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Due to the nonlinear and high-dimensional characteristics of motor imagery electroencephalography (MI-EEG), it can be
challenging to get high online accuracy. As a nonlinear dimension reduction method, landmark maximum variance unfolding (L-
MVU) can completely retain the nonlinear features of MI-EEG. However, L-MVU still requires considerable computation costs
for out-of-sample data. An incremental version of L-MVU (denoted as IL-MVU) is proposed in this paper. *e low-dimensional
representation of the training data is generated by L-MVU. For each out-of-sample data, its nearest neighbors will be found in the
high-dimensional training samples and the corresponding reconstruction weight matrix be calculated to generate its low-di-
mensional representation as well. IL-MVU is further combined with the dual-tree complex wavelet transform (DTCWT), which
develops a hybrid feature extractionmethod (named as IL-MD). IL-MVU is applied to extract the nonlinear features of the specific
subband signals, which are reconstructed by DTCWT and have the obvious event-related synchronization/event-related
desynchronization phenomenon. *e average energy features of α and β waves are calculated simultaneously. *e two types of
features are fused and are evaluated by a linear discriminant analysis classifier. Based on the two public datasets with 12 subjects,
extensive experiments were conducted. *e average recognition accuracies of 10-fold cross-validation are 92.50% on Dataset 3b
and 88.13% on Dataset 2b, and they gain at least 1.43% and 3.45% improvement, respectively, compared to existing methods. *e
experimental results show that IL-MD can extract more accurate features with relatively lower consumption cost, and it also has
better feature visualization and self-adaptive characteristics to subjects. *e t-test results and Kappa values suggest the proposed
feature extraction method reaches statistical significance and has high consistency in classification.

1. Introduction

Brain-computer interface (BCI) system-based re-
habilitation therapy aims to help disabled people control
their injured limbs by external devices and ultimately re-
pairs their damaged nerve pathways [1–3]. *e key point of
the BCI system is pattern recognition for motor imagery
electroencephalography (MI-EEG) signals [4]. MI-EEG
not only contains huge amounts of physiological infor-
mation but also has a close correlation with the state of
consciousness. *erefore, to ensure the accuracy of pattern
recognition, it is very important to extract as many sep-
arable features as possible. In addition, practical applica-
tion and the time consumption involved are other
significant factors to consider [5].

MI-EEG is a complex non-linear time-varying and non-
stationary biological signal with high-dimensional charac-
teristics. *e high dimension of the MI-EEG will raise the
difficulty of feature extraction and have a further impact on
the accuracy of pattern recognition. To solve the high-di-
mensional problems of MI-EEG, earlier researchers adopted
dimension reduction methods in machine learning, such as
principal component analysis (PCA), independent compo-
nent analysis (ICA), and methods based on these. PCA
replaced the original features with a smaller number of
features. *e new features were linear combinations of the
old features, which maximized the sample variance and
made the new features irrelevant to each other [6]. ICA,
which usually involves PCA as its preprocess, is expected
to decompose a signal into linear combinations of several
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statistically independent components [7].*ese methods are
easy to implement, and their weakness is obvious at the
same time.*emain weakness is that these methods will lose
some important information due to ignoring the nonlinear
characteristic of MI-EEG [8]. Manifold learning (ML)
provides a better way to extract the feature of MI-EEG. ML
can recover the structure of lower-dimensional manifolds
from high-dimensional data and can help us to obtain the
corresponding nonlinear embedded coordinates that are
regarded as a meaningful representation of the reduced
dimension of data [9]. According to the preserved relation
between data points before and after dimension reduction,
the methods of ML are divided into two types, the global
approach and the local approach. *e global approach is
represented by isometric mapping (ISOMAP), and the local
approach is represented by locally linear embedding (LLE)
[10]. *ese two algorithms are the earliest proposed ML
algorithms. *ey have been applied to the feature extraction
of MI-EEG. Krivov and Belyaev [11] employed ISOMAP to
preserve the geodesic distance of the covariance matrices to
achieve dimension reduction. For the public dataset, clas-
sification accuracy is at the same level as the common spatial
pattern (CSP) algorithm. Lee et al. [12] compared the effect
of the feature extractions of PCA, ISOMAP, and LLE with
each other and concluded that ISOMAP is better than LLE,
although a lot of information is lost. From another per-
spective, the local approach, such as LLE, is greatly affected
by the data noise, which means that, when we use the local
approach to extract the nonlinear feature of MI-EEG, the
data noise will affect the nonlinear structure and will further
affect the classification accuracy. To overcome these limi-
tations of ISOMAP and LLE, Weinberger and Saul [13]
proposed a novel ML algorithm called maximum variance
unfolding (MVU), which is based on semidefinite pro-
gramming. MVU is used to maximize the Euclidean distance
between data points on the premise that keep the distance in
the neighborhood graph unchanging. It can detect the
correct underlying dimensionality of the inputs and pre-
serves information on both local angles and distances. In
addition,Weinberger and Saul [14] emphasized that MVU is
adapted to the data with noise or other particular applica-
tions by relaxing the distance-preserving constraints.
However, the key step of MVU is to solve a semidefinition
program, and it cannot process the huge dataset. In 2005,
Weinberger et al. [15] developed an improved MVU algo-
rithm called landmarkMVU (L-MVU) tomake it possible to
process the huge dataset, which is based on semidefinite
programming and kernel matrix factorization. Nevertheless,
L-MVU also has a limitation in which we must employ the
whole train data to reproduce the new low-dimension data
points if we want to obtain the low-dimension data of new
data points, which causes the excessive time consumption
and further affects the implementation of the online ap-
plication. *erefore, to overcome this shortcoming, a novel
algorithm called incremental version of L-MVU (denoted as
IL-MVU), which was inspired by the incremental algorithm
of other ML algorithms, is presented [16–19].

