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C-reactive protein (CRP) binds to several species of bacterial pathogens including
Streptococcus pneumoniae. Experiments in mice have revealed that one of the
functions of CRP is to protect against pneumococcal infection by binding to
pneumococci and activating the complement system. For protection, however, CRP
must be injected into mice within a few hours of administering pneumococci, that is,
CRP is protective against early-stage infection but not against late-stage infection. It
is assumed that CRP cannot protect if pneumococci got time to recruit complement
inhibitor factor H on their surface to become complement attack-resistant. Since the
conformation of CRP is altered under inflammatory conditions and altered CRP binds
to immobilized factor H also, we hypothesized that in order to protect against late-
stage infection, CRP needed to change its structure and that was not happening
in mice. Accordingly, we engineered CRP molecules (E-CRP) which bind to factor
H on pneumococci but do not bind to factor H on any host cell in the blood. We
found that E-CRP, in cooperation with wild-type CRP, was protective regardless of
the timing of administering E-CRP into mice. We conclude that CRP acts via two
different conformations to execute its anti-pneumococcal function and a model for the
mechanism of action of CRP is proposed. These results suggest that pre-modified CRP,
such as E-CRP, is therapeutically beneficial to decrease bacteremia in pneumococcal
infection. Our findings may also have implications for infections with antibiotic-resistant
pneumococcal strains and for infections with other bacterial species that use host
proteins to evade complement-mediated killing.

Keywords: C-reactive protein, complement, factor H, pneumococcal infection, Streptococcus pneumoniae

INTRODUCTION

C-reactive protein (CRP), whose blood level increases in inflammatory states in humans, binds
to several species of bacterial pathogens, including Streptococcus pneumoniae (1–9). CRP is also a
component of the acute phase response and a critical host defense molecule of the innate immune
system against pneumococcal infection (10, 11). CRP binds to pneumococci by recognizing the
phosphocholine (PCh) molecules present on the pneumococcal cell wall C-polysaccharide (PnC)
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(12). CRP is made of five identical subunits arranged as a cyclic
pentamer (13). Each subunit has a PCh-binding site consisting
of Phe66, Thr76 and Glu81 (13–18). Through the PCh-binding
site, CRP can also interact with phosphoethanolamine (PEt) (17,
18). The binding of CRP to PCh and PEt requires two Ca2+ ions
(13). Once complexed with a PCh-bearing ligand, human CRP
activates the complement system in both human and murine sera
(3, 19–21). The amino acid residues Tyr40 and Glu42 investigated
in the current study are part of the intersubunit contact region of
the CRP pentamer (13–15).

In murine models of pneumococcal infection, human CRP
has been shown to be protective against lethality; however,
the molecular mechanism of anti-pneumococcal action of CRP
remains undefined (18, 21–31). Interestingly, CRP is protective
against pneumococcal infection only when injected 6 h before
to 2 h after administering pneumococci into mice, that is, CRP
is protective against early-stage infection but not against late-
stage infection (24). This 36-year old observation provided us
with an experimental strategy to define the mechanism of anti-
pneumococcal functions of CRP in mice. CRP is protective
against early-stage infection because of the ability of CRP-
pneumococci complexes to activate the complement system
(20, 31). The reason why CRP is not protective against late-
stage pneumococcal infection is not known. It is assumed that
after a few hours of initial infection, pneumococci recruit the
complement inhibitory protein factor H on their surface to
become complement attack-resistant (32–36).

It has been shown that the pentameric conformation of CRP
is altered in a variety of experimental conditions mimicking
an inflammatory milieu and, in its alternate pentameric
conformation, CRP binds to immobilized complement inhibitor
factor H also (37–47). We hypothesize that in order to protect
mice against late-stage infection, a structural change in CRP is
needed, followed by the interaction between structurally altered
CRP and recruited factor H on the pneumococcal surface,
and that was not happening in mice. We further hypothesize
that an exogenously constructed, irreversible and stable CRP
mutant capable of binding to factor H should be able to protect
mice against late-stage infection; such a CRP molecule when
administered into mice would bind to factor H on pneumococci
in vivo and mask the complement inhibitory activity of factor
H (48). Wild-type (WT) CRP should then be able to protect
mice against otherwise complement-resistant pneumococci by
activating the complement system if a CRP molecule which can
cover factor H on pneumococci is present along with WT CRP.

