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Accurate segmentation of liver images is an essential step in liver disease diagnosis, treatment planning, and prognosis. In recent
years, although liver segmentation methods based on 2D convolutional neural networks have achieved good results, there is still a
lack of interlayer information that causes severe loss of segmentation accuracy to a certain extent. Meanwhile, making the best of
high-level and low-level features more effectively in a 2D segmentation network is a challenging problem. Therefore, we designed
and implemented a 2.5-dimensional convolutional neural network, VNet_WGAN, to improve the accuracy of liver segmentation.
First, we chose three adjacent layers of a liver model as the input of our network and adopted two convolution kernels in series
connection, which can integrate cross-sectional spatial information and interlayer information of liver models. Second, a chain
residual pooling module is added to fuse multilevel feature information to optimize the skip connection. Finally, the boundary
loss function in the generator is employed to compensate for the lack of marginal pixel accuracy in the Dice loss function. The
effectiveness of the proposed method is verified on two datasets, LiTS and CHAOS. The Dice coefficients are 92% and 90%,
respectively, which are better than those of the compared segmentation networks. In addition, the experimental results also
show that the proposed method can reduce computational consumption while retaining higher segmentation accuracy, which
is significant for liver segmentation in practice and provides a favorable reference for clinicians in liver segmentation.

1. Introduction

Liver cancer (LC) is a common cancer in clinical practice
[1], which poses a great threat to the quality of life of
patients and their families. With advanced medical technol-
ogy, early diagnosis and treatment of liver cancer have
increased the possibility of curing liver cancer. Therefore,
reliable, quick, and precise liver segmentation algorithms
have become a major research hotspot in the industry.
Generally, traditional liver segmentation methods, including
the active contour model [2], clustering [3], level set [4],
graph cut method [5–7], and regional growth [8, 9] method,
extracted grayscale, shape, structure, and texture informa-
tion of medical images to segment the liver manually. The
efficiency of these methods is limited to large databases.
However, its preprocessing of data is time consuming using

these methods. However, deep learning performs better than
traditional liver segmentation methods in terms of versatility
and efficiency.

Among deep learning networks, FCN [10] and UNet [11]
are typical segmentation models used in medical image
segmentation methods. Subsequently, many networks were
derived from these two networks, for example, UNet++
[12] and H-DenseUNet [13]. In practice, the segmentation
performance of these networks is similar to that of traditional
segmentation methods. UNet is suitable for small-scale
medical image data with a relatively single image structure.
However, further work needs to be investigated to improve
the segmentation accuracy of UNet. Therefore, some tradi-
tional methods combining UNet have been proposed to opti-
mize the performance results, such as the method in [14]. A
mean shift clustering algorithm was added to reduce the
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oversegmentation of the liver. To further improve the accu-
racy of image enhancement, an image enhancement tech-
nique based on a statistical threshold is proposed, which
excludes nonliver regions by using the cumulative distribu-
tion function (CDF). To improve training and inference
speed, the literature [15] combined subpixel convolution
[16] with bilinear interpolation [17] in the last layer. However,
it is difficult to improve the segmentation accuracy because 2D
segmentation networks lack sufficient information between
slice layers and model learning. To solve this problem, Wang
and Wang [18] used the input layer to segment and process
3D images, including using a certain range of layers as an
aid, usingmultiplane integration, training on the axial, sagittal,
and coronal planes, and fusing the final segmentation.

The use of 2D and 3D convolution networks has achieved
good performance in liver segmentation. A hybrid method
[19] inherited the advantages of 2D and 3D convolutions
and ignored their disadvantages to the maximum extent
possible. It combined 2D Dense-UNet and 3D Dense-UNet
to operate on the region of interest through them and
extracted intralayer and interlayer features separately. Thus,
the segmentation accuracy was improved to a certain extent.

Generally, without considering the calculation and mem-
ory performance, 3D networks can utilize the information
between adjacent layers to ensure the continuity of changes
between the image masks. The VNet network [20] is a 3D
neural network for medical image segmentation. It directly
uses 3D convolution operations to process 3D volume data
instead of 2D slices, effectively exploiting the 3D data spatial
information to ensure that the images are marked.

In summary, compared with the 2D convolutional neu-
ral network (CNN), 3D CNNs have a large parameter
amount, high video memory occupancy rate, and hardware
resource intensive, which has largely restricted its advance-
ment and research.