However, merely extracting nonlinear features does not
represent all of the information of MI-EEG. As we all know,

MI-EEG has a clear time-frequency characteristic, and many
earlier researchers obtained better results simply by
extracting the time-frequency information. Wavelet trans-
form (WT) was proposed to effectively obtain the time-
frequency information of signals. *e traditional WT is a
continuous wavelet transform. However, researchers who
are limited by the huge computation cost of WT usually
employ the discrete wavelet transform (DWT), which is
convenient for the computer calculations as it discretizes the
scale and shift parameter of the continuous wavelet trans-
form. Imran et al. [20] used DWT to extract the statistical
features of MI-EEG and then employed PCA to reduce the
dimension of the proposed feature vector. *e k-nearest
neighbor (KNN) classifier was employed to classify the
features, and the average recognition accuracy was 78.26%.
Even though the DWT is an efficient computational algo-
rithm, it also suffers from a few intertwined shortcomings.
For example, substantial artifacts were involved in the
DWT-based reconstructed signal. *e dual-tree complex
wavelet transform (DTCWT), which overcame some de-
ficiencies of the DWT, is a relatively recent enhancement of
the DWT [21]. *e real part and the imaginary part of
DTCWTshowed good information complementarity, which
reduced the substantial aliasing of DWT. Minmin et al. [22]
demonstrated the defect of aliasing. After that, they
employed DTCWT and particle swarm optimization (PSO)
to extract the feature of MI-EEG.*e accuracy on the testing
set reached 90%. DTCWT employs two real DWTs, which
construct the real and imaginary parts of the transform and
are the enhancements of DWT. Meng et al. [23] proposed a
feature extraction method that combines DTCWT and the
sample entropy. On the Dataset 1 of BCI Competition IV,
the average classification accuracy rate of the four subjects is
87.25%. Bashar et al. [24] used DTCWTto extract the energy
of coefficients as a feature from the relevant bands of motor
imaginary, and the classification accuracy reached 91.07%
with KNN classifier. From the aforementioned literates, we
find that more researchers start to employ DTCWT to ex-
tract the time-frequency feature of MI-EEG.

In this paper, an incremental version of the L-MVU al-
gorithm, called IL-MVU, is presented to reduce the time
consumption during the testing stage, and it is combined with
DTCWT, thus forming a novel hybrid feature extraction
method of MI-EEG (named as IL-MD). *e DTCWT is used
to reconstruct the MI-EEG with every subband, and the
normalization energy features of the subband signal that
corresponds to the αwave and the βwave are calculated as the
time-frequency feature of MI-EEG. In the meantime, IL-
MVU is executed to obtain the nonlinear feature of specific
subband signals with obvious event-related synchronization
(ERS)/event-related desynchronization (ERD) phenomenon.
Finally, we perform feature fusion for the above two types of
features. IL-MD not only guarantees recognition accuracy but
also meets the requirements of the online BCI system.

*e remainder of the paper proceeds as follows: section 2
introduces the basic theory of the DTCWT and L-MVU
algorithm. In the following section, the IL-MVU algorithm
and the feature extraction method based on DTCWTand IL-
MVU are introduced in detail. In section 4, the experimental
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steps of IL-MD are shown in details on BCI Competition
2003 Dataset 3b.*e experimental results on twomentioned
datasets and the discussion are shown in section 5. Finally,
section 6 concludes the paper and the prospects of the future
work.

2. Preliminary

2.1. Dual-Tree Complex Wavelet Transform. *e de-
composition of a signal with DWT will produce some fre-
quency components that we do not expect to obtain because
the low-pass and high-pass filters are not the ideal filters. In
DTCWT, two real DWTs are employed to give the real and
imaginary parts of the transform, and the low-pass filters of
the two real DWTs should satisfy a very simple property: one
should be approximately a half-sample shift of the other. In
addition, DTCWT requires the first level of dual-tree filter
bank (FB) to be different from the succeeding levels [25].
More details about the decomposition and reconstruction of
DTCWT can be seen in Appendix.

2.2. Landmark Maximum Variance Unfolding. L-MVU was
proposed to resolve the high time-consumption problem
by choosing landmarks [15]. It uses the smaller matrix of
inner products between randomly chosen landmarks to
reformulate the semidefinite programming (SDP). It has
already been applied to the dimension reduction [26] and
the feature extraction of MI-EEG [27]. Assume that the
dataset X ∈ RD×n contains the high-dimensional samples
xi(xi ∈ RD, i � 1, 2, . . . , n), whereD denotes the dimension
of the samples and n is the number of the dataset X. *e free
parameters of L-MVU are the number of nearest neighbors
r used to derive locally linear reconstructions, the number
of landmarks m, the intrinsic dimension of the dataset d
(d≪D, d<m), and the number of nearest neighbors k used
to generate distance constraints in the SDP. Based on the
parameters we set above, the steps of L-MVU are as follows.

Reconstruct each xi by a weighted sum of its nearest
neighbors for r we have set above. *e reconstruction
weights can be obtained by minimizing the error function:

ε(W) � 􏽘
n

i�1
xi − 􏽘

j

Wijxj

����������

����������

2
, (1)

where 􏽐jWij � 1, and Wij � 0 if xj is not the r-nearest
neighbor of xi.

Choose first m sample of X as landmarks and compute
the linear transformation Q. First, we define the matrix
Λ � (In −W)T(In −W), and In is the n× n identity matrix.
*en, partition the Λ into blocks to distinguish the m
landmarks from other samples, as follows:

Λ �
Λ1 Λ2
Λ3 Λ4

􏼠 􏼡, (2)

where Λ1 is the m×m submatrix of Λ and Λ4 is the
(n−m)× (n−m) submatrix of Λ. Based on formula (10), the
linear transformation Q was computed as follows:

Q �
Im

Λ3( 􏼁
−1Λ4

⎛⎝ ⎞⎠. (3)

Solve the SDP for the landmark kernel matrix L (m×m),
which is the submatrix of the kernel matrix K in MVU. *e
SDP is expressed as follows.

Maximize trace (QLQT) subject to

I. QLQ
T

􏼐 􏼑
ii
− 2 QLQ

T
􏼐 􏼑

ij
+ QLQ

T
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jj
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2 for all (i, j)with ηij � 1,

II. 􏽘
ij

QLQ
T

􏼐 􏼑
ij

� 0,

III. L is semidefinite,

(4)

where ηij � 0, 1{ } denotes whether sample xi and xj is the
k-nearest neighbor and the k has set earlier in this paper.