In this study, to test our hypotheses, we engineered CRP (E-
CRP) by site-directed mutagenesis and produced two types of
E-CRP: One, E42Q/F66A/T76Y/E81A, that binds to immobilized
factor H but does not bind to PCh (E-CRP-1) and another,
Y40F/E42Q, that binds to both immobilized factor H and to
PCh (E-CRP-2). We found that both E-CRP-1 and E-CRP-
2 were protective against both early-stage and late-stage

Abbreviations: CRP, C-reactive protein; E-CRP-1, CRP mutant E42Q/F66A/
T76Y/E81A; E-CRP-2, CRP mutant Y40F/E42Q; PCh, phosphocholine; PEt,
phosphoethanolamine; PnC, pneumococcal C-polysaccharide; Pn-broth,
pneumococci cultured in broth; Pn-mice, pneumococci isolated from infected
mice; WT, wild-type.

infection in a murine model of pneumococcal infection. These
findings indicate that CRP functions in two different structural
conformations to fully protect against pneumococcal infection.

MATERIALS AND METHODS

Construction of Mutant CRP cDNAs
The template for construction of the CRP quadruple mutant
E42Q/F66A/T76Y/E81A (E-CRP-1) was a cDNA for the CRP
triple mutant F66A/T76Y/E81A cDNA (substitution of Phe66

with Ala, Thr76 with Tyr, and Glu81 with Ala). Mutagenic
oligonucleotides, 5′-C CAC TTC TAC ACG CAA CTG TCC
TCG ACC-3′ and 5′-GGT CGA GGA CAG TTG CGT GTA
GAA GTG G-3′, to substitute Glu42 with Gln (codons shown
in bold and italicized letters), were designed according to
the sequence of the template cDNA and obtained from
Integrated DNA Technologies. Mutagenesis was conducted using
the QuickChange site-directed mutagenesis kit (Stratagene).
Mutations were verified by nucleotide sequencing, utilizing the
services of the Molecular Biology Core Facility of the university
(Supplementary Figure 1). The construction of cDNAs for CRP
mutants E42Q, F66A/T76Y/E81A and Y40F/E42Q (E-CRP-2) has
been reported earlier (15–18).

Expression and Purification of CRP
CRP mutants were expressed in CHO cells using the ExpiCHO
Expression System (Thermo Fisher Scientific) as described
previously (31). Purification of E-CRP-1 from culture
supernatants involved Ca2+-dependent affinity chromatography
on a PEt-conjugated Sepharose column, followed by ion-
exchange chromatography on a MonoQ column, and gel
filtration on a Superose12 column, as reported previously for
the CRP triple mutant F66A/T76Y/E81A (18). PEt-conjugated
Sepharose was prepared as described previously (18). Briefly,
CHO cell culture media was diluted (1:1) in 0.1 M borate
buffer saline, pH 8.3, containing 3 mM CaCl2, and passed
through the PEt-sepharose column. After collecting the flow-
through and washing the column with the same buffer, bound
E-CRP-1 was eluted with 0.1 M borate buffer saline, pH 8.3,
containing 5 mM EDTA. E-CRP-1 was then subjected to
ion-exchange chromatography and bound E-CRP-1 was eluted
with an NaCl gradient. E-CRP-1 containing fractions were
pooled, concentrated, and further purified by gel filtration.
The gel filtration column was equilibrated and eluted with TBS
(10 mM Tris–HCl, 150 mM NaCl, pH 7.2) containing 5 mM
EDTA. Eluted E-CRP-1 was immediately dialyzed against TBS
containing 2 mM CaCl2, stored at 4◦C, and was used within a
week. WT CRP and all other CRP mutants including E-CRP-2
were purified as described previously (49). The purity of CRP
preparations was confirmed by denaturing 4–20% SDS-PAGE
under reducing conditions.