Although the above models can obtain relatively accu-
rate segmentation results in medical image processing, the
difficulties in data acquisition and annotation largely hinder
the construction of a sufficiently large dataset. To overcome
this problem, conventional image enhancement techniques,
such as geometric transformation, can generate new data.
However, they are unreliable in detecting biological changes
in medical data, which can result in limited segmentation
performance improvement. In 2014, Goodfellow et al. [21]
proposed a generative adversarial network (GAN) model.
It uses unsupervised training methods for training through
adversarial learning. The purpose is to estimate the potential
distribution of the data samples and generate new data sam-
ples. Li et al. [22] used GAN to enhance ocean data for
research on the detection of climate anomalies. GAN can
also realize the conversion between different modal images,
using CycleGAN to convert contrast CT images into non-
contrast CT images [23], and convert face sketches into
RGB images [24].

As GAN does not need to know the theoretical distribu-
tion in advance, it can automatically infer the real dataset,
which further expands the size and diversity of the data,
provides a new method for data expansion, and alleviates
the problem of data demand for intelligent diagnosis. Luc

et al. [25] applied GAN to image segmentation for the first
time. Generally, the semantic segmentation results often
need to be improved using CRF and other postprocessing
techniques to obtain more realistic contours. Thus, GAN
itself has excellent generation capabilities and can be used
to improve the results. However, GAN has drawbacks such
as unstable training, disappearing gradients, and mode col-
lapse. Based on these issues, numerous popular architectures
have been derived involving conditional GAN (CGAN) [26],
DCGAN [27] (deep convolutional GAN), and InfoGAN [28]
(Information Maximizing GAN). They have solved the
drawbacks of GAN to a certain extent. However, there still
are some deficiencies in solving the stability problem during
the training process. The emergence of WGAN [29] solves
the problem of instability in GAN training. Nevertheless,
its network structure is very simple, and only a few improve-
ments have been made on the basis of GAN.

Considering the small amount of medical image data
coupled with GPU restrictions, the use of 3D data can cause
overfitting problems. Therefore, this paper proposes an
improved VNet and 2.5-dimensional convolutional neural
network VNet_WGAN to obtain the context information
of 3D data to realize end-to-end segmentation of liver
images. The main tasks are as follows:

(1) By using the stack of slices and their upper and lower
adjacent slices as the network input and the segmen-
tation map corresponding to the central slice as the
output, two convolution kernels in series are used
to fully extract the intralayer and interlayer informa-
tion to adopt for the 3D liver. While maintaining
high segmentation accuracy, spatial characteristics
can reduce the memory occupancy rate and the
amount of calculation

(2) To make full use of the high-level and low-level
features of the network, a chain residual pooling
module is added to the long-skip connection struc-
ture of the VNet network to obtain richer semantic
information and effectively improve the accuracy of
liver segmentation

(3) Introduce the boundary loss function into the basic
WGAN generator network to compensate for the
lack of consideration of the marginal pixel accuracy
of the Dice loss function. Utilizing the composite loss
function of boundary and Dice weighted fusion, the
segmentation ability of the model is enhanced from
the region and the boundary, respectively

2. Methodology of This Article

2.1. GAN. A GAN is a generative confrontation network
composed of a generative model G and a discriminant model
D. It can be expressed as a minimax game problem between
G and D. G learns the distribution of a given noise (such as
uniform distribution and normal distribution) and synthe-
sizes them. D distinguishes whether the training sample
comes from a real sample or a generated sample.
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GAN uses the concept of adversarial learning to achieve
better generation results. Adversary means that the images
generated by the generative model G will become realer
and realer when the discriminative ability of the discrimi-
nant model D becomes stronger and stronger, which finally
reach a balance. The basic structure of the GAN is shown
in Figure 1. In Figure 1, x is the real data, DðxÞ represents
the score of the real data after being processed by discrimi-
nant model D, z represents the given random variable, the
image GðzÞ is generated after being processed by generative
model G, and GðGðzÞÞ represents the image generated by the
generative model G after the D fraction. The formula is given
in Equation (1) as follows:

maxG maxDV D,Gð Þ = Ex~Pdata xð Þ log D xð Þ½ �
+ Ex~Pz zð Þ log 1 −D G zð Þð Þð Þ½ �:

ð1Þ

2.2. WGAN. The GAN model has interested many
researchers. However, the training of a GAN is difficult
compared to an ordinary CNN. The main difficulty is balan-
cing the generator and the discriminator and the lack of
appropriate indicators to measure the training effect in the
training process. Based on these issues, many popular archi-
tectures have been designed based on GAN, such as condi-
tional GAN (CGAN), deep convolutional GAN (DCGAN),
and information-maximizing GAN (InfoGAN).