Produce the low-dimensional representation of the
landmarks. First, we perform the eigendecomposition for
the matrix L to get eigenvalues and eigenvectors. *en, the
kth element of the ith landmarks yi, k(i � 1, 2, . . . , m) can
be calculated as follows:

yi, k �

��

λk

􏽱

Vk,i, k � 1, 2, . . . , d, (5)

where λk denotes the kth eigenvalues of matrix L and Vk,i

denotes the ith element of the kth eigenvector.
Produce the low-dimensional representation of the

samples that are not selected as landmarks. *ese low-di-
mensional samples yi (i � m + 1, m + 2, . . . , n) are recon-
structed as follows:

yi � Qi y1 y2 · · · yd􏼂 􏼃. (6)

So far, we obtain the low-dimensional representation of
all samples yi ∈ R d (i � 1, 2, . . . , n). In addition, the low-
dimensional dataset is denoted as Y ∈ Rd×n.

3. Methods

3.1. Incremental L-MVU. Inspired by the instinct that L-
MVU cannot meet the time-consumption requirements
when processing out-of-sample data, we proposed the in-
cremental version of L-MVU based on its basic framework,
which significantly reduces the time of the feature extraction
procedure.

Assume that the dataset X ∈ RD×n is the training set.
*e high-dimensional samples xi(xi ∈ R D, i � 1, 2, . . . , n),
which are regarded as the training sample, are contained in
X. *e free parameters r, m, d, and k are set same, as de-
scribed in section 2.2. In addition, there is a new parameter
w that denotes the number of incremental nearest neighbors.
In addition, the xn+1 denotes the points out of the dataset X.
Based on the above settings, IL-MVU is divided into the
training and testing parts as follows.

During the training part of IL-MVU, the low-dimensional
representation of xi(i � 1, 2, . . . , n), which is denoted as
yi ∈ R d, is produced by the L-MVU algorithm. In addition,
the low-dimensional dataset is denoted as Y ∈ Rd×n. It is
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worth noting that the datasets X and Y are kept in memory so
that it can be used in the testing part of IL-MVU.

During the testing part of IL-MVU, the new sample xn+1
is put into the dataset X and employed its w-nearest
neighbors to reconstruct it in the low-dimensional space.
First, we find the w-nearest neighbors of xn+1 in dataset X
and define the neighbors set as Ns. *en, we compute the
incremental reconstructed weight IW by minimizing the
function:

ε(IW) � xn+1 − 􏽘
j

IWjxj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

, j ∈ Ns, (7)

where 􏽐jIWj � 1.
Finally, the low-dimensional representation of xn+1 can

be calculated by using the low-dimensional representation of
its w-nearest neighbors and reconstructed weight IW, which
is shown in the following:

yn+1 � 􏽘
j

IWjyj, j ∈ Ns. (8)

3.2. Feature Extraction Method Based on DTCWT and IL-
MVU. In this section, a novel feature extraction method
called IL-MD is shown in detail. *e flow chart of this
method is shown in Figure 1.

*is method is roughly divided into five steps: signal
preprocessing; signal decomposition and reconstruction
based on DTCWT; average energy feature extraction;
nonlinear feature extraction based on IL-MVU; and feature
fusion.

3.2.1. Signal Preprocessing. According to the characteristics
of the MI-EEG signal, we know that the α wave and β wave
include features with relatively obvious information. In
addition, the ERS/ERD phenomenon is most obvious in the
C3 and C4 channels [28, 29]. *erefore, according to the
average power spectrum analysis of MI-EEG of the C3 and
C4 channels, we can obtain the optimal time block. *e
average power Pch(j) of the ch channel can be calculated as
follows:

P
ch

(j) �
1
N

􏽘

N

i�1
d
ch

(i, j)􏽨 􏽩
2
, ch � c3, c4, (9)

where N denotes the number of the trials and dch(i, j)

represents the jth sample point of ith trial in the ch channel.
Based on this, the average power spectrum of imagine

left and right hands movements is drawn. In addition, the
optimal time block [min, max] with the most obvious ERS/
ERD phenomenon is selected according to the average
power spectrum and is denoted as OT.

3.2.2. Signal Decomposition and Reconstruction Based on
DTCWT. As mentioned in Section 2.1 and Appendix, a
signal Sch(t) via the J-levels DTCWTdecomposition obtains
its complex wavelet coefficient dch

j and its complex scale
coefficient cchJ , which are calculated in formula (19)–(26).

With the coefficients that we obtained below, we can
reconstruct the signal by using formula (27). Finally, by
setting the wavelet coefficients of other levels to zero, we can
obtain a signal in the specific frequency band. If the sampling
frequency of the signal is fs and we perform J-Level
DTCWT reconstruction to the signal, we will obtain the
subband signals AJ,DtJ,DtJ−1 · · ·Dt1, and the correspond-
ing frequency band ranges are [0, fs/2J+1], [fs/2J+1,

fs/2J], [fs/2J, fs/2J−1], . . . , [fs/22, fs/2].

3.2.3. Calculation of Average Energy Feature. As some
former researchers have demonstrated, most of the motor
imagine-related information is contained in the α wave
(8–13Hz, namely, μ rhythm) and the β wave (13–30Hz,
namely, β rhythm) [28]. For general reasons, the time-fre-
quency feature extraction of this paper is in the two men-
tioned waves.

First, as for the subband signals AJ,DtJ,DtJ−1 · · ·Dt1
obtained from section 3.2.2, we selected the data in the
optimal time block OT, which were recorded as Sch1 ,

Sch2 , . . . , SchL+1. *en, we set a sliding time window of length 2
fs. We can calculate the energy within the sliding time
windows as follows:

E
ch
l � 􏽘

2fs

t�1
S
ch
l (t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, l � 1, 2, . . . , J + 1. (10)

After that, we choose signals whose frequency band is
close to the α wave and the β wave, whose energy are
recorded as EC3

α , EC4
α , EC3

β , and EC4
β . *e normalization

energy is computed as follows:

E
ch
wv �

Ech
wv

􏽐
L+1
l�1 Ech

l

, wv � α, β􏼈 􏼉 . (11)

*e normalization energy E
ch
wv of two subband signals in

the sliding time window is calculated by sliding one sample
point at a time. From above, we can obtain four energy
sequences of length (max−min− 2fs + 2), which are
expressed as ESC3α , ESC4α , ESC3β , and ESC4β . *en, we obtain
the ESC3α , ESC4α , ESC3β , and ESC4β by calculating the average
value of each energy sequence.