For in vivo experiments, purified CRP was treated with
Detoxi-Gel Endotoxin Removing Gel (Thermo Fisher Scientific)
according to manufacturer’s instructions. The concentration of
endotoxin in CRP preparations was determined by using the
Limulus Amebocyte Lysate kit QCL-1000 (Lonza).
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Determination of Pentameric Structure
of CRP
The pentameric structure of E-CRP was confirmed by employing
gel filtration and denaturing SDS-PAGE. The gel filtration
column was equilibrated with TBS containing 5 mM EDTA.
E-CRP was injected into the column and eluted with TBS
containing 5 mM EDTA at a flow rate of 0.3 ml/min. Fractions (60
fractions, 250 µl each) were collected and absorbance at 280 nm
measured to locate the elution volume of E-CRP. Gel filtration of
WT CRP was carried out on the same column to determine the
elution volume of pentameric CRP.

Pneumococci (Pn-Broth)
Streptococcus pneumoniae type 3, strain WU2, were made
virulent by sequential i.v. passages in mice, and were stored in
1 ml aliquots at −80◦C in Todd-Hewitt broth containing 0.5%
yeast extract and 10% glycerol, as described previously (30).
For each experiment, a separate 1 ml aliquot of pneumococci
was thawed. Pneumococci were then grown in 50 ml Todd-
Hewitt broth containing 0.5% yeast extract and incubated at 37◦C
with shaking at 125 rpm for 3 h (mid-log phase culture). The
culture was centrifuged at 7,500 rpm for 15 min. The bacterial
pellet was washed and resuspended in 10 ml normal saline and
adjusted the volume until A600 was 0.29 to give a concentration
of 3.5 × 108 cfu/ml (A600 = 1.00 = 1.2 × 109 cfu/ml). This
preparation of pneumococci cultured in broth was called as Pn-
broth. The concentration, purity, and viability of pneumococci
were confirmed by plating on sheep blood agar plates.

PCh-Binding, PEt-Binding, and
Pneumococcus-Binding Assays
Binding activity of CRP for PCh was evaluated by using
pneumococcal C-polysaccharide (PnC, from Statens Serum
Institut) as the ligand, as described previously (29). Briefly,
microtiter wells were coated with PnC in 100 µl TBS, overnight
at 4◦C. The unreacted sites were blocked with TBS containing
0.5% gelatin for 1 h at room temperature. CRP, diluted in TBS
containing 2 mM CaCl2, 0.1% gelatin and 0.02% Tween 20 (TBS-
Ca), was then added in duplicate wells and incubated for 2 h
at 37◦C. After washing the wells with TBS-Ca, bound CRP was
detected by using anti-CRP monoclonal antibody HD2.4 diluted
in TBS-Ca. HRP-conjugated goat anti-mouse IgG diluted in TBS-
Ca was used as the secondary antibody. Color was developed
using ABTS substrate and the OD was read at 405 nm in a
plate reader. Binding activity of CRP for PEt was evaluated
by using biotinylated-PEt as the ligand, exactly as described
previously (18).

Binding activity of CRP for whole pneumococci (broth-grown
or isolated from infected mice) was evaluated as described
previously (18). Briefly, microtiter wells were coated with 107 cfu
of pneumococci overnight at 4◦C. The unreacted sites in the wells
were blocked with TBS containing 0.5% gelatin. CRP, diluted
in TBS-Ca, was then added to the wells for 2 h at 37◦C. After
washing the wells with TBS-Ca, bound CRP was detected by using
rabbit polyclonal anti-human CRP antibody. HRP-conjugated
donkey anti-rabbit IgG was used as the secondary antibody. Color

was developed using ABTS substrate and the OD was read at
405 nm in a plate reader. Binding activity of CRP for whole
pneumococci isolated from infected mice was evaluated both in
the presence and absence of Ca2+.

