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Abstract: Nowadays, a large number of digital data are transmitted worldwide using wireless
communications. Therefore, data security is a significant task in communication to prevent cyber-
crimes and avoid information loss. The Advanced Encryption Standard (AES) is a highly efficient
secure mechanism that outperforms other symmetric key cryptographic algorithms using message
secrecy. However, AES is efficient in terms of software and hardware implementation, and nu-
merous modifications are done in the conventional AES architecture to improve the performance.
This research article proposes a significant modification to the AES architecture’s key expansion
section to increase the speed of producing subkeys. The fork–join model of key expansion (FJMKE)
architecture is developed to improve the speed of the subkey generation process, whereas the hard-
ware resources of AES are minimized by avoiding the frequent computation of secret keys. The
AES-FJMKE architecture generates all of the required subkeys in less than half the time required by
the conventional architecture. The proposed AES-FJMKE architecture is designed and simulated
using the Xilinx ISE 5.1 software. The Field Programmable Gate Arrays (FPGAs) behaviour of the
AES-FJMKE architecture is analysed by means of performance count for hardware resources, delay,
and operating frequency. The existing AES architectures such as typical AES, AES-PNSG, AES-AT,
AES-BE, ISAES, AES-RS, and AES-MPPRM are used to evaluate the efficiency of AES-FJMKE. The
AES-FJMKE implemented using Spartan 6 FPGA used fewer slices (i.e., 76) than the AES-RS.

Keywords: advanced encryption standard; data security; field programmable gate arrays; fork–join
model of key expansion; hardware resources; propagation delay

1. Introduction

Nowadays, the growth of lightweight, robust, and effective encryption algorithms
are required to provide network security for information technology applications. The
developed encryption algorithms are essential for maximizing the throughput and data size
of IoT, and it is used in mobile transmissions, video streaming, real-time communications,
and so on [1–6]. The methods of encryption/decryption are classified into two types such
as symmetric and asymmetric methods. In that, symmetric cryptography uses only one key
for encryption and decryption, whereas asymmetric cryptography uses two distinct keys
to accomplish the encryption and decryption [7–9]. Symmetric cryptography is extensively
used among all cryptographic methods due to its low energy necessities and simplicity.
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Hence, the symmetric block cipher, namely AES, was developed in 2001 by the National
Institute of Standards and Technology (NIST); however, this AES is an alteration for the
typical data encryption standard [10–13].

Some of block cipher algorithms used in the communication applications are Khu-
dra [14], KASUMI [15], LRBC [16], PRESENT [17], SLIM [18], HIGHT [19], Simon [20],
KLEIN [21], Midori [22], and CLEFIA [23]. However, the lightweight cipher affects the per-
formance when the system has a huge number of devices during the communication [24].
Additionally, the lightweight block ciphers offer only a lower level of security than the
conventional algorithms [25]. Authentication, confidentiality, and integrity are considered
as the significant objectives of the cryptographic protocols. The AES is served as a signifi-
cant cryptographic algorithm, whereas it satisfies the essential security goals of availability,
confidentiality, and integrity during the communication on the insecure transmission
medium [26,27]. Since the cryptographic process with an extreme computation complexity
of ciphers avoids the key from the attempt of brute force [28]. The AES is implemented
in different hardware platforms such as graphics processing units, embedded processors,
ASIC, and FPGA because of its extensive utilization [29]. The configuration of hardware
units using FPGA’s reconfigurable logic resources is used for achieving high pipelining
and parallelism. The balancing over the pipeline is obtained by adding and relocating the
registers. The usage of multiple ports in the memory units is used to increase the speed of
the read/write operations [30].

FPGA chips can operate simultaneously and it has a comparatively flexible architec-
ture. Hence, the test cycles and design cost of the FPGA chips are lower [31–34]. Since
two different LUT-based methods, namely substitution box (S-Box) and T-box, are used
for an effective design of AES over the FPGA, LUT-based encryption and decryption are
not only memory intensive but also asymmetric because of its transformation sequence
and AES functions of encryption and decryption. Hence, the process of encryption and
decryption are designed individually, and it occupies a significant amount of BRAM over
the LUT-based AES [35]. However, the clock speed, library, and throughout are difficult to
achieve by AES design due to its complexity, its user scheduling process, and the dynamic
nature of its design. Since the S-box of the AES’s sub-byte process consumes more power
than the other modules of the circuit [36]. The multiplicative inversion used in the sub-byte
transformation requires higher resources and finite field arithmetic [37].