Finally, according to the ERS/ERD phenomenon, the
average energy difference between the C3 conductor and the
C4 conductor in the same wave of signal can be calculated as
follows:

AEwv � ESC3wv −ES
C4
wv, wv � α, β􏼈 􏼉. (12)

As for each trial of motor imagined, we can obtain a 2-
dimensional average energy feature F1, which is shown as
follows:

F1 � AEα AEβ􏽨 􏽩
T ∈ R

2×1
. (13)

3.2.4. Nonlinear Feature Extraction Based on IL-MVU.
As for each subband signal Sch1 , Sch2 , . . . , SchL+1 obtained from
section 3.2.3, we drew the average power spectrum, as shown
in section 3.2.1. *en, we obtain SC3sp and SC4sp , which has the
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most obvious ERS/ERD phenomenon in OT. To obtain the
features that are more conducive to the classification, IL-MD
does the following with SC3sp and SC4sp :

ds(u, v) � S
C3
sp (u, v)− S

C4
sp (u, v), v ∈ OT, (14)

where Schsp(u, v) denotes the vth sample point in uth motor
imagine task of Schsp . *en, we obtain the initial high-di-
mensional feature Tru ∈ R(max−min+1)×1 of uth motor imagine
task as follows:

Tru � [ds(u,min), ds(u,min + 1), . . . , ds(u,max)]]
T
,

u � 1, 2, . . . , N.

(15)

After that, we construct the high-dimensional training
feature set Tr ∈ R(max−min+1)×N as the input of IL-MVU.
*en, we set the initial parameters of IL-MVU, which is
mentioned in section 3.1.

Train dataset Out of sample 
data

Average power 
spectrum analysis

Average power 
spectrum analysis

Select optimal 
time block

Signal decomposition and 
reconstruction based on 

DTCWT

Signal decomposition and 
reconstruction based on 

DTCWT

Select optimal 
time block

Sub-band 
signals

Sub-band 
signals

Average power 
spectrum analysis

IL-MVU (training part)

Calculate the 
average energy of 

α wave and 
β wave

Calculate the 
average energy of 

α wave and 
β wave

IL-MVU (test part)

Time-
frequency 
features F1

Nonlinear 
features F2

Time-
frequency 
features F1

Nonlinear 
features F2

MI-EEG 
training 
feature F

Feature fusion Feature fusion

MI-EEG test 
feature F

Classifier

Specific sub-
band signals

Specific sub-
band signals

Figure 1: *e flow chart of IL-MD.
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As for the samples in Tr, we obtain their d-dimensional
feature by calculating formula (1)–(6). And for the sample
out of Tr, we should execute the training part of IL-MVU
first and then calculate formula (9)-(10) to obtain its d-di-
mensional feature. *erefore, for any given motor imagine
task, a d-dimensional nonlinear feature can be obtained, and
it is denoted as F2 ∈ Rd×1.

3.2.5. Feature Fusion. To make full use of the information
obtained from multiple aspects, features F1 and F2 are in-
tegrated through a serial port connection. However, the
order of magnitude difference between F1 and F2 is too large
to affect classification. So, as to reduce the influence of the
order difference on the classification, we made F1 100 times
bigger than before. Eventually, we obtain the features as
follows:

F �
F1 ∗ 100

F2
􏼢 􏼣. (16)

To verify the effectiveness of IL-MD, the linear dis-
trict analysis (LDA) classifier is selected to classify the
features F.

4. Experimental Research

4.1. Dataset Description. To increase the persuasiveness of
IL-MD, we verify IL-MD in two public datasets.

*e first dataset is from BCI Competition 2003 Dataset
3b provided by BCI Lab, Graz University of Technology [29],
hereinafter referred to as Dataset 3b. *is dataset was
composed of 280 trials from 3 subjects, of which 140 were
training and 140 were used to test images of left/right hand
movements. *e sequence diagram of each trial is shown in
Figure 2. *e signal was sampled at 128Hz. *e MI-EEG
channels were measured over C3, Cz, and C4 conductors,
using AgCl as an electrode. *e electrode placement is
shown in Figure 3. *e placement of the electrode obeys the
10–20 electrode system.

*e other dataset is from BCI Competition 2008 Datasets
2b provided by BCI Lab, Graz University of Technology [30],
hereinafter referred to as Dataset 2b. *is dataset consists of
EEG data from 9 subjects, namely, B01–B09. For each
subject, five sessions are provided, whereby the first two
sessions were recorded without feedback, and the last three
sessions were recorded with feedback.*eMI tasks are same
as the former dataset. For first two sessions, each session
consisted of six runs with ten trials. *e time schedule is
shown in Figure 4(a), in which each trial has a short break of
at least 1.5 seconds in the end. For the three online feedback
sessions, four runs with positive feedback, denoted by a
smiley symbol, were recorded (see Figure 4(b)), whereby
each run consisted of twenty trials. Depending on the cue
presented from 3 to 7.5 seconds, the subjects were required
to move the smiley towards the left or right side by imag-
ining left or right hands movements, respectively. During
the feedback period, the smiley changed to green when
moved in the correct direction; otherwise, it became red.
*ree channels of bipolar recording (C3, Cz, and C4) were

acquired with a sampling frequency of 250Hz.*e electrode
placement is the same as the former dataset, which is shown
in Figure 3. *e placement of the electrode also obeys the
10–20 electrode system.

In this section, the proposed feature extractionmethod is
shown in detail using Dataset 3b. *e results of the two
mentioned datasets are shown in the “Result and Discus-
sion” section.

4.2. Optimal Time Block Selection. *e MI is a process but
not a transient result. For this reason, the features of signal in
different time blocks also show differences. To obtain a better
result of classification, we should select the optimal time
block related to the MI task based on the ERD/ERS phe-
nomenon and apply it to the following steps.

Based on the above analysis, the average power of MI-
EEG over C3 and C4 conductors under two classes of MI
tasks was calculated according to formula (9). *e average
power spectrum of the imagined left and right hands
movements is shown in Figure 5.

From Figure 5, it can be seen that the time block [3.5,
7.5] s shows the greatest diversity under the different MI
tasks. When the sample frequency of signal is 128 Hz, the
sample points corresponding to this time block are
denoted as approximately [450, 1000], which correspond
to the optimal time block OT, which was defined in
section 3.2.1.