Isolation of Pneumococci (Pn-Mice)
From Infected Mice
Mice were injected i.v. with 3.5 × 107 cfu of Pn-broth. After
40 h, blood was collected by cardiac puncture, in tubes containing
10% EDTA (1% v/v of blood). Blood was diluted with an equal
volume of normal saline and centrifuged at 2,200 rpm for 2 min.
The supernatant was recovered. The bacterial pellet was washed
four times with normal saline, centrifuged at 2,200 rpm for
2 min after each wash, and continued to recover the supernatant.
All recovered supernatants were then pooled and centrifuged at
11,000 rpm for 5 min. This time the supernatant was discarded,
and the pellet was resuspended in normal saline for immediate
use or resuspended in Todd-Hewitt broth containing 0.5% yeast
extract and 10% glycerol for storage at −80◦C. This preparation
of pneumococci isolated from infected mice was called as Pn-
mice. The concentration, purity, and viability of pneumococci
were confirmed by plating on sheep blood agar plates.

Detection of Factor H on the Surface of
Pn-Mice
Microtiter wells were coated with Pn-mice in TBS (107 cfu)
overnight at 4◦C. The unreacted sites in the wells were
blocked with TBS containing 0.5% gelatin for 45 min at room
temperature. Murine factor H present on the surface of Pn-
mice was detected by using sheep polyclonal anti-mouse factor
H antibody (R&D, AF4999) diluted in TBS-Ca. HRP-conjugated
rabbit anti-sheep IgG (Thermo Fisher Scientific), in TBS-Ca, was
used as the secondary antibody. Color was developed and the
OD405 read in a microtiter plate reader.

Factor H-Binding Assay
The binding activity of CRP for factor H was evaluated by
using both human factor H (Complement Technology) and
murine factor H (R&D), as described previously (46). Briefly,
microtiter wells were coated with 2 µg/ml of factor H in
TBS, overnight at 4◦C. The unreacted sites in the wells were
blocked with TBS containing 0.5% gelatin for 45 min at room
temperature. CRP diluted in TBS-Ca (TBS containing 2 mM
CaCl2, 0.1% gelatin and 0.02% Tween 20) was added in duplicate
wells. After incubating the plates for 2 h at 37◦C, the wells
were washed with TBS-Ca. Polyclonal rabbit anti-human CRP
antibody (1 µg/ml) (EMD Millipore Corp, 235752), diluted in
TBS-Ca, was used to detect bound CRP. HRP-conjugated donkey
anti-rabbit IgG (GE Healthcare), diluted in TBS-Ca, was used as
the secondary antibody. Color was developed and the OD405 read
in a microtiter plate reader.

Clearance of E-CRP From Mouse
Circulation
The clearance rate of E-CRP from the mouse blood was
determined as described previously (18). Briefly, mice were
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injected i.v. with 100 µg of CRP in 100 µl TBS containing 2 mM
CaCl2 through the tail vein. Four to five mice were used for each
CRP species. After 8 h, blood was collected from the tip of the tail
vein at four different time points up to 24 h. The concentration of
CRP in the serum was measured by ELISA. The concentration of
CRP in the serum at the first bleed was plotted as the 100% value.

Repurification of E-CRP From
E-CRP-Spiked Mouse Serum
Purified E-CRP (400 µg) was added to 2 ml C57BL/6 mouse
serum (Innovative Research) and the final volume was made
to 10 ml by adding 0.1 M borate buffered saline, pH 8.3,
containing 3 mM CaCl2. The mixture was incubated for 30 min
at 37◦C. E-CRP was repurified by Ca2+-dependent affinity
chromatography on PEt-Sepharose beads whose capacity to bind
E-CRP was >400 µg. After collecting the flow-through and
washing the column with the same buffer, bound E-CRP was
eluted with 0.1 M borate buffered saline, pH 8.3, containing 5 mM
EDTA. To control the experiment, mouse serum alone (2 ml),
without spiking with E-CRP, was used. The EDTA eluates were
subjected to SDS-PAGE. The concentration of CRP in the EDTA
eluates was measured by ELISA to calculate percent recovery.