Some of the conventional AES architectures are described as below:
Benhadjyoussef et al. [38] presented the fault-resistant method for securing the AES

against attacks. Parity checking was used to develop the error detection for the time
redundancy of subbytes function and linear operations. Specifically, the error detection
code depends on the cyclic redundancy check that was used to identify the parity of the
Shift Rows, Mix Columns, and Add Round Key functions. On the other hand, faults were
inserted in the SubBytes transformation to identify the temporal redundancy. However, the
information redundancy method caused high overhead, which affects the system perfor-
mance. Sheikhpour, Ko, and Mahani, [39] developed the 32-bit AES encryption/decryption
for IoT and resource-constrained applications. Here, the low-cost fault-resilient struc-
ture was developed for the data path. Subsequently, an on-the-fly key expansion unit
was also designed for the key generation of encryption/decryption processes. Here, the
area was minimized using resource-sharing among encryption and decryption operations.
Sikka et al. [40] presented the design of the AES for automotive applications. In this work,
the 128-bit key of AES was designed using the High-Level Synthesis (HLS) tool. Specifically,
HLS was based on the bit widths while designing the AES over the FPGA. However, the
re-computation of the signal width increased the overall latency of the AES algorithm.

Zodpe and Sapkal [41] presented the PN Sequence Generator (PNSG) for creating
the S-box and initial keys for Encryption/Decryption. Here, the Linear Feedback Shift
Register (LFSR) was used for designing the PNSG, whereas the LFSR was represented
using the generator polynomial. The designed PNSG was used to offer different random
number sequences by using the initial seed and feedback tap. The robustness of the
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AES cryptography was enhanced by using the feature of PNSG. However, the design of
AES using non-pipelined stages required high hardware resources. Shahbazi and Ko [42]
presented the 128-bit of AES in counter mode for high traffic applications. Inner and outer
pipelining methods were used to achieve high throughput, and an affine transformation
(AT) method was designed to minimize the area. The developed affine transformation was
the hybrid method of affine and inverse isomorphic transformation. In AES, the operations
of Sub-Bytes and Shift Rows were swapped, and then Add Round Key was combined
with the Shift Rows. Moreover, the Mix Column operation was divided into two distinct
phases for achieving the latency. However, the accomplishment of mix column in one clock
caused high latency. Madhavapandian and MaruthuPandi [43] developed q 128-bit AES
cryptographic method for securing the Transmission Control Protocol/Internet Protocol
(TCP/IP). An effective mix column Boolean Expression (BE) using gate replacement and
resource sharing structure was used to modify the mix column operation. Accordingly, the
optimized architecture of AES was used to minimize power consumption. However, it was
required that the time complexity be minimized because it increased the delay during the
communication using TCP/IP protocol.

Arul et al. [44] developed the Iterative Structure of the AES (ISAES) for lessening the
hardware resources. The architecture of renovated S-box was used in the AES to minimize
the area. Here, the usage of LUT in the composite field arithmetic was accomplished in the
multiplication operation. Moreover, the Vedic multiplier was employed in the Mix Column
transformation, which was used to decrease the hardware resources of AES. However, the
operating frequency of the AES was less because of the high delay. Wegener et al. [45]
developed AES S-box by using the function of the Rotational Symmetry (RS). In this work,
AES was designed by using the internal MUXes and slice registers, and this AES does not
require any Block RAM (BRAM). The Boolean masking with a less amount of two shares
over an AES’s decomposition was applied to generate the higher robustness against the
attacks. Here, the masked AES design was used to optimize the LUT implementation.
However, the replication of linear operators and their independent operation was increased
the overall area of AES. Kumar [46] developed the architecture of MPPRM for designing
the AES’s SubBytes/InvSubBytes transformation. These transformations were utilized for
designing the subpipelining architecture. The hardware resources such as AND and XOR
gates were reduced using the MPPRM in SubBytes and InvSubBytes transformations. Here,
a 128-bit key was generated by the key expansion structure, and this key was given to the
subpipelined structure. Due to the utilization of the delay module in the output of AND
gate, a high-speed encryption/decryption was achieved in AES. Here, the AES’s area was
increased because of the recurrent key generation in the encryption process.

The problems of the conventional AES are stated as follows: The frequent compu-
tation of input, output, and intermediate signal width leads to an increase in the delay
of the AES [40]. The hardware resources also increased because of AES design using
non-pipelined stages [41]. Due to the high delay, the operating frequency is decreased in
the AES architecture [44]. The area of the overall AES is increased because of the replication
of linear function and independent operation [45]. Hence, the AES is developed with an
effective FJMKE architecture to avoid the aforesaid issues. The FJMKE architecture is used
to create the multiple subkeys simultaneously, which helps to decrease the delay in the AES.
The generation of multiple subkeys using the FJMKE leads to reducing the combinational
logics as it avoids frequent calculation subkeys.