0 1 2 3 4 5 6 7 8

Beep

Imagery period

+

t (s)

Figure 2: Timing schedule of Dataset 3b.

Ref

C3 Cz C4

Gnd

Figure 3: Electrode positions of C3, Cz, and C4.
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4.3. Subband Selection. DTCWT can divide the frequency
bands accurately, which is a recent enhancement to DWT. In
addition, the MI tasks always exhibit their characteristics
over a given frequency band. For this reason, IL-MD obtains
each subband signal of the original signal with the de-
composition and reconstruction of DTCWT. *en, the
optimal frequency band will be obtained by plotting the
respective average power spectrum and analyzing it based on
the ERS/ERD phenomenon.

As mentioned in section 3.2 and in the actual situation
of the dataset, the subband signal called A4, Dt4, Dt3, Dt2,
and Dt1 via 4-level DTCWT reconstruction of the original
signal will be obtained, and the corresponding frequency
band ranges are [0Hz, 4Hz], [4Hz, 8Hz], [8Hz, 16Hz],
[16Hz, 32Hz], and [32Hz, 64Hz]. According to the rule
of the wave division of EEG, these subband signals can
correspond approximately to δ wave, θ wave, α wave, β
wave, and c wave. *e average power spectrum is shown in
Figure 6.

It can be seen in Figure 6 that the ERS/ERD phenom-
enon is reflected in different degrees on each subband signal.

For the selected dataset, the phenomenon is barely visible in
signal A4 (δwave). In signal Dt1 (cwave) and signal Dt4 (θ
wave), the phenomenon is only apparent in imaging right
hand movement task. As for the rest two subband signals,
Dt2(βwave) and Dt3(αwave) have the most obvious ERS/
ERD phenomenon in the two classes of MI tasks, and
Dt3(αwave) is even better thanDt2(βwave). So, signal Dt3 is
selected for subsequent feature extraction on Dataset 3b.
However, if the dataset is changed, the subbands selection
results can be changed, namely, the multiwaves, including
δ, α, β, and c, are all the candidates for different subjects.
*is reflects the subject-based characteristics of MI-EEG and
will be proven in the following experiments.

To find the difference between the subband signals
reconstructed by DWT and DTCWT, the average power
spectrum of signal Dt3 is shown in Figure 7. It can be seen
clearly from Figure 7 that the signal reconstructed by
DTCWT has more obvious ERS/ERD phenomenon than
that of DWT. It is because DWTmay introduce substantial
artifacts in signal reconstruction and cause that the corre-
sponding ERS/ERD phenomenon is not obvious, and further
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Figure 5: Average power spectrum of imagined left or right hand movements.
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Figure 4: Timing scheme of Datasets 2b. (a)*e first two sessions contain training data without feedback and (b) the last three sessions with
smiley feedback.
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Figure 6: Continued.
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more obvious features cannot be extracted. Figure 7 illus-
trates that DTCWT is more suitable for the subband re-
construction of MI-EEG, thanks to its perfect reconstruction
characteristics.

4.4. Filter Bank Selection ofDTCWT. *e FB of DTCWT has
several selectivities. And as section 2.1 was introduced,
DTCWT requires that the first level of the dual-tree FB be
different from the succeeding levels. In this paper, dtcwt-
toolbox 4.3 was used to execute the decomposition and
reconstruction of signals obtained from the previous section.
*is toolbox provides several FBs in the first level and in the
succeeding levels of DTCWT. *ese FBs are shown in detail
in Table 1.

Different reconstructed signals can be obtained by dif-
ferent combinations of these FBs. According to the classi-
fication accuracy of these reconstructed signals, the
combination of the best FBs is selected for the following

steps. *e classification accuracy of different combinations
with IL-MD is shown in Table 2. In Table 2, FB 1 denotes the
FB of the first level and FB 2 denotes the FB of the succeeding
levels. It can be seen that the combination of Antonini and
Qshift_c obtains the highest classification accuracy. *ere-
fore, Antonini and Qshift_c are selected as the FB in the
following research.

Based on the description of section 3.2 and the selected
FBs, the average energy feature can be calculated by formula
(10)–(12). Finally, the 2-dimensional energy feature F1
consisting of AEα and AEβ can be obtained and then used in
the following steps.

4.5. Parameters Optimization of IL-MVU. To discover the
spatial structure information hidden in the MI-EEG,
IL-MVU algorithm is used to extract the nonlinear fea-
ture of subband Dt3, and CSDP 6.2.1 solver is used to solve
SDP [31].
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Figure 6: Average power spectrum of each subband signal with DTCWT-based reconstruction. Subband signal (a) A4 (δ wave), (b) Dt4 (θ
wave), (c) Dt3 (α wave), (d) Dt2 (β wave), and (e) Dt1 (c wave).
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IL-MVU algorithm has five parameters that can be
adjusted. *ey are the number of nearest neighbors r
used to derive locally linear reconstructions, the number
of landmarks m, the intrinsic dimension of the dataset d,
the number of nearest neighbors k used to generate
distance constraints in the SDP, and the number of

incremental nearest neighbors w. To reduce the com-
putational expense, parameter w is set to 4. In fact, the
experimental result shows that the parameter w has al-
most no effect on accuracy. As for the other four pa-
rameters of IL-MVU, joint optimization is performed
and evaluated by the recognition accuracy. By using the
traversing methods, the optimal values of these four
parameters were selected. Figure 8 illustrates the final
results of parameter optimization (r � 52, m � 14). It
should be noticed that the features used to classify are the
combination of average energy feature F1 and nonlinear
feature F2.

It can be discovered that the fluctuation range of ac-
curacy is very small when d and k are changed. *is proves
that the IL-MVU algorithm has good robustness. In addi-
tion, when we set r to 52, m to 14, d to 5, and k to 24, the
classification accuracy reaches its peak.
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Figure 7: Average power spectrum of (a) Dt3 signal (α wave) reconstructed by DTCWTand (b) Dt3 signal (α wave) reconstructed by DWT.

Table 1: FB description of DTCWT.