Although these methods can solve some of the current
problems of GAN to a certain extent, the process stability
problem is not yet solved. WGAN solves the problem of
training instability while providing a reliable indicator, the
Wasserstein distance, for training. Compared with JS
(Jensen-Shannon) and KL (Kullback–Leibler), the Wasser-
stein distance can naturally measure the discrete distribution
and the distance between continuous distributions, which
completely avoids the common problems of stable training
and gradient disappearance in GAN.

The formula of Wasserstein distance is shown in Equa-
tion (2) as follows:

maxG maxDV D,Gð Þ = Ex~Pdata xð Þ D xð Þ½ � + Ex~Pz zð Þ D G zð Þð Þ½ �:
ð2Þ

2.3. VNet. The VNet network structure involves an encoder
and a decoder. The encoder was divided into multiple stages,
and each stage had the same resolution. The decoder is a
gradual decompression path and can finally obtain an out-
put image of the same size as the original image. VNet
inherits the jump connection of the UNet to compensate
for information loss in the feature extraction process. In
addition, VNet uses the short-circuit connection mechanism
of ResNet [30] to add the input and output of each stage to
learn the residual function.

Meanwhile, the Dice loss function is used to replace
the cross-entropy loss function to improve the sensitivity
of the target segmentation area. For example, Zhu et al.
[31] added the channel attention mechanism [32] to the

VNet network structure to segment various organs in the
head and neck image.

Milletari et al. used a VNet network in which the
encoder part extracts the liver global features from the input
image, and the decoder part generates a full-resolution out-
put. Simultaneously, random nonlinear transformation and
histogram matching are used to increase the data in the pre-
processing. Although the VNet network provides a reference
for processing 3D medical images, the medical image data
are mostly small with limited GPU memory, which still
results in overfitting and instability of the network in the
training process, especially for 3D data.

3. Methods

As the WGAN model entirely solves the problem of training
instability of GAN, therefore, in the training process, it no
longer needs to balance the training level of the generator
and the discriminator carefully. Because of this excellent
characteristic of WGAN, we employed WGAN as the basic
structure of our model and designed an improved VNet as
the generator for liver segmentation.

In our network, the discriminant network is a simple
CNN network that determines whether the input image is
a “fake image” (the result of segmentation) or a “real image”
(annotated image) generated by the generator. The entire
network framework of the proposed method is illustrated
in Figure 2.

In Figure 2, the original three adjacent liver images are
used as the input, and the improved VNet is used for segmen-
tation. Then, the mask image and the output image obtained
by the generation network of VNet are input to the classifica-
tion structure, in which true can be distinguished from false,
where result 1 denotes true and 0 denotes false.

3.1. Generator. Owing to the time cost and the ability of
feature extraction, the generator used in our method
adopts VNet as the backbone network and modifies the
original network in a targeted manner. The input of our
network is the relevant slice and its two adjacent upper
and lower slices, and the median slice was used as the
output result. During the training process, convolution
kernels with a size of 1 × 3 × 3 and 3 × 1 × 1 were used
to extract the intralayer and interlayer information. This
convolution approach is similar to separable deep

z

G

G (z)
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Figure 1: Basic structure of GAN.
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convolution, which can extract 3D features of medical data
without extensive calculations generated by a 3D CNN and
shortens the training time. The improved convolution
module is shown in Figure 3. In the improved convolution
module, two chained residual pooling modules, CRP
(chained residual polling) with pooling and convolution
operations, are added to the jump connection part of the
VNet to make more effective use of high-level and low-level
feature information.

The chained pooling operations can considerably
increase the receptive field in that edge information can be
extracted from high-resolution feature maps, and global
information can be extracted by low resolution. Therefore,
the classification accuracy of the pixels is further improved.