Mice
Male C57BL/6J mice (Jackson Laboratories) were brought up and
maintained according to protocols approved by the University
Committee on Animal Care. Mice were 8–10 weeks old when
used in experiments.

Mouse Protection Experiments
Separate mouse protection experiments were performed using
two different preparations of purified WT CRP, E-CRP-1 and
E-CRP-2. The endotoxin content in 25 µg all CRP preparations
was <1.5 endotoxin units. Mice were first injected i.v. with
3.5 × 107 cfu (based on A600) of pneumococci in 100 µl
normal saline. The actual number of pneumococci injected,
based on the plating results obtained on the next day, was
3.53 ± 0.21 × 107 cfu. In the first set of experiments, mice were
injected i.v. with either WT CRP, E-CRP-1 or E-CRP-2, 30 min
after the administration of pneumococci. In the second set of
experiments, mice were injected i.v. with either WT CRP, E-CRP-
1, combination of WT CRP and E-CRP-1 (WT CRP first and, an
hour later, E-CRP-1) or E-CRP-2, 12 h after the administration of
pneumococci. In the third set of experiments, mice were injected
i.v. with either WT CRP or E-CRP-1, four times (6, 12, 24 and
48 h) after the administration of pneumococci. CRP (25 µg) was
injected in 100 µl TBS containing 2 mM CaCl2. The dose of 25 µg
of CRP with 3.5 × 107 cfu bacteria was chosen because, under
these conditions, the protection of mice with WT CRP injected
30 min apart from the administration of pneumococci was same
as reported previously (30). Survival of mice was recorded three
times per day for 7 days. To determine bacteremia (cfu/ml) in the
surviving mice, blood was collected daily for 5 days from the tip of
the tail vein, diluted in normal saline, and plated on sheep blood
agar for colony counting. The bacteremia value for dead mice was

recorded as 109 cfu/ml because mice died when the bacteremia
exceeded 108 cfu/ml.

Statistical Analysis
All experiments were performed three times unless otherwise
mentioned and comparable results were obtained each time.
Results of a representative experiment are shown in the figures
where the raw data (A280 or OD405) were used to plot the curves.
Survival curves were generated using the GraphPad Prism 4
software. To determine p-values for the differences in the survival
curves among various groups, the survival curves were compared
using the software’s Logrank (Mantel-Cox) test. The scatter plots
of the bacteremia data and the median bacteremia value for each
group were generated using the GraphPad Prism 4 software.
Bacteremia values of 0–100 were plotted as 100 and bacteremia
values of >108 were plotted as 109. To determine p-values for
the differences in bacteremia among various groups at each time
point, scatter plots were compared using the software’s Mann-
Whitney test. The software’s Mann-Whitney test included all
the dots in the scatter plots and not the median values for
each time point.

RESULTS

E-CRP-1 and E-CRP-2 Have the Desired
Ligand-Binding Properties
The elution profiles of WT CRP, E-CRP-1 and E-CRP-2 from
the gel filtration column were almost overlapping. Like WT
CRP, both E-CRP-1 and E-CRP-2 eluted at 11 ml (Figure 1A).
SDS-PAGE of purified proteins showed a single band and the
molecular weight of the subunits of both E-CRP-1 and E-CRP-2
was same as WT CRP (Figure 1B). Thus, E-CRP-1 and E-CRP-2
were pentameric.

The PCh-binding ability of E-CRP-1 and E-CRP-2 was
assessed by using two different PCh-containing ligands: PnC
(Figure 2A) and Pn-broth (Figure 2B). Both, WT CRP and
E-CRP-2 bound to both PCh-ligands in a CRP concentration-
dependent manner. The binding of E-CRP-2 to PCh-ligands
was comparable to that of WT CRP. However, as shown, for
equivalent binding (OD405) of WT CRP and E-CRP-1 to either
PnC or Pn-broth, ∼100-times more of E-CRP-1 was required
compared to WT CRP, indicating that the PCh-binding ability of
E-CRP-1 was ∼99% less than that of WT CRP. Thus, E-CRP-1
and E-CRP-2 had the desired PCh-binding activity.

