular
systems is less severe than that in Long-Term Evolution (LTE) systems when using base
station antennas with narrow beams, as the measurement results show [52]. The log-normal
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shadowing is included in the propagation model, where σSF is the shadow-fading standard
deviation in decibels (dB).

Table 4. The parameters used in the propagation channel model.

Parameter Model Formula

Path loss 3GPP UMi-LOS (street canyon)

γ(d) =

{
32.4 + 21 log10(d) + 20 log10(fc) 10 m 6 d 6 dBP

32.4 + 40 log10(d) + 20 log10(fc) – 9.5 log10((dBP)2 + (hB – hV)2) dBP 6 d 6 5 km
where
dBP = 4 h

′
B h

′
V fc/c

h
′
B = hB – h

′

h
′
V = hV – h

′

h
′

= 1 m
c = 3× 108 m/s

Fading Rayleigh fading (unit mean) HRayeigh v exp(1)

Shadowing Log-normal HNormal v N(σSF)

4. Simulation Results and Discussion

In this work, the MATLAB simulator 2021a was the simulation tool used to implement
and analyze the performance of the proposed ANN-CS algorithm. A high-performance
gaming computer was used to perform the data processing and to evaluate the perfor-
mance.The specifications of the computer are given in Table 5.

Table 5. Gaming computer specifications.

Component Feature

Processor AMD Ryzan 7 3800X 8-Core Processor @3.89 GHz

Memory 64 GB DDR RAM

GPU NVIDIA EVGA GeForce RTX 2070 Super

Motherboard ASRock B450M Pro4

Power Supply Gamemax 800 W

Hard Disk SSD 3 TB

Cooling System Corsair H100i v2

Operating System Windows 10 64-bit

4.1. Evaluation of the Trained ANN Model

Figure 7 illustrates the validation performance chart that shows the relations between
the number of epochs and the mean squared error (MSE). In the chart, there is a green
circle indicating the training stopping time, which occurs when the validation error reaches
its minimum and then increases at epoch 354. The test set and the validation set are
represented by green and red lines. For all training, validation and test data, as the number
of epochs increases, the MSE value decreases. The best training MSE of the trained network
equals 0.00021746, which was obtained at epoch 348, and is very small.

Figure 8 illustrates the relations between the number of epochs and the performance
of the training state in terms of gradient, Mu factor, and validation fail. The values of the
gradient, Mu factor, and validation check at epoch 354 are 1.0493× 10–6, 1 × 10–9 and
6, respectively.
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Figure 7. The relation between number of epochs and training MSE.

Figure 8. The relations between the number of epochs and the performance of the training state.

The trained ANN-based model was evaluated based on RMSE, MAE, accuracy, sensi-
tivity, specificity, precision, F-score, and G-mean, as shown in Table 6.



Sensors 2021, 21, 6361 13 of 22

Table 6. The trained model evaluation values.

Performance Metrics Value

RMSE 0.0157

MAE 0.00024683

Accuracy (%) 99.9039

Sensitivity (%) 88.8571

Specificity (%) 99.9518

Precision (%) 88.8571

F-score (%) 88.8571

G-mean (%) 94.2413

4.2. Evaluation of the Proposed ANN-CS Scheme
4.2.1. Performance Metrics

The performance of the proposed ANN-CS strategy is evaluated in terms of:

• Average dwell time: The average dwell time of a vehicle in a small cell is estimated
according to Equation (11), where the number of moving vehicles in an ultra-dense
network is expressed as J .

E(Tdwell) =
∑J (∑(Tdwell)/NHO)

J . (11)

• Average number of handovers: The average number of HOs that occurs as vehicles
move in the UDN is computed according to Equation (12).

E(NHO) =
∑J NHO
J . (12)

• Average number of unsuccessful HO: An unsuccessful HO occurs when the han-
dover latency is longer than the dwell time within a small cell (li) [53]. The probability
of an unsuccessful HO (Prα) can be calculated in terms of vehicle speed (s), small cell
radius (r), handover latency (l), and the time threshold of an unsuccessful HO (Thα),
as shown in Equation (13). Equation (15) shows the formula to estimate the average
number of unsuccessful HOs (E(Nα)).

Pr(α) =

{
2
π

[arcsin( sli
2r ) – arcsin( sThα

2r )] 0 6 Thα 6 li
0 li < Thα

(13)

Thα =
2r
s

sin(arcsin(
sli
2r

) –
2
π

Pr(α)) ; 0 6 Pr(α) 6 1 (14)

E(Nα) = Pr(α)× E(NHO). (15)

• Average number of unnecessary HOs: An unnecessary HO means a false handover
is performed, where the dwell time in a small cell is shorter than the summation of
HO latencies to move into (li) and out (lo) of the small cell [54]. The probability of
an unnecessary HO (Pr(β)) can be calculated as expressed in Equation (16). The time
threshold of the unnecessary handover is denoted by Thβ. Equation (18) illustrates
the method of computing the average number of unnecessary HOs (E(Nβ)).