Meanwhile, the residual structure is beneficial to the
inverse spread of the gradient. As can be seen in Figure 4,
the module includes two pooling convolution blocks, two
residual structures, one activation function, batch normali-
zation, and dropout layers. The network uses a convolution
kernel of 1 × 5 × 5, padding 2, and stride 1 to perform pool-
ing operations to ensure that the image size after pooling is
consistent with the input image size. The pooling is followed
by a convolution operation, and then, the output result is
input to the next pooling convolution module. Finally, the
two feature maps are merged.

In the network training process, the more complex the
network model, the more the features need to be learned,
which require more training time and easily lead to overfit-
ting problems. Therefore, this study made slight adjustments
to the existing network model.

Specific ways are that batch normalization (BN) is added
to normalize the data with different distributions after each
revolution. Thus, each layer of data can be transformed into
the same distribution.

Therefore, the optimal result of the network model con-
verges more easily, so that the training speed of the network
model is accelerated to a great extent.

Improved VNet of the generator network

Real

Fake

The discriminant network of the
classification structure

Input layer

Convolution layer

Residual connection
Jump connection

The sampling

On the sampling

Output layer

The connection
layer

Figure 2: Structure diagram of VNet_WGAN.

1x3x3 conv

Leaky relu+
Batch Normalization+

dropout

Leaky relu+
Batch Normalization+

dropout

3x1x1 conv

Sum

Figure 3: Improved convolution module.
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Figure 4: Chain residual pooling module.
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Adding a dropout layer can solve the scenario in which
some features are only useful when other features exist, also
enhance the robustness of the neural network, effectively
alleviate the overfitting issues, and achieve regularization to
a certain extent.

Figure 5 shows the structure of the improved VNet in
this study, which retains the characteristics of the encoder-
decoder structure. The entire network contains five convo-
lution blocks, four deconvolution blocks, and the last
convolution output layer. The encoding path above is
divided into five stages, and each stage contains two
convolution blocks with the same resolution. Each convo-
lution block is composed of a convolution kernel, normal-
ization, and ReLU activation function, using 32 in turn.
These convolution blocks employ 64, 128, 256, and 256
channels of the convolution kernel, with a moving step
of 1, to extract the features.

To reduce the memory used in the training process, con-
volution is used to replace the pooling operation in the down-
sampling process with a 1 × 3 × 3 convolution kernel and a
moving cloth of 2 in length. This pooling operation approach
can reduce the image resolution. Moreover, to learn features
at each stage, the input and output in each stage are added
together to perform short-range residual learning.

Upsampling is performed before decoding using 512 1
× 3 × 3 convolution kernels with a step size of 2 for the
deconvolution operation.

The decoder path below is divided into four stages, and
each stage has the same resolution. A convolution kernel

with a size of 1 × 3 × 3 is used to restore the size of the
feature map and expand the low-resolution space.

Through four upsampling operations, an image with the
same resolution as the input image is finally obtained. Simul-
taneously, the original VNet network transforms the results
of each stage in the encoder to the input and directly adds
it to the input of the corresponding stage in the decoder,
retaining some information loss owing to compression.

After a chain residual pooling module consisting of a
pooling layer, a convolutional layer, and a residual structure,
efficient pooling is performed through different convolution
kernels, where the size of the output feature map is consis-
tent with the input. Then, the corresponding stage is added
as the input for the next stage. The last convolution layer
applies a 1 × 1 × 1 convolution kernel to obtain an image
of the same size as the input. The specific network parameter
distributions are listed in Table 1.

3.2. Discriminator. The network structure of the discrimina-
tor used in this approach is shown in Figure 6. The inputs of
the discriminator are the output result of the generator and
the annotated image of the original image, which are first
fused and then input to the CNN network. Finally, the sec-
ond classifier outputs the output signal of the discriminator.

The discriminator includes one group of conditional
pooling blocks, four groups of convolutional blocks, two
fully connected layers, and the last two classification layers.
A group of convolutional pooling blocks contains two con-
volutional layers and one maximum pooling layer. Each
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Figure 5: Structure diagram of liver segmentation generator.
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convolutional layer is composed of a convolution kernel,
normalization, and an activation function.