The conventional AES architecture generates the subkeys according to the previous
step subkeys, whereas the proposed AES-FJMKE architecture generates the subkeys only
based on the main key that helps to reduce the overall propagation delay.

The research contributions are as follows:

• In this research, the FJMKE architecture is used to generate the subkeys in a parallel
way, whereas the generation of the subkeys does not depend on the subkeys from
the previous step this leads to minimize the propagation delay. This multiple subkey
generation decreases the delay while encrypting the plain text.
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• The combinational logic of the overall AES is minimized by avoiding the frequent
computation of secret keys using FJMKE architecture, which lessens AES’s resources.

• There are six different FPGA devices, namely Virtex 4, Virtex 5, Virtex 6, Spartan 3,
Spartan 6, and Kintex 7, that are used for analysing the AES-FJMKE architecture.

The organization of this research article is as follows. Section 2 explains the typical AES
architecture. Section 3 describes the AES-FJMKE architecture in detail. The performance
evaluation of the AES-FJMKE architecture is discussed in Section 4. Further, Section 5
discusses the research’s conclusion and future endeavours.

2. Related Works

This section provides information about the conventional AES algorithm along with
its encryption and decryption processes.

2.1. Advanced Encryption Standard

In the AES cryptographic algorithm [47–51], only one secret key is employed for
encrypting and decrypting plain texts. AES can be classified as AES-128, AES-192, or AES-
256, depending on the key sizes used in encryption and decryption operations, whereas
the number denotes the number of bits that exist in the secret key in the AES versions.
All versions of the AES process input plain text in a step-by-step fashion. The number of
rounds for AES varies between versions and is dependent on the key size, as shown in
Table 1.

Table 1. Types of AES algorithm.

AES Types Key Sizes Rounds (Nr) No. of Key (Nr + 1)

AES-128 128 10 11
AES-192 192 12 13
AES-256 256 14 15

Separate subkeys are used for each round of AES operation. Indeed, these subkeys
are generated from the primary original key via a process called key scheduling. In all
three AES variants, the processing of input data is 128 bits. The term “number of rounds”
refers to the number of times a single data block is encrypted and decrypted using different
subkeys (one at a time) obtained during the key expansion process. All operations are
identical throughout the operation’s rounds. Before beginning the encryption operation,
a pre-round transformation is performed using the primary original secret key, and the
other subkeys are utilized in each round.

2.2. Encryption and Decryption of AES

AES uses a secret key to encrypt a 128-bit of plain text to generate the ciphertext. The
AES performs all four operations in all rounds except the last round. The final round of
encryption and the initial round of decryption will not use Mix Columns. A plain text
string of 128 bits in length is ordered as a 4 × 4 state matrix, with each element represented
by a byte.

• Substitution;
• Shift Rows;
• Mix columns;
• Add round key.

2.2.1. Substitution

A byte value is substituted for other bytes in this process. The AES algorithm contains
only one non-linear process: substitution. The core processes of substitution are matrix
multiplication and affine transformation. By replacing the Rijndael S-box byte value
directly, the decryption process employs inverse S-box substitution.
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2.2.2. Shift Rows

The second, third, and fourth rows of the state matrix are left shifted 1, 2, and 3 times,
respectively. The first row of the state matrix remains unchanged. In addition, the right
shift operation is carried out on the rows during the decryption process.

2.2.3. Mix Columns

In this phase, the alteration is performed in the column. The simple function is matrix
multiplication. Equations (1) and (2) shows the function of Mix column and Inv Mix
column. 

S′1
S′2
S′3
S′4

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




S1
S2
S3
S4

 (1)


S′1
S′2
S′3
S′4

 =


0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e




S1
S2
S3
S4

 (2)

where S′1, S′2, S′3, S′4 are the output obtained after mix column operation and S1, S2, S3,
S4 are the input given to the mix column process.

2.2.4. Add Round Key

The secret key performs its actual function during the Add Round Key step. All the
preceding operations are easily reversible. Before initiating the Add Round Key process,
the secret and all subkeys generated during the key expansion process are organized as a
4 × 4 state matrix. The Add Round Key step’s core process is the modulo EXOR addition
between the key’s state matrix and the output of the mix column operation. The ciphertext
is formed by the output of the added round key of the final round of encryption. These
four operations are repeated according to the number of rounds of operation specified for
the various AES versions. A separate subkey must be used for each round of operation,
and the subkey information must be kept confidential. The main secret key is identified
easily when the unauthorized person knows about the subkey’s information. This research
focuses primarily on the critical scheduling process.