Pr(β) =

{
2
π

[arcsin( s(li+lo)
2r ) – arcsin( sThβ

2r )] 0 6 Thβ 6 (li + lo)
0 (li + lo) < Thβ

(16)
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Thβ =
2r
s

sin(arcsin(
s(li + lo)

2r
) –

2
π

Pr(β)) ; 0 6 Pr(β) 6 1 (17)

E(Nβ) = Pr(β)× E(NHO). (18)

• Average achievable DL throughput: The purpose of deploying a high density of 5G
small cells is to provide a high data capacity with a cost-effective method [55]. The
achievable DL data rate of vehicles during movement in UDNs is calculated according
to Shannon’s equation, as expressed in Equation (19). The signal-to-interference-plus-
noise ratio (SINR), which is denoted by ζkj, is the ratio of the received signal to the
interference from other wireless BSs plus noise [56].

Rkj = W log2(1 + ζkj) (19)

ζkj =
ptxk
γkj(d)Hkj

∑i 6=k(ptxk
γji(d)Hji) + σ2 , (20)

∀ Vj ∈ V and ∀ Bk ∈ Bsmall.

The maximum transmission power of small BSs is denoted as ptx and the path loss
function is represented by γ(d), which is defined in Section 3.5. The channel gain
is expressed as H, which includes the effects of Rayleigh fading and log-normal
shadowing. The thermal noise (σ2) is modeled as an additive white Gaussian noise
(AWGN), as shown in Equation (21). It can be computed in terms of noise power
spectral density (N0), and sub-channel bandwidth (W).

σ
2 = N0W. (21)

A throughput is the sum of effective achievable data rate over the network during
movement [35]. The throughput of a vehicle can be calculated based on Equation (22).

Throughputj = ∑
k

Rkj ∀ Bk ∈ Bsmall. (22)

4.2.2. Performance Results

In this section, we compare the performance of our proposed ANN-CS approach with
the traditional and HO RTP cell selection schemes. The simulation parameters that are
used in this work are listed in Table 7.

Figures 9 and 10 represent the average dwell time and average number of handovers
under different moving speeds. Increasing the speed will reduce the average dwell time
of vehicles inside small cells and, therefore, increase the average number of handovers.
The proposed ANN-CS approach prolongs the dwell time by estimating it based on the
direction and speed of vehicles in addition to small cell specifications. As the chart in-
dicates, the ANN-CS approach has the longest average dwell time and it is superior to
the traditional and HO RTP approaches by 15.47% and 7.56%, respectively. The reason is
that the traditional cell selection method chooses the small BS that has the largest RSSI
value, even if it does not lie on a vehicle’s trajectory. The ANN-CS strategy outperforms
the HO RTP approach because HO RTP estimates the time resident inside the cell but it
selects the small BS that has the highest signal strength value with residence time greater
than a predefined dwell time threshold. Therefore, the primary criterion for selection is
the strength of the received signal. In addition, the ANN-CS approach outperforms the
traditional and RTP HO schemes by 33.33% and 18.18% in terms of the average number
of handovers.
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Table 7. Simulation parameters.

Simulation Parameter Value

Number of 5G small BSs 621

Vehicle height (m) 1.8

Small BS height (m) 10

RSSI threshold (dBm) –90

Carrier frequency (GHz) 28

System bandwidth (MHz) 500

Transmission power (Watt) 1

Shadowing standard deviation (dB) 4

Thermal noise density (dBm/Hz) –174

Handover latency (s) 1

Target value of Prα 0.02

Target value of Prβ 0.04

Simulation time (s) 350
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Figure 9. Average dwell time.
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Average Number of Handovers
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Figure 10. Average number of HOs.

Figures 11 and 12 represent the average number of unsuccessful and unnecessary
handovers against different vehicle speeds. Increasing the speed of vehicles leads to an
increase in the probabilities of unsuccessful and unnecessary HOs due to the decrease in
the length of the dwelling period inside the small cell. In terms of the average number of
unsuccessful and unnecessary handovers, our proposed ANN-CS approach outperforms
the traditional and HO RTP selection schemes by 33.55% and 19.04%, respectively.
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Figure 11. Average number of unsuccessful HOs.
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Figure 12. Average number of unnecessary HOs.