FB in the first level FB description FB in the succeeding levels FB description
Antonini Antonini 9,7 tap filters Qshift_06 Q-shift 10,10 tap filters∗
LeGall LeGall 5,3 tap filters Qshift_a Qshift 10,10 tap filters∗∗
Near_Sym_a Near-symmetric 5,7 tap filters Qshift_b Q-shift 14,14 tap filters
Near_Sym_b Near-symmetric 13,19 tap filters Qshift_c Q-shift 16,16 tap filters
— — Qshift_d Q-shift 18,18 tap filters
Note: ∗6,6 nonzero taps; ∗∗10,10 nonzero taps.

Table 2: Classification accuracy of different FB combinations.

FB 2
FB 1

Accuracy (%)
Antonini LeGall Near_Sym_a Near_Sym_b

Qshift_06 86.07 86.07 85.71 90.00
Qshift_a 90.36 90.00 86.07 90.00
Qshift_b 80.71 81.79 80.71 92.50
Qshift_c 91.07 86.07 90.71 90.36
Qshift_d 90.36 90.36 90.71 90.36
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4.6. Feature Visualization. To observe the separability of
features extracted by IL-MD more intuitively, the feature
visualization is carried out in this section. *e feature vi-
sualization for the average energy feature F1 is shown in
Figure 9. L and R in the legend denote imaging left and right
hand movement, respectively.

*e horizontal and vertical axes in Figure 9 stand for the
average energy difference (mentioned in formula (12) of
section 3.2.3) of α wave and β wave, respectively. Figure 9
illustrates that feature F1 has shown the better separability. It
has a positive effect on improving the overall accuracy rate.
However, the confusion of the average energy features of the
two types of MI tasks still exists. It is indicated that high
classification accuracy cannot be achieved by only relying on
the average energy features.

Furthermore, the nonlinear feature visualization shown
as Figure 10 is illustrated to compare IL-MVU with the
common ML algorithms. *ese involved algorithms are
ISOMAP [32], LLE [33], Laplacian EIGENMAPS (LE) [34],
Landmark ISOMAP (L-ISOMAP) [32], Local Tangent Space
Alignment (LTSA) [35], Hessian LLE(HLLE) [36], MVU,
and L-MVU.

*e visualization results of ISOMAP, L-ISOMAP, and
LE are shown as Figures 10(a)–10(c). It can be seen clearly
that these three algorithms are able to classify the MI tasks
that are involved in the dataset. Furthermore, L-ISOMAP is
no worse than ISOMAP in visualization. In Figures 10(d)–
10(f ), the features that are extracted by LLE, LTSA, and
HLLE are visualized. *ese three methods perform di-
mensionality reduction by retaining local information. It can
be simply assumed that these three methods retain the local
relation, the first derivative, and the second derivative of
local relation, respectively. *e visualization results of
LTSA andHLLE are not as good as LLE, which proved that it
is not necessary to preserve complex local relationships.
Figures 10(g)–10(i) are the visualization results of MVU and
its extension algorithms. A preliminary conclusion can be
drawn that MVU-based algorithms have a better effect on
feature visualization compared with other ML algorithms.
*is is because the MVU or its extension algorithm retains
more useful information in reducing dimensions with its
strict constraints. Moreover, compared to MVU, L-MVU
has more obvious clustering distribution. As for IL-MVU, its
separability is better than that of the other two methods.

5. Results and Discussion

5.1. Results and Discussion for Dataset 3b. To verify the
superiority of IL-MD, a multiaspect comparison is dem-
onstrated in this section under the same experimental
conditions. *e experimental environment is the Windows
10 64 bit operating system; the CPU is Intel(R) Xeon(R) E5
2683 v3; the memory is 16GB; and software is Matlab
R2017a. *e 10-fold cross-validation (CV) is used in this
section to reliability of experimental results. *e whole 280
trials were randomly divided into 10 packages (including 28
trials per package). One package is selected as test set every
time. *e ten results were averaged as the final accuracy.

5.1.1. Comparison of Different Classifiers. In addition to the
feature extraction method, the classification accuracy is also
affected by the classifier performance. In the following, IL-
MD is employed to generate the hybrid features, and the
commonly used classifiers, including LDA, k-nearest
neighbors (KNN), naı̈ve Bayes (NB), random forest (RF),
logistic regression (LR), back-propagation net neural net-
work (BP), and support vector machine (SVM), are applied
to classify the features. *e 10-fold CV experiment results
are shown in Figure 11.

It is clear that the classification accuracy of LDA is higher
than that of some regression classifiers, such as SVM, BP,
and LR, and it also has a slight advantage over RF and KNN.
*e classification result of NB is worse than most of other
classifiers. *e classification results show that the features
extracted by IL-MD do not need too complex classifiers to
achieve high classification accuracy and matches best with
the LDA classifier.*erefore, the LDA classifier is selected to
evaluate the performance of the proposed feature extraction
method.

5.1.2. Comparison with Other ML Algorithms. *e proposed
IL-MVU and IL-MD will be compared with the other ML
methods in testing time and classification accuracy. *e
testing time of single sample and the 10-fold CV classifi-
cation accuracy are shown in Figure 12. *e parameters in
the ML-based feature extraction methods have been op-
timized, and the classifiers are all LDA. In Figure 12, the
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horizontal axis denotes the single testing time of each ML
method and the vertical axis denotes the recognition rates.
In order to clearly demonstrate the differences in test time
among various methods, the horizontal axis uses loga-
rithmic coordinates. As we all know, an excellent feature
extraction method needs to meet the requirements of high

precision and low time consumption, namely, the closer to
the upper left corner, the better the performance of the
method.

From Figure 12, it can be seen clearly that IL-MD obtain
the highest recognition rate and the lower time consumption
compared with other ML algorithms. It is a benefit of the
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extraction of the hybrid features of MI-EEG. Furthermore,
more useful information is preserved from the original data
with the improved ML algorithm, i.e., IL-MVU. On the
other hand, the results in Figure 12 are basically consistent
with those obtained from Figure 10. Compared with ISO-
MAP, L-ISOMAP made great progress in recognition ac-
curacy and time consumption. *e reason is that more
redundant information is discarded by choosing landmarks
in the L-ISOMAP algorithm. LE obtains the lowest time
consumption because this algorithm preserves less in-
formation. *erefore, the recognition accuracy of LE is the
lowest too. As for the LLE-based algorithms, we can see
clearly that the time consumption of LLE, LTSA, and HLLE

increases successively. *is is because the computation
complexity of these three ML algorithms increases succes-
sively. However, the recognition accuracy reduces succes-
sively, which illustrates that LTSA and HLLE are unsuitable
for the feature extraction of MI-EEG.