The size of the convolution kernel was 1 × 3 × 3, with a
moving distance of 1. A total of 64 convolution operations
were used in the 1st convolutional block and 2nd condi-
tional block. In the pool process, we choose a 1 × 2 × 2 con-
volution kernel with a moving distance of 1. In the 3rd and
4th convolution blocks, there are 32 convolution kernels
where the size of each convolution kernel is 1 × 3 × 3 with
a moving distance of 1. The output of the 4th convolution
block was used as the input of the fully connected layer.

3.3. Loss Function. The loss function of our method in this
paper is composed of the loss function of the generator
and the discriminator.

The generator was based on an improved VNet segmen-
tation network. The objective function, Dice loss, was pro-
posed in the VNet network. It can balance background and
background information well and is a commonly used loss
function in the field of medical image segmentation.

Dice loss is very similar to the Dice coefficient and is
used to evaluate the similarity between two regions. The
calculation formula of Dice loss is shown in formula (3),
where A represents the set of all predicted foreground pixels
and B represents the set of real foreground pixels.

LDice = 1 −
2 ∣ A ∩ B ∣
∣A ∣ + ∣ B ∣

=
∣A ∣ − ∣ A ∩ B ∣ + ∣ B ∣ − ∣ A ∩ B ∣

∣A ∣ + ∣ B ∣
:

ð3Þ

Dice loss focuses more on the similarity of regions and
ignores spatial information, such as missegmentation sec-
tions far away from the label region. Therefore, to minimize
the distance between the segmentation boundary and the
label boundary, a synthetic function of Dice loss and bound-
ary loss [33] is proposed. In this synthetic function, bound-
ary loss controls the degree of network loss by the edge
matching degree.

The synthetic function evaluates only pixels on the
boundary. The boundary loss value equals 0 when the pixels
on the boundary are entirely consistent with the boundary of
the ground truth, whereas it is evaluated by its distance from
the boundary when the boundary does not coincide with the
real result. The experimental results in this study show that
the synthetic loss function is the weighted fusion of Dice loss
and boundary loss. Among them, one controls the area and
the other controls the boundary, which can achieve better
segmentation performance.

In practice, the Dice loss score was very high at the
beginning of training. As the training progresses, the pro-
portion of boundary loss increases, which illustrates that
accuracy of the boundary gets more attention in the later
stages of the training with enhanced boundary detail infor-
mation being processed. Therefore, we exploit this idea and
apply it to the task of liver image segmentation.

Figure 7 shows the relationship between the parameters
in the boundary loss formula, where ∂G represents the
boundary of the real segmentation area, ∂S represents the
boundary of the segmentation area output by the network,
p, y∂SðpÞ represent the connection points of the real and

Table 1: Network parameter.

Network layer Number of feature maps Feature map size/pixels Number of participants/each

Convolutional layer 1 32 128 × 128 × 128 896

Convolutional layer 2 32 64 × 64 × 64 27680

Convolutional layer 3 64 32 × 32 × 32 110656

Convolutional layer 4 128 16 × 16 × 16 442496

Convolutional layer 5 256 8 × 8 × 8 1769728

Convolutional layer 6 256 4 × 4 × 4 1769728

Deconvolution 1 512 8 × 8 × 8 3539456

Convolutional layer 7 256 8 × 8 × 8 5308672

Deconvolution 2 256 8 × 8 × 8 1769728

Convolutional layer 8 128 16 × 16 × 16 1327232

Deconvolution 3 128 32 × 32 × 32 442496

Convolutional layer 9 64 32 × 32 × 32 110656

Deconvolution 4 64 64 × 64 × 64 82976

Convolutional layer 10 32 64 × 64 × 64 82976

Deconvolution 5 64 64 × 64 × 64 82976

Convolutional layer 11 32 128 × 128 × 128 27680

Convolutional layer 12 32 128 × 128 × 128 55328

Fully connected layer 1 128 × 128 × 128 33

Total - - 22482273

Note: “-” means no data.
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predicted results, and ΔS represents the area between the
two contour lines and DG. To calculate the distance Distð∂
G, ∂SÞ between the boundaries of the two regions in a differ-
ential way, boundary loss uses a split on the boundary to
alleviate the difficulties caused by unbalanced segmentation
instead of an unbalanced integration of the regions. The
boundary loss formula is as follows:

LBD = Dist =
ð
∂G

q∂S pð Þ − pj jj j2dp ≈ 2
ð
ΔS
DG pð Þdp

= 2
ð
Ω

ϕG pð Þs Pð Þdp −
ð
Ω

ϕG pð Þg Pð Þdp
� �

,

DG pð Þ = p − Z∂G pð Þj jj j, ð4Þ

where DGðpÞ represents the distance from the real result,
sðpÞ and gðpÞ are quadratic index functions, and ϕG is
the boundary level set; if q ∈G, ϕG = −DGðqÞ, otherwise
ϕG = −DGðpÞ, sθðpÞ is the softmax probability output of
the network. The final boundary loss function is

LBD =
ð
Ω

ϕG pð Þsθ pð Þdp: ð5Þ

In a sense, both Dice loss and boundary loss minimize
the false overlap parts between the segmentation result
and the marked result. For Dice loss, the segmentation
mismatch is weighted by the sum of the number of fore-

ground pixels in the segmentation and the number of
pixels in the real result.

Boundary loss is weighted only by the distance conver-
sion of the real result. The calculation formula of the com-
pound loss function used in this study is 7, where α is the
weight parameter of the balance loss, and the parameter
selected in the experiment was 0.1.

L = α ∗ LDice + 1 − αð Þ ∗ LBD: ð6Þ

Loss function of discriminator. Because the discrimina-
tor is based on the same network structure as WGAN, the
Wasserstein distance is used as the loss function, which is
given by

LD =minG maxDEx~Pr xð Þ D xð Þ½ � − Ez~Pz zð Þ D G zð Þð Þ½ �: ð7Þ

4. Experiments

4.1. Experimental Data. To evaluate the actual effect of the
method in the application of liver segmentation, experiments
were carried out on the LiTS and CHAOS datasets. The LiTS
dataset includes 130 contrast-enhanced 3D abdominal CT
images from six different clinical sites in nii format. The
original CT data were named by volume-∗.nii, and the
ground-truth image is named by segmentation-∗. nii.

It contains 130 sets of training data and 70 sets of test data,
of which 70 sets of test data were unlabeled. The CT image
containing 908 lesions was provided by reference annotations
of the liver and tumor made by experienced radiologists.

The dataset has significant differences in image quality,
spatial resolution, and vision. The in-plane resolution is 0:6
× 0:6 ~ 1:0 × 1:0mm, and the slice thickness (interlayer
spacing) is 0.45~6.0mm. All scanning axial slice sizes were
fixed at 512 × 512 pixels, with the number of slices per scan
ranging from 42 to 1026. Figure 8 shows the visualization
results of liver tumor images in the LiTS dataset.

The CHAOS dataset is a dataset with multiorgan, multi-
modal segmentation, which includes images and labeled
images of the spleen, liver, left kidney, and right kidney.

The datasets have two modal databases: CT and MRI. In
the two databases, each dataset with .dcm format corre-
sponds to an image of a single patient, and each image
corresponds to a slice.
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The dataset was provided by the PACS of the DEU
Hospital. In this study, we used an MRI database, which
contains two modalities, T1-DUAL and T2-SPIR, each
with 40 datasets. T1-DUAL is divided into two categories:
InPhase and OutPhase.

In this study, T1-DUAL/InPhase was selected as the data-
set. The rule of naming images is the same as that used to
annotate images in this dataset. Thus, processing is relatively
simple. The training and test sets were divided into 20 cases.
The MRI image can generate 12-bit DICOM images with a
resolution of 256 × 256 and a number of slices between 26
and 50. Because the test set does not provide annotated
images, this study uses 20 labeled cases to redivide them into
training set and test set, of which 16 cases were used as the
training set, and four cases were used as the test set. One of
the processed liver images and the labeled image of the liver
are illustrated in Figures 9(a) and 9(b), respectively.

4.2. Experimental Setting. The experimental environment
was as follows: the computer operating system was Win-
dows10, the main hardware devices were two NVIDIA
GTX1080 GPUs, the memory was 8GB, and the develop-
ment tools were Python and TensorFlow.

4.3. Evaluation Index. In the experiment, the accuracy and
Dice similarity coefficient (DSC) were used to quantitatively
measure the performance of image segmentation algorithms
in medical image segmentation tasks. The accuracy repre-
sents the proportion of correct data to the overall data.
The calculation formula is as follows:

Accuracy = TP + TN
TP + TN + FP + FN

, ð8Þ

where P (Positive) and N (Negative) represent the pre-
diction results of the model, T (True) and F (False) are used
to judge whether the results of the model are correct, and FP
(False Positive), FN (False Negative), TP (True Positive), and
TN (True Negative) represent false positive, false negative
cases, true cases, and true negative cases, respectively.