2.3. Existing Key Expansion Architecture

AES-128 is considered in this research, and the detailed key scheduling process for
conventional AES-128 is explained in detail. The critical scheduling process for AES-128 is
depicted in Figure 1. All operations in the AES key expansion process are performed at
the word level. Thus, the 128-bit primary secret key is divided into four 32-bit words. As
shown in Table 1, the encryption operation for AES-128 requires ten subkeys. The most
intriguing aspect of this key expansion architecture is the interdependence of the subkeys,
which prevents subkey predictability.

Due to the fact that mathematical operations are performed on words, a subkey can
be created by combining four consecutive words. For instance, in Figure 1, W4, W5, W6,
and W7 are combined to create the first subkey. AES 128 generates 44 words as a result
of the key scheduling process. The first four words are derived from the main one and
are used in the round prior to transformation. The remaining 40 words are divided into
10 distinct subkeys. T4 denotes a temporary word. T8 denotes a permanent word. The key
expansion architecture is nonlinear due to the generation process of temporary words.

The operations for creating temporary words include S-Box substitution, word ro-
tation, and the EXOR operation with a constant value. The following equation explains
how temporary words are created, and Table 2 lists the R constant values (Rcon) for each
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round. Temporary words are formed from the previous subkey’s final word, as shown in
Equation (3).

Temporary word = Subword (Rotword(Wi− 1))⊕ Rcon (3)

where Rotword is used to perform onebyte circulr shift on the word (Wi).

Sensors 2021, 21, x FOR PEER REVIEW 6 of 17 
 

 

distinct subkeys. T4 denotes a temporary word. T8 denotes a permanent word. The key 
expansion architecture is nonlinear due to the generation process of temporary words.  

The operations for creating temporary words include S-Box substitution, word rota-
tion, and the EXOR operation with a constant value. The following equation explains how 
temporary words are created, and Table 2 lists the R constant values (𝑅𝑐𝑜𝑛) for each 
round. Temporary words are formed from the previous subkey’s final word, as shown in 
Equation (3). 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 𝑤𝑜𝑟𝑑 =  𝑆𝑢𝑏𝑤𝑜𝑟𝑑 (𝑅𝑜𝑡𝑤𝑜𝑟𝑑(𝑊𝑖 − 1)) ⊕  𝑅𝑐𝑜𝑛 (3)

where 𝑅𝑜𝑡𝑤𝑜𝑟𝑑 is used to perform onebyte circulr shift on the word (𝑊𝑖). 

 
Figure 1. Typical key expansion architecture. 

Table 2. R constant values for different rounds in AES–128. 

Round Rcon Round Rcon 
1 (01000000)16 6 (20000000)16 
2 (02000000)16 7 (40000000)16 
3 (04000000)16 8 (80000000)16 
4 (08000000)16 9 (1B000000)16 
5 (10000000)16 10 (36000000)16 

3. AES-FJMKE Architecture 
In the proposed AES-FJMKE architecture, an effective key expansion design is devel-

oped using the fork-join model. The developed FJKME is used to generate multiple keys 
at a time. These multiple keys are used to encrypt different sets of plain text that help to 
minimize the delay. Accordingly, the multiple key generations using FJKME lead to min-
imizing the combinational blocks of overall AES architecture. Moreover, the other opera-
tions, namely Substitution, Shift Rows, Mix Columns, and Add Round Key are similar to 
the conventional AES architecture. The main objective of this AES-FJMKE architecture is 
to achieve less propagation delay while achieving security. The overall architecture of 
AES using FJKME is illustrated in Figure 2.  

Figure 1. Typical key expansion architecture.

Table 2. R constant values for different rounds in AES–128.

Round Rcon Round Rcon

1 (01000000)16 6 (20000000)16
2 (02000000)16 7 (40000000)16
3 (04000000)16 8 (80000000)16
4 (08000000)16 9 (1B000000)16
5 (10000000)16 10 (36000000)16

3. AES-FJMKE Architecture

In the proposed AES-FJMKE architecture, an effective key expansion design is de-
veloped using the fork-join model. The developed FJKME is used to generate multiple
keys at a time. These multiple keys are used to encrypt different sets of plain text that
help to minimize the delay. Accordingly, the multiple key generations using FJKME lead
to minimizing the combinational blocks of overall AES architecture. Moreover, the other
operations, namely Substitution, Shift Rows, Mix Columns, and Add Round Key are similar
to the conventional AES architecture. The main objective of this AES-FJMKE architecture is
to achieve less propagation delay while achieving security. The overall architecture of AES
using FJKME is illustrated in Figure 2.