*e MVU-based algorithms have higher recognition
accuracy. *anks to the selection of landmarks, L-MVU
gains a 1% improvement compared to MVU, and the time
consumption has reduced rapidly. *e proposed IL-MVU
algorithm, which is based on the practical application, is
mapped in the out-of-sample data directly on the trained
manifold according to the principle of local reservation,
which greatly reduces the time consumption of feature
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extraction. Although the time consumption of IL-MVU is
further reduced to 0.31 s, which has greatly improved the
performance of online recognition for MI-EEG, it shows
some decrease in the recognition rate compared with
L-MVU. *erefore, it is necessary to analyze the differences
of the results between the L-MVU and IL-MVU. In the
following, a two-sample t-test is applied to identify whether
there is a significant difference when they are used for
MI-EEG feature extraction. *e recognition rate of L-MVU
and IL-MVU with 10 sets of parameters (d, k, r, and m) is
used for t-test.

Assume that ML and MIL represent the mean value of
the 10-fold CV’s accuracy from L-MVU and IL-MVU, S2L
and S2IL stand for the variance, and nL and nIL denote the
number of the results. *e t-test statistic can be calculated as
follows:

t �
MIL −ML����������������������������������������������

nIL − 1( 􏼁S2IL + nL − 1( 􏼁S2L/ nIL + nL − 2( 􏼁 1/nL( 􏼁 + 1/nIL( 􏼁( 􏼁

􏽱 .

(17)

Suppose that the null hypothesis is H0, the results of IL-
MVU and L-MVU come from independent random sample
from normal distributions with equal means and the al-
ternative hypothesis is H1, the results of IL-MVU and L-
MVU come from populations with unequal means. *e
significance level was chosen as α � 0.05.*e decision rule is
to reject H0, if

p � P t> tα nIL + nL − 2( 􏼁􏼈 􏼉≤ 0.05. (18)

Finally, the p value is equal to 0.0135, which is less than
0.05.*e null hypothesis is rejected at 0.05 significance level.
*erefore, the performance of IL-MVU is significantly in-
creased compared to L-MVU. Furthermore, combined with
DTCWT, IL-MD obtains the highest recognition rate of
92.50%.

5.1.3. Comparison with DTCWT-Based Methods. *e
comparison results between IL-MD and the methods of MI-
EEG feature extraction based on DTCWT for the same
dataset are shown in Figure 13. *e feature extract method
DTCWT in Figure 13 only uses the time-frequency feature
mentioned in section 3. *e results of the comparison
methods in other literatures are not the 10-fold cross-val-
idation result.

Figure 13 illustrates that DTCWT combined with IL-
MVU obtained the highest recognition accuracy. It was
proven that these two algorithms have good complemen-
tarity when applied to the feature extraction for MI-EEG. In
addition, the results of the other DTCWT-based feature
extraction methods are generally higher. *e reason is that
the frequency band can be divided more precisely by
employing DTCWT, which is consistent with the frequency
characteristic of MI-EEG. Take the result of Figure 12 into
consideration, we find that using DTCWTor IL-MVU alone
cannot reach the recognition rate above 90%. However,
when these two methods are combined with the recognition
rate reaches 92.50%, which is attributed to the comple-
mentarity of DTCWT and IL-MVU.

5.2. Result and Discussion on Dataset 2b. To verify the self-
adaptive characteristic of IL-MD, we extend this method to
the multisubject dataset mentioned in section 4.1. Under the
same experimental procedure as above, the subject-opti-
mized performance is shown as Table 3. It is worth noting
that the training and testing sets in this section are divided
the same way as [37]. *e training sets of every subject are
shown in Table 3. Session 4 and session 5 of each subject are
selected as their testing set. And the optimal time block is
chosen from 3.5 s to 7 s for all subjects. *e comparison with
wavelet-based method is shown in Figures 14 and 15. *e
results of the wavelet-based method are from [37].

From Table 3, α wave and/or β wave are commonly
selected formost of the subjects.*at is because they covered
the frequency band range of motor imagery. And other
bands, including δ wave or c wave, have a little correlation
with MI tasks for some subjects, such as B02, B03, and B05,
which demonstrates the individuation characteristics of MI-
EEG.

*erefore, the individualized selection of the parameter
of IL-MD according to the wave characteristics of the
subjects becomes the key to improving the recognition rate
of IL-MD.

From Figure 14, we can see that the average recognition
rate of IL-MD is higher than the wavelet-based method. In
terms of individual subjects, IL-MD obtains the better results
than that of the wavelet-based method for subjects B01, B02,
B03, B05, B07, and B09, it is as good as the wavelet-based
method for B08, and it is slightly lower for B04. *e average
recognition accuracy of IL-MD makes 3.38% improvement
over the wavelet-based method. In addition, the kappa
values shown in Figure 15 indicate that IL-MD performs
better than the wavelet-based method for most subjects. *e
highest improvement is obtained for subject B03, where the
kappa value increased from 0.27 to 0.71. Only B05 had a
slightly lower kappa value than the wavelet-based method.
Although there are large variations in kappa values for
different subjects, the average kappa value of IL-MD is
improved by 0.06 compared to the wavelet-based method. It
also indicates very good strength of class prediction and
suggests that IL-MD has high consistency in classification.

IL-MD is also compared with the other methods applied
to the same dataset. *e experiment is finished in the same
testing set, and the experiment results are shown in Table 4.
*e proposed feature extraction method takes an obvious
advantage in the average classification accuracy and kappa
value over the other methods for nine subjects. *is is
probably because IL-MD can excavate the individual
characteristics of the subjects.