Figure 10 shows the correlations between the above sym-
bols. In Figure 10,A denotes the image containing the theoret-
ical segmentation result that is used for comparison with the
resulting image, and B is the predicted segmentation result.

The Dice similarity coefficient (DSC) is mainly used to
evaluate the similarity of the distance between the segmenta-
tion result and the marker result. Its value ranges from 0 to
1, where 0 means that the experimental segmentation result
deviates from the marking result seriously, while 1 demon-
strates that the experimental segmentation results
completely overlap with the labeled results; that is, the
higher the evaluation results, the higher the accuracy of the
segmentation. The formula for calculating Dice is as follows:

Dice = 2 ∣ A ∩ B ∣
∣A ∣ + ∣ B ∣

=
2TP

2TP + FP + FN
: ð9Þ

5. Results

5.1. Method Comparison Test. In this section, experiments
are designed to verify the effectiveness of the proposed algo-
rithm VNet_WGAN, which is compatible with 3D UNet,

Figure 8: Example of liver tumor images in the LiTS dataset.

(a) CT image (b) GroundTruth

Figure 9: Example of liver images in the CHAOS dataset.
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2.5DVNet, UNet, Attention [34], CycleGAN [35], and
DenseNet, which are suitable for various medical image seg-
mentation tasks. The results of the comparative experiments
are presented in Table 2. It can be concluded from Table 2
that compared with other algorithms, VNet_WGAN has a
certain improvement in accuracy and Dice coefficient,
particularly in the Dice coefficient. Compared with 3D
UNet, although the Dice value of VNet_WGAN is not
significantly different, it also increases by at least 1%. Com-
pared with 2D segmentation networks including UNet,
Attention, CycleGAN, and DenseNet, the accuracy and Dice
score of VNet_WGAN were significantly improved. For
example, CycleGAN grew by 8% and 3%, respectively.
Therefore, VNet_WGAN is appropriate and efficient for
solving the problem of liver segmentation.

5.2. Loss Function Comparison Test. To evaluate the effect of
the loss function of VNet_WGAN designed in this study on
liver segmentation, a comparative ablation experiment was
performed on the LITS dataset, using the five most common
loss functions in liver segmentation: IoU loss, cross-entropy
loss, Dice loss, boundary loss, and the compound loss func-
tion used in this study. Moreover, VNet_WGAN was
designed in this study, and the improved 2.5D VNet model
was used as the comparison model. All experimental train-
ing configurations were identical. The IoU loss is the loss
function calculated by IoU to obtain the gradient for regres-
sion. Cross-entry loss refers to the difference between the
two probability distributions. The amount of information
is inversely proportional to the probability of the occurrence
of information. Dice loss is proposed in the original VNet
network and is an ensemble similarity measurement func-
tion that is used to calculate the similarity between two sam-
ples. The composite loss function is a loss function that
combines the boundaries and regions. The performances of
these five loss functions in the two network models are listed
in Tables 3 and 4, respectively.

From Tables 3 and 4, it can be observed that with the
loss function of this study, the improved 2.5D VNet model
achieves an accuracy of 96% in the liver segmentation task
and a Dice of 89%. In the fusion model of VNet_WGAN,
the accuracy was 94%, and the Dice was 92%. In the same
network model, the composite loss function has little differ-
ence in accuracy, but it performs very well in terms of Dice,
which is 1% higher than Dice loss. In the same dataset and
the same loss function, the method in this study improves
in terms of Dice by 3%.

Through the ablation experiment and the above analysis,
it is shown that our composite loss function, the weighted
fusion of boundary loss and Dice loss, can improve the accu-
racy and precision of the segmentation results, indicating
that the design of our composite loss function has a certain
guiding significance for the extraction of key features of
the network. This demonstrates that our composite loss
function can extract detailed information of features effec-
tively and accurately, which plays an important role in solv-
ing the poor performance of image segmentation methods.

5.3. Visualization of the Experimental Results. To observe the
segmentation effect more intuitively, in this section, we
conduct a qualitative analysis of the models covering the seg-
mentation algorithm fused with VNet and WGAN and the

Table 3: Comparison of segmentation effects of different loss
functions in the 2.5D VNet model.