FJMKE Architecture

The nominal AES employs a sequential key-scheduling process that generates all
subkeys sequentially. The concurrent generation of subkeys is not possible due to the
dependency of the temporary word for each subkey over the final word of the preceding
subkey. However, interdependence between subkeys is critical in maintaining the secrecy
of subkeys. In a traditional architecture, the final word is generated after all previous words
have been generated, which is a time-consuming process. With the modifications made
to the key scheduling process, the AES-FJMKE architecture aims to reduce time delays.
Sequential processes can be made simultaneous by incorporating additional circuitry
into the conventional architecture. All subkeys are concurrently generated in this AES
architecture, and the current subkey does not require waiting for the previous subkey
generation. The time required to generate the subkeys is minimized by using the FJMKE.
The structure of FJMKE within the block remains sequential; therefore, the subkeys are
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sequentially generated in AES. The time consumption for generating the subkeys in AES
is high when the overall key expansion is performed at one time. Therefore, the entire
architecture of AES is split into two parallel blocks in this fork–join model to reduce the
time required to generate subkeys. For AES-128, the first block generates the first five
subkeys, while the second block generates the remaining five subkeys. This architecture
differs slightly from conventional architecture in that the sixth subkey is dependent on the
main key rather than the fifth subkey. In conventional AES architecture, the dependency
between the subkeys is high, while generating the subkeys for successive rounds increases
the delay. However, the designed FJMKE architecture only depends on the main key
during the subkey generation, which lessens the propagation delay for the AES. When
compared to the conventional architecture, this modification reduces the total execution
time for generating ten subkeys by half. After completing the subkey generation, the
subkeys from these two blocks are concatenated together as ten subkeys. From these ten
subkeys (i.e., ten different outputs), each subkey is taken for each round to accomplish the
encryption/decryption processes. Figure 3 shows the designed key expansion architecture
of AES.
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For example, the generation of W4, W5, W6, and W7 in the FJMKE is illustrated in
Figure 4. In conventional AES architecture, the generation of W6 depends on the W5
computed from the previous step. Therefore, the generation of current subkeys has to wait
until the completion of previous step subkey generation. Hence, the subkey generation of
the conventional AES requires more clock cycles. On the other hand, the proposed FJMKE
architecture generates all subkeys in a parallel way without waiting for any subkey from
the previous step, which minimizes the propagation delay. Specifically, the generation
of W6 does not require waiting until the completion of W5 generation. On the contrary,
the designed FJMKE architecture generates the subkeys by using main secret keys, which
lessens the propagation delay. For example, the conventional AES requires four clock
cycles for generating the subkeys W4, W5, W6, and W7, while the FJMKE requires only
one clock cycle for generating the subkeys W4, W5, W6, and W7 as it performs concurrent
subkey generation. The logical elements used in the AES-FJMKE architecture is slightly
higher than the conventional AES which is within an acceptable level. However, this
slight increment in logics does not create an impact on the overall AES-FJMKE architecture
because the designed FJMKE based key expansion is used only one time during the
encryption/decryption processes. Therefore, the interdependence between subkeys is
avoided and the propagation delay for producing subkeys is significantly minimized with
the help of a circuit built on the basis of the following Equations (4)–(7).

W4 = T4 ⊕W0 (4)

W5 = T4 ⊕W0 ⊕W1 (5)

W6 = T4 ⊕W0 ⊕W1 ⊕W2 (6)

W7 = T4 ⊕W0 ⊕W1 ⊕W2 ⊕W3 (7)
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Similarly, multiple keys are generated from the designed FJMKE architecture, and it is
used to accomplish the encryption over multiple plain texts. For example, the generation
of W15 using the FJMKE architecture is expressed in the following Equation (8).

W15 = T12 ⊕ T8 ⊕ T4 ⊕W0 ⊕ T8 ⊕ T4 ⊕W0 ⊕ T4 ⊕W0
⊕W1 ⊕ T8 ⊕ T4 ⊕W0 ⊕ T4 ⊕W0 ⊕W1 ⊕ T4

⊕W0 ⊕W1 ⊕W2 ⊕ T8 ⊕ T4 ⊕W0 ⊕ T4 ⊕W0 ⊕W1
⊕T4 ⊕W0 ⊕W1 ⊕W2 ⊕ T4 ⊕W0 ⊕W1 ⊕W2 ⊕W3

(8)
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The concept underlying the preceding expression is to perform all necessary mathe-
matical operations at each and every step. Rather than using the result from the previous
step, the result is obtained by recalculating. While this process requires more space and
energy, the total time required to produce the end result is reduced. In a conventional
architecture, each step or process of subkey generation must be delayed until the previous
subkey generation process is complete. However, in this AES-FJMKE architecture, there is
no requirement to wait until the previous word of the subkey is complete before beginning
the generation of the current word of the subkey. This significantly reduces the propagation
delay associated with generating the required number of subkeys. The model described
above can be extended to include all ten subkey generation processes.