In addition, CSP and its extension versions have been
applied in feature extraction of MI-EEG and have obtained
better recognition results [43]. IL-MDwas further compared
with CSP-based methods, including CSP, filter bank CSP
(FBCSP), discriminant filter bank CSP (DFBCSP), and
frequency domain CSP (FDCSP), and the experimental
results on Datasets 2b are presented in Figure 16. *e ex-
perimental session is selected same as [43]. All the average
recognition rates in Figure 16 are 10-fold cross-validation
result.
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From Figure 16, it can be seen that the improved CSP
method outperforms the CSP method. However, the average
recognition rate of the nine subjects using the CSP method
was about 80%. *e average recognition rate of IL-MD
reaches 88.13%, which is superior to CSP-based methods. In
order to further prove the advantage of IL-MD over CSP-

based method, t-test over IL-MD and the best CSP-based
method (FDCSP) is added. *e process of t-test is similar
with section 5.1.2. *e significance level was chosen as
α � 0.05. After being calculated, the result is equal to 0.0342,
which is less than 0.05. *e result of t-test illustrates that IL-
MD has significant advantages compared to FDCSP.
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Figure 13: Comparison with DTCWT-based methods on Dataset 3b.

Table 3: Subject-optimized performance of IL-MD.

Subjects Parameters of IL-MVU Training set Wave Recognition rate (%)
B01 d� 4, k� 6, r� 40, m� 13, w � 12 S1, S2 α 82.19
B02 d� 2, k� 6, r� 30, m� 6, w � 10 S3 δ 65.00
B03 d� 5, k� 4, r� 40, m� 13, w � 20 S2, S3 δ 85.63
B04 d� 3, k� 4, r� 40, m� 9, w � 25 S3 α, β 96.56
B05 d� 4, k� 4, r� 40, m� 9, w � 4 S3 β, c 97.81
B06 d� 4, k� 26, r� 40, m� 9, w � 4 S1, S3 α, β 90.00
B07 d� 4, k� 12, r� 40, m� 9, w � 4 S1, S3 α 82.50
B08 d� 2, k� 4, r� 40, m� 11, w � 16 S3 α 90.94
B09 d� 3, k� 10, r� 40, m� 11, w � 8 S1, S3 α, β 87.19
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Figure 14: Classification rate compared with the wavelet-based method.
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6. Conclusions

Based on the L-MVU algorithm and the principle of local
reservation, an incremental version of L-MVU, i.e., IL-
MVU, is proposed. It is used for nonlinear dimension re-
duction of specific subband signals, acquiring the subject-
based nonlinear feature of MI-EEG. In addition, DTCWT is
employed to extract the normalized average energy feature
of subband signals corresponding to α wave and β wave. *e
experimental results have an advantage in feature visuali-
zation, showing that the two types of features have good
separability and an obvious cluster distribution, which re-
sults in a relative higher recognition accuracy and lower time
consumption. *is is helpful for promoting theoretical
development of manifold learning and enhancing the
adaptive characteristics of feature extraction, as well.
However, there is some limitation in IL-MD. One is that it

cannot be applied to themultichannel signal, and the other is
that it is only suited to twomotor imaginary tasks. In a future
study, we intend to integrate IL-MVU with a common
spatial pattern (CSP) to improve its property and to develop
a broad application in BCI systems. In addition, to design a
more stable BCI system, the recognition of EEG generated
under high pressure will also be an important aspect of our
future attention [44, 45].

Appendix

Decomposition and Reconstruction of DTCWT

Figure 17 shows the decomposition procedures of the
DTCWT. As Figure 17 shows, the real component tree is
represented by Tree a and the imaginary component tree is
represented by Tree b.
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Figure 15: Kappa value comparison with the wavelet-based method.

Table 4: Comparison with other methods based on Datasets 2b.

Reference Feature extraction Average kappa value Average accuracy (%)
[38] WPD+ SE-isomap 0.71 84.68
[39] WPD+DFFS 0.70 84.06
[40] Improved DFBCSP 0.63 81.02
[41] KL-divergence +CSP 0.62 77.22
[42] CNN+ SAE 0.61 75.10
*is paper IL-MD 0.74 87.19
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*e wavelet coefficients and scale coefficients in Tree a
and Tree b can be shown as follows:

d
Re
j (n) � 2j/2

􏽚
∞

−∞
s(t)Ψh 2j

t− n􏼐 􏼑dt, (19)

d
lm
j (n) � 2j/2

􏽚
∞

−∞
s(t)Ψg 2j

t− n􏼐 􏼑dt, (20)

d
Re
J (n) � 2j/2

􏽚
∞

−∞
s(t)Φh 2j

t− n􏼐 􏼑dt, (21)

d
lm
J (n) � 2j/2

􏽚
∞

−∞
s(t)Φg 2j

t− n􏼐 􏼑dt, (22)

where j is the scale factor and j� 1, . . ., J, n is the sample
number, and s(t) is the signal. Ψh, Ψg, Φh , and Φg are the
functions of the wavelet transform, which can be expressed
by dual-tree FBs, such as h1(n), g1(n), h0(n), and g0(n).

Afterward, the complex wavelet coefficient d C
j (n) and

the complex scaling coefficient cC
J (n) of the dual-tree

complex wavelet, which formed by its real and imaginary
parts as formulas (19)∼(22), can be obtained by the following
equations:

d
(C)
j (n) � d

Re
j (n) + id

Im
j (n), (23)

c
(C)
J (n) � c

Re
J (n) + ic

Im
J (n). (24)
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Figure 17: *e decomposition procedures of the DTCWT.
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*e reconstruction procedure of the DTCWT is simple.
*e wavelet coefficients and the scaling coefficients could be
inverted as

dj(t) � 2(j−1)/2⎡⎣ 􏽘

∞

n�−∞
d
Re
j (n)Ψh 2j

t− n􏼐 􏼑

+ 􏽘
∞

k�−∞
d
Im
j (n)Ψg 2j

t− k􏼐 􏼑⎤⎦,

(25)

cJ(t) � 2(j−1)/2⎡⎣ 􏽘

∞

n�−∞
c
Re
C (n)∅H 2J

t− n􏼐 􏼑

+ 􏽘
∞

k�−∞
c
Im
J (n)Φg 2J

t− k􏼐 􏼑⎤⎦.

(26)

And the signal s(t) could be expressed as

s(t) � 􏽘

J

j�1
dj(t) + cJ(t). (27)

Note that we can obtain a signal in each subband easily
by setting the wavelet coefficients of other subbands to zero.
When we process the nonstationary signal with a time-
frequency characteristic, such as MI-EEG, we could employ
DTCWT to obtain the expected frequency bands accurately
and to extract their time-frequency feature.
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