Figure 13 displays the relationship between the average achievable downlink through-
put and vehicle speed. We found that the proposed ANN-CS made improvements over
the traditional and HO RTP approaches by 1.2% and 0.1%, respectively. Although the
ANN-CS method does not choose the closest small cell, it can achieve enhancements over
the methods that give high priority to the received signal strength criteria. This is because
the achievable DL throughput is negatively affected by an increase in the number of HOs
due to the latency caused by moving from one small cell to another. In addition, the peak
data rate is usually reached by our ANN-CS scheme when the vehicle is at the middle of
the small cell, while the peak data rates may not be achieved by RSSI-based methods.
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Figure 13. Average achievable downlink throughput.
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5. Conclusions and Future Work

The IoV is a fundamental technology that will improve the transportation system. In
ultra-dense networks, cell selection is considered an NP-hard problem. In this paper, we
solve the cell selection issue for 5G UDNs by applying a machine learning technique. A
neural network and IoV-based algorithm called the ANN-CS scheme is proposed that uses
a trained feed-forward back-propagation ANN model to perform the multi-classification
task of selecting small base stations. It aims to prolong the dwell time within small cells
and thereby decrease the number of handovers. Real datasets are used for training and
evaluation purposes, which were collected in the city of Los Angeles. The trained ANN-
FFBP model is able to predict the best small BS with high accuracy and a very low error
percentage. Simulation results show that our proposed ANN-CS scheme can achieve
its goals by decreasing the HOs rate and prolonging the dwell time of vehicles within
small cells, and thus the numbers of unsuccessful and unnecessary HOs are minimized.
Moreover, the achievable DL throughput is enhanced when using our approach compared
with other existing methods. In addition, the computational complexity is reduced by
using the ANN, compared with non-ML-based methods. For future work, other machine
learning techniques can be applied to solve the cell selection issue in 5G UDNs. A machine
learning model can be trained based on different types of input features to make the model
applicable to different environments.
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Appendix A. Lists of Abbreviations and Symbols

Lists of the abbreviations and symbols that are used in this paper are given in
Tables A1 and A2, respectively.

Table A1. List of abbreviations.

Abbreviations Full Term

3GPP Third Generation Partnership Project

5G Fifth-Generation

AN Access Node

ANN Artificial Neural Network

ANN-CS Artificial Neural Network Cell Selection

AWGN Additive White Gaussian Noise

BS Base Station

BSID Base Station Identification

CA-MAB Cell Association based on Multi Armed Bandit game

CNN Convolutional Neural network

CoMP Coordinated Multipoint

CRE Cell Range Expansion
CRF Conditional Random Field

DL Downlink
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Table A1. Cont.

Abbreviations Full Term

FFBP-ANN Feed-Forward Back-Propagation ANN

G-mean Geometric mean

HMM Hidden Markov Model

HO Handover

HO RTP Handover based on Resident Time Prediction

iMACH improved MACH

IoT Internet of Things

IoV Internet of Vehicles

LA Los Angeles

MAE Mean Absolute Error

MACH Movement-Aware CoMP Handover

ML Machine Learning

PL Path Loss

RMSE Root Mean Square Error

RAN Radio Access Network

RNN Recurrent Neural Network

RSSI Received Signal Strength Indicator

SINR Signal-to-Interference-plus-Noise Ratio

UDN Ultra-Dense Network

UE User Equipment

UMi-LOS Urban Microcell-Line-Of-Sight

V2I Vehicle-to-Infrastructure

V2N Vehicle-to-Network

V2P Vehicle-to-Pedestrian

V2V Vehicle-to-Vehicle

Table A2. List of main symbols.

Symbol Description

J Number of vehicles

K Number of small BSs

j Index of vehicles

k Index of small BSs

B All small BSs

V All moving vehicles

A Small BSs association vector

a Association variable between a vehicle and a small BS

Tdwell Dwell time of a vehicle inside a small cell

NHO Number of handovers

C Length of small cell’s chord
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Table A2. Cont.

Symbol Description

s Speed of a vehicle

d Distance between a small BS and a vehicle

θ Angle between small BS and the direction of a vehicle

r Radius of a small cell

R Achievable downlink data rate

x Input data

y Target data

y′ Predicted data

γ(d) Path loss associated with distance d

ζ SINR of a vehicle received from small BSs

dBP Breakpoint distance

hB Height of small BS

h
′
B Effective height of small BS

fc Carrier frequency

hV Height of a vehicle

h
′
V Effective height of vehicle

σSF Shadow fading standard deviation

H Channel gain

li HO latency to move into small cell

lo HO latency to move out of small cell

Pr(α) Probability of unsuccessful HOs

Pr(β) Probability of unnecessary HOs

Thα Time threshold of unsuccessful HOs

Thβ Time threshold of unnecessary HOs

ptx Maximum transmission power of small BS

σ
2 The thermal noise

N0 Noise power spectral density

W Sub-channel bandwidth
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