The architecture of the modified subkey generation process using the FJMKE is illus-
trated in Figure 4. All four words in the first subkey, W4, W5, W6, and W7, can be generated
concurrently. There is no reason to delay the process of generating words W5 until the
block that generates W4 is executed. Additionally, processes for generating W6 and W7 can
be started concurrently with the process for generating words W4. This property qualifies
this architecture for applications that require rapid execution. The AES-FJMKE architecture
retains all of the conventional algorithm’s diffusion and confusion operations.

4. Results and Discussion

The results of the proposed AES-FJMKE are described in this section. The synthesis
and simulation of the AES-FJMKE architecture is done using the Xilinx ISE 5.1 software.
Here, the Hardware Description Language (HDL) is utilized for designing the AES archi-
tecture. For this AES architecture, the FJMKE architecture is developed for lessening the
delay while decreasing the hardware resources. Moreover, the developed AES-FJMKE
architecture is employed for processing the 128-bit of plaintext.

4.1. Performance Evaluation for AES-FJMKE

The design and evaluation of AES-FJMKE is made by using six distinct FPGA devices,
namely Virtex 4, Virtex 5, Virtex 6, Spartan 3, Spartan 6, and Kintex 7. The performance
of the AES-FJMKE is evaluated by means of performance count for hardware resources,
delay, and operating frequency. The evaluation of the results of the AES for different FPGA
devices is shown in the tables below.

The hardware utilization analysis of the AES-FJMKE developed in the Virtex, Spartan,
and Kintex devices are shown in Tables 3–5, respectively. Moreover, the delay and operating
frequency evaluation for the AES-FJMKE is shown in Table 6, where the delay and operating
frequency are the time consumption-related-parameters. The results shown in the analysis
are taken for the AES with 128-bit cryptography. From Tables 3–5, it is known that the
designed AES-FJMKE consumes 1–67% of resources during the implementation. On
the other hand, the operating frequency for the AES-FJMKE designed in the Virtex 5 is
751.247 MHz, which is higher than the other FPGA devices. The higher operating frequency
is achieved by avoiding frequent computation of keys during the encryption/decryption
processes. For verification purposes, the generation of multiple keys using a single input
is illustrated in the simulation waveform of Figure 5. Here, the simulation waveform of
key generation is taken for the Virtex 4 FPGA device. In Figure 5, the input is represented
as W, and multiple subkeys are represented as k1–k10. From the analysis, we conclude
that the FJMKE offers distinct subkeys for each input value. There is no similarity between
the generated subkey values of FJMKE. Moreover, the overall simulation waveform for
the AES-FJMKE architecture is shown in Figure 6. There, the plain text, secret key and
cipher text are represented as plain, key, and cipher, respectively. The generated cipher
text for the plain text with different secret keys is shown in Table 7. Table 7 shows that the
AES-FJMKE architecture offers different cipher text for the same plain text according to the
secret key. Hence, it is proved that the AES-FJMKE architecture offers higher robustness
against the unauthorized users. Accordingly, the difficulty of accessing the data during the
communication is difficult by the unauthorized users.
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Table 3. Analysis of used resources for AES-FJMKE designed in Virtex devices.

Virtex FPGA
Devices FPGA Performances Used Resources Available

Resources Total Usage (%)

Virtex 4 FPGA

Number of slice registers 8452 10,944 77.22
Flip Flops 8452 10,944 77.22

Number of slice LUTs 7415 10,944 67.75
Number of logical elements 7415 10,944 67.75

Slices 3847 5472 70.3
Bonded IOB 135 240 56.25

Virtex 5 FPGA

Number of slice registers 18,237 28,800 63.32
Flip Flops 18,237 28,800 63.32

Number of slice LUTs 14,011 28,800 48.64
Number of logical elements 14,011 28,800 48.64

Slices 4850 7200 67.36
Bonded IOB 102 480 21.25

Virtex 6 FPGA

Number of slice registers 2700 93,120 2.89
Flip Flops 2700 93,120 2.89

Number of slice LUTs 8269 46,560 17.75
Number of logical elements 8254 46,560 17.72

Slices 966 11,640 8.29
Bonded IOB 89 240 37.08

Table 4. Analysis of used resources for AES-FJMKE designed in Spartan devices.

Spartan FPGA
Devices FPGA Performances Used Resources Available

Resources Total Usage (%)

Spartan 3 FPGA

Number of slice registers 523 3840 13.61
Flip Flops 541 3840 14.08

Number of slice LUTs 1859 3840 48.41
Number of logical elements 1859 3840 48.41

Slices 972 1920 50.62
Bonded IOB 58 141 41.13

Spartan 6 FPGA

Number of slice registers 78 18,224 1
Flip Flops 81 18,224 1

Number of slice LUTs 189 9112 2.07
Number of logical elements 197 9112 2.16

Slices 76 2278 3.33
Bonded IOB 123 18,224 1

Table 5. Analysis of used resources for AES-FJMKE designed in Kintex 7 devices.