Loss function Accuracy Dice

IoU loss 0.96 0.80

Cross-entropy loss 0.95 0.84

Dice loss 0.96 0.88

Boundary loss 0.97 0.83

Dice loss+boundary loss (ours) 0.96 0.89

Note: the bold font is the optimal value for each column.

Table 4: Comparison of segmentation effects of different loss
functions in VNet and WGAN fusion models (ours).

Loss function Accuracy Dice

IoU loss 0.93 0.86

Cross-entropy loss 0.95 0.89

Dice loss 0.94 0.91

Boundary loss 0.92 0.88

Dice loss+boundary loss (ours) 0.94 0.92

Note: the bold font is the optimal value for each column.

B

FP TP FN

TN

A

Figure 10: Concepts related to evaluation indicators.

Table 2: The experimental results of different methods were
compared.

Comparison method Dataset Accuracy Dice

3D UNet LiTS 0.98 0.91

3D UNet CHAOS 0.96 0.89

Improved 2.5D VNet LiTS 0.96 0.89

3D VNet LiTS 0.95 0.90

2.5D UNet LiTS — 0.77

Attention [34] LiTS — 0.76

CycleGAN [35] LiTS 0.86 0.89

DenseNet LiTS — 0.91

Ours (VNet_WGAN) LiTS 0.94 0.92

Ours (VNet_WGAN) CHAOS 0.94 0.90

Note: “-” means no data.
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3D VNet segmentation algorithm on the LITS dataset.
Figure 11 shows the visual segmentation results of the two
segmentation algorithms. In the experiment, six layers of
images were selected for comparison. Lines 1-4 in the figure
are the original images, the image annotated by the clinician
manually, the 3D VNet segmentation results, and the
segmentation results of the fusion of VNet_WGAN.

From the segmentation results in the figure, it can be
seen that the segmentation algorithm of 3D VNet and the
fusion of VNet and WGAN do not perform very well in
the early and late regions of the liver, whereas in the mid-
term, the prediction results and the annotation results are
extremely coincident. In addition, it is also illustrated that
the segmentation algorithm fused by VNet and WGAN
has more accurate segmentation results than 3D VNet,
which is clearly conspicuous on the boundary contour, as
can be seen from the 3-5 columns of Figure 11. Even in
the later stage, when the segmentation effect is relatively
poor, the segmentation algorithm fused with VNet and
WGAN still exhibits good performance. As shown in the
sixth column of Figure 11, the segmentation effect of the
3D VNet is somewhat different from the annotation out-
come. This proves that the segmentation effect of the algo-
rithm in this study is more refined and closer to the results
of expert manual segmentation.

6. Conclusion

In this study, we used the VNet_WGAN network to auto-
matically segment the liver to overcome current difficulties
in liver segmentation tasks. The algorithm solves the lack
of interlayer information of the data in the 2D segmentation
network, adopts three adjacent slices as input, and uses two
convolution kernels to enhance the context information of
the 3D data. Therefore, our method effectively improved
the segmentation accuracy. In terms of network structure
design, the link residual pooling is introduced into the VNet,
the skip connection part is improved, and the high-level
feature information and low-level feature information are
efficiently fused in the feature extraction part. Moreover, to
optimize the model’s ability to learn features during the
training process, the composite loss function of the weighted
fusion of boundary loss and Dice loss is used as the loss
function of the generator to ensure clearer edge and texture
information. In this study, experiments were conducted on
two datasets, LiTS and CHAOS, to verify the effectiveness
and generalization of the VNet_WGAN segmentation algo-
rithm. Experimental results show that compared with other
segmentation algorithms, the proposed method improves
the Dice value by at least 3% while a high segmentation
accuracy is maintained by reducing memory usage and

(a) CT images

(b) Mark image

(c) 3D VNet

(d) VNet and WGAN

Figure 11: Comparison of prediction results.
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calculation amount. This provides a powerful reference for
clinicians to perform liver segmentation.

However, the scope of application of the algorithm has
certain limitations, in which the loss function part is suitable
for other medical image processing tasks, such as lung nod-
ule detection and brain tumor segmentation. In the follow-
up work, further refinement and segmentation of the tumor
on this basis is the main aim of research in the future.
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