Since E-CRP-1 lost its PCh-binding property, the PCh-affinity
chromatography method could not be used to purify E-CRP-
1. Therefore, the PEt-binding activity of E-CRP-1 was tested
(Figure 2C). E-CRP-1 bound to PEt more efficiently than
WT CRP. The avid binding of E-CRP-1 to PEt facilitated the
purification of E-CRP-1 by affinity chromatography using a PEt-
Sepharose column.

In factor H-binding assays, unlike WT CRP, both E-CRP-
1 and E-CRP-2 bound readily to purified human and murine
factor H immobilized on microtiter wells (Figure 3A). Thus, both
E-CRP-1 and E-CRP-2 had the desired factor H-binding activity.
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FIGURE 1 | E-CRP-1 and E-CRP-2 are pentameric. (A) Elution profiles of E-CRP-1 (left panel) and E-CRP-2 (right panel) from the gel filtration column.
(B) SDS-PAGE of WT CRP (lanes 2, 5), E-CRP-1 (lane 3) and E-CRP-2 (lane 6). A representative of three experiments is shown for each panel.

FIGURE 2 | Binding of CRP to PCh. (A) Binding of WT CRP, E-CRP-1 and E-CRP-2 to PnC immobilized on microtiter wells. (B) Binding of WT CRP, E-CRP-1 and
E-CRP-2 to broth-cultured pneumococci (Pn-broth) immobilized on microtiter wells. (C) Binding of WT CRP and E-CRP-1 to a PEt-ligand immobilized on microtiter
wells. A representative of three experiments is shown for each panel.

Surprisingly, triple mutant CRP, which was not investigated
before for factor H binding (18), also bound to factor H (50).
If it was known earlier that triple mutant CRP, without the
addition of E42Q mutation, would bind to factor H, there would
have been no need to generate quadruple mutant CRP. However,
since the expression of quadruple mutant CRP was better than
triple mutant CRP, we proceeded with quadruple mutant CRP
(E-CRP-1) to test the hypothesis.

Next, we tested whether E-CRP-1 and E-CRP-2 bind to
factor H on pneumococci which have recruited factor H on
their surface. For this purpose, Pn-mice were isolated from
infected mice. We first tested the presence of murine factor H
on pneumococci. As shown (Figure 3B), factor H was present
on Pn-mice but not on Pn-broth. Next, we determined binding
of E-CRP-1 and E-CRP-2 to factor H-coated Pn-mice. As shown
(Figure 3C), WT CRP bound to both Pn-broth and Pn-mice
but only in the presence of Ca2+, suggesting that the binding
of WT CRP to Pn-mice was through PCh. In contrast, E-CRP-
1 and E-CRP-2 bound to Pn-mice in the absence of Ca2+ also,
suggesting that E-CRP-1 and E-CRP-2 bound to a molecule
other than PCh, and that molecule could be factor H recruited

by pneumococci in vivo. However, interestingly, both E-CRP-1
and E-CRP-2 also bound to Pn-broth in EDTA, suggesting that
E-CRP-1 and E-CRP-2 were capable of recognizing and binding
to a pneumococcus’ own surface protein. Thus, E-CRP-1 and
E-CRP-2, but not WT CRP, interacted with pneumococci in a
Ca2+-independent and therefore PCh-independent manner.

Combined data indicated that both E-CRP-1 and E-CRP-2
were pentameric, their overall structure was similar to WT CRP,
and both E-CRP-1 and E-CRP-2 had the desired ligand-binding
properties to test our hypothesis.