FPGA Performances Used Resources Available Resources Total Usage (%)

Number of slice registers 7087 82,000 8.64
Flip Flops 7074 82,000 8.62

Number of slice LUTs 8104 41,000 19.76
Number of logical elements 8104 41,000 19.76

Slices 451 10,250 4.4
Bonded IOB 204 300 68

Table 6. Examination of delay and operating frequency for AES- FJMKE.

FPGA Devices Delay (ns) Operating Frequency (MHz)

Virtex 4 14.568 521.730
Virtex 5 2.402 751.247
Virtex 6 3.133 449.309

Spartan 3 3.229 101.491
Spartan 6 1.916 210.433
Kintex 7 2.540 97.308
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Table 7. Results of cipher text for AES-FJMKE architecture.

Plain Text Secret Key Cipher Text

AD7532B3317176A831E2120013AA5481 2475A2B33475568831E2120013AA5481 515A192D6D2D880829A993A9D0D16F12
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4.2. Comparative Evaluation

A comparison of the AES-FJMKE architecture is presented in this section. In this
research, six different existing methods, namely AES-PNSG [41], AES-AT [42], typical
AES [43], AES-BE [43], ISAES [44], AES-RS [45], and AES-MPPRM [46], are used to evaluate
the AES-FJMKE architecture. Here, the evaluation is performed using six FPGA devices
such as Virtex 4, Virtex 5, Virtex 6, Spartan 3, Spartan 6, and Kintex 7. The evaluation
among the AES-FJMKE architecture and existing methods are provided as follows.

Tables 8–13 shows the evaluation of the AES-FJMKE with AES-PNSG [41], AES-
AT [42], typical AES [43], AES-BE [43], ISAES [44], AES-RS [45], and AES-MPPRM [46],
respectively. Tables 8–13 compare the data of Virtex 4, Virtex 5, Virtex 6, Spartan 3, Spartan
6, and Kintex 7, respectively. Finally, the graphical illustration for the slice LUTs is shown
in Figure 7. From the analysis, it is known that the AES-FJMKE architecture provides better
performance in terms of hardware utilization, delay, and operating frequency. The slice
registers of AES-FJMKE designed in the Virtex 6 is slightly high than the typical AES [43]
and AES-BE [43]. From Table 10, it is noted that there are 2700 slice registers used in the
AES-FJMKE architecture, which is higher than the number of slice registers of typical
AES [23], i.e., 2688. However, the delay achieved by the AES-FJMKE architecture is 3.133 ns,
which is less when compared to the typical AES [23], i.e., 3.205 ns. Hence, it is proved
that the AES-FJMKE architecture achieves less delay than the typical AES architecture
due to its concurrent generation of subkeys using FJMKE architecture. However, the
increment in slice register is only at a negligible level that does not create any huge impact
in terms of overall performances of AES-FJMKE. The reasons for the poor performance of
existing architectures are specified as follows: the AES-PNSG [41] requires higher hardware
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resources, because of the non-pipelined stages-based AES implementation. Next, the AES-
AT [42], AES-BE [43], and ISAES [44] have resulted in a high delay while encrypting and
decrypting the plain texts. Further, the design of AES-MPPRM [46] requires a frequent
computation of secret keys to accomplish encryption/decryption processes, which increases
the hardware resources of the overall AES. However, a simultaneous generation of multiple
keys using the AES-FJMKE architecture leads to minimize the delay as well as helps to
reduce the combinational logics during the key generation. Therefore, FJMKE architecture
is better than the existing AES architecture, because the generation of subkeys in the FJMKE
does not consume much time as it is only depends on the main secret key. On the other
hand, the subkey generation of conventional AES architectures mainly depends on the
subkey from the previous step. So, the current subkey generation of conventional AES
architectures has to wait until the completion of previous step subkey generation, which
increases the propagation delay. Moreover, the key expansion using FJMKE is performed
only one time during the encryption/decryption processes which further decreases the
propagation delay. Therefore, the developed AES-FJMKE architecture achieved less delay
and less hardware resources while maintaining the security of the plaintext.
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Figure 7. Graphical illustration of Slice LUTs.

Table 8. Evaluation of AES-FJMKE and AES-PNSG for Virtex 4.

Performances AES-PNSG [41] AES-FJMKE

Operating frequency (MHz) 214.48 521.730
Slices 20,818 2592

Table 9. Evaluation of AES-FJMKE and AES-AT for Virtex 5.

FPGA Performances AES-AT [42] AES-FJMKE

Operating frequency (MHz) 622.4 751.247
Slice LUTs 14,966 14,011

Slice registers 19,123 18,237
Slices 5974 4850
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Table 10. Comparison of AES-FJMKE and AES-BE for Virtex 6.

Performances Typical AES [43] AES-BE [43] AES-FJMKE

Operating frequency (MHz) 312.061 315.806 449.309
Delay (ns) 3.205 3.167 3.133
Slice LUTs 9717 9393 8269

Slice registers 2688 2688 2700

Table 11. Comparison of AES-FJMKE and ISAES for Spartan 3.

FPGA Performances ISAES [44] AES-FJMKE

Operating frequency (MHz) 67.75 101.491
Slices 1132 972

Slice LUTs 2156 1859
Flip Flops 680 541

IoB 389 58

Table 12. Comparison of AES-FJMKE and AES-RS for Spartan 6.

FPGA Performances AES-RS [45] AES-FJMKE

Operating frequency (MHz) 120 210.433
Slices 108 76

Slice LUTs 230 189
Flip Flops 92 81

Table 13. Comparison of AES-FJMKE and AES-MPPRM for Kintex 7.

Performances AES-MPPRM [46] AES-FJMKE

Operating frequency (MHz) 81.328 97.308
Delay (ns) 2.982 2.540

Slice registers 7120 7087
Flip Flops 7119 7074
Slice LUTs 8129 8104

Logical elements 8129 8104
Slices 467 451

Bonded IOB 211 204

4.3. Case Study

The AES-FJMKE architecture is developed to achieve the secure broadcasting of
the human leg X-ray image. The pixel value of the input image is obtained using the
MATLAB 6.5 programming software whereas these pixels are used as input data for the
AES-FJMKE architecture. Since the input pixels are in the range of 0 to 255, the input
pixels are {6c, 9d, 99, . . . , 4e}. Figure 8 shows the input X-ray image and its histogram
representation. Next, the dec2bin command is used to convert the input pixel values into
binary values which are encrypted using the AES-FJMKE architecture. From the AES-
FJMKE, the output is acquired in a hexadecimal form that has an 8-bit size. Next, this
ciphertext is securely broadcasted worldwide. Hence, the recovery of input data by an
unauthorized person is difficult because of the effective encryption processed by the AES-
FJMKE. The encrypted pixels are { f c, f c, f d, . . . , 2} and its corresponding encrypted and
histogram image is shown in Figure 9. The ciphertext values are transformed into original
pixel values in the receiving end by using the same AES-FJMKE architecture. Next, the
decrypted pixels are given to MATLAB to develop the input image. From the encrypted
and histogram images, it is concluded that the AES-FJMKE architecture offers a high level
of security.
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Figure 9. Output data, (a) encrypted image, (b) histogram.

In FJMKE architecture, the generation of the subkeys mainly depends on the main
key; therefore, the subkeys are simultaneously generated while accomplishing the encryp-
tion/decryption processes. Accordingly, the propagation delay is minimized for the overall
architecture. However, the logical elements of the AES-FJMKE architecture is slightly
higher than the typical AES architecture, whereas this slight increment in the resources
does not create any huge impact in overall performances, because the designed key ex-
pansion using FJMKE is accomplished only one time during the encryption/decryption
processes. Moreover, the designed FJMKE provides a unique subkeys for each input value;
hence, there is similarity among the generated subkeys. Accordingly, the AES-FJMKE
architecture provides high robustness against the unauthorized users.

5. Conclusions

The purpose of this research is to propose a fast and efficient key-scheduling process
for the AES algorithm. This AES-FJMKE architecture generates the required number of
subkeys at a faster rate with minimal chip area sacrifice. This AES-FJMKE architecture
ensures that the security of the messages processed does not affect the original plaintext.
Therefore, the simultaneous multiple subkey generation using the AES-FJMKE architecture
helps to decrease the delay. On the other hand, this multiple subkey generation is employed
for decreasing the combinational logics by avoiding the frequent computation of subkeys.
Hence, the AES-FJMKE architecture minimizes the delay and hardware utilization of the
AES. Accordingly, the lesser delay in the computation process improves the operating
frequency of the AES-FJMKE. The AES-FJMKE provides better performance than the AES-
PNSG, AES-AT, typical AES, AES-BE, ISAES, AES-RS, and AES-MPPRM. The AES-FJMKE
implemented using Spartan 6 FPGA used fewer slices (i.e., 76) than the AES-RS. However,
without affecting the area’s consumption, the propagation delay of the key scheduling
process can be further reduced. This can be accomplished by incorporating optimization
techniques into other transformations, such as pipelined generation of subkeys and op-
timization of the temporary word generation process using the S-box implementation.
The developed AES can be effectively encrypted and decrypt an entire nation’s sensitive
passport information.
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