Both E-CRP-1 and E-CRP-2 Are Suitable
for in vivo Use
We determined the T1/2 of CRP from mouse circulation. Based
on the data obtained from four to five mice (Figure 4A), the
average T1/2 of WT CRP, E-CRP-1 and E-CRP-2 were 4.9, 8.0 and
7.5 h, respectively. Thus, the clearance of E-CRP-1 and E-CRP-
2 was not markedly faster than that of WT CRP. In another
approach to confirm that E-CRP-1 and E-CRP-2 were free in the
mouse serum, we performed an experiment where E-CRP could
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FIGURE 3 | Binding of CRP to factor H. (A) Binding of WT CRP, E-CRP-1, E-CRP-2 and other CRP mutants to purified human factor H (left panel) and murine factor
H (right panel) immobilized on microtiter wells. (B) Presence of murine factor H on pneumococci isolated from the blood of infected mice (Pn-mice). (C) Binding of
WT CRP, E-CRP-1 and E-CRP-2 to Pn-broth and Pn-mice in the presence and absence of Ca2+. A representative of three experiments is shown for each panel.

FIGURE 4 | E-CRP-1 and E-CRP-2 are suitable for in vivo use. (A) Clearance of WT CRP (left panel), E-CRP-1 (middle panel) and E-CRP-2 (right panel) from mouse
circulation. (B) Repurification of E-CRP-1 and E-CRP-2 from purified E-CRP-1-spiked and E-CRP-2-spiked mouse sera, respectively. SDS-PAGE of repurified
E-CRP-1 and E-CRP-2 is shown. Lane 1, purified E-CRP-1; Lane 2, EDTA eluate from the PEt-affinity chromatography column through which mouse serum
containing E-CRP-1 was passed in the presence of Ca2+; Lane 3, EDTA eluate from the PEt-column through which mouse serum alone was passed. Lane 6, EDTA
eluate from the PCh-affinity chromatography through which mouse serum alone was passed; Lane 7, EDTA eluate from the PCh-column through which mouse
serum containing E-CRP-2 was passed in the presence of Ca2+; Lane 8, purified E-CRP-2.

be repurified from E-CRP-spiked mouse serum (Figure 4B). As
shown (left panel), E-CRP-1 present in the mouse serum bound
to PEt in a Ca2+-dependent manner and could be eluted with
EDTA (lane 2). The recovery of E-CRP-1 was 96%. Besides CRP,

no additional protein bands were found when compared with the
non-specific bands seen with the serum alone control (compare
lanes 2 and 3). Similar results were seen with E-CRP-2 (right
panel). Thus, both E-CRP-1 and E-CRP-2 stayed free in the
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mouse serum, were not sequestered by any other serum protein,
and the mutations did not confer instability to E-CRP-1 and
E-CRP-2 in vivo.

To test the possibility that E-CRP-1 and E-CRP-2 may be
sequestered by cells in the mouse blood, E-CRP-spiked mouse
blood was centrifuged at 8000 rpm for 5 min and the serum
recovered. The amount of E-CRP in the recovered serum, as
determined by ELISA, was the same as the amount of E-CRP
mixed with the blood. These data showed that both E-CRP-1 and
E-CRP-2 were suitable for use in mouse models of infection to
test the hypothesis.

Role of Endogenous Murine CRP in the
Animal Model
As shown in Figure 5, mice were protected, without
administering human CRP, when up to 107 cfu of pneumococci
were injected into mice, suggesting that endogenous murine
WT CRP was sufficient to protect mice from lethality when
bacteremia was relatively lower. Endogenous murine CRP was
not enough to protect mice from lethality when >107 cfu of
pneumococci were injected into mice. These data also suggest
that if mice are administered with, for example, 3.5 × 107 cfu
bacteria in the protection experiments, endogenous murine CRP
can participate in protecting mice from lethality once bacteremia
is lowered to <107 cfu of pneumococci in the animal model
employed in this study.

E-CRP-1 Protects Mice Against
Late-Stage Infection
All the data presented in this section show the combined results
of two separate protection experiments using six to eight mice
in each group in each experiment. Some protection experiments
shown in Figures 6–8 were performed together.

Figure 6A shows the results of experiments in which WT
CRP and E-CRP-1 were injected into mice within 30 min of
administering pneumococci. The median survival time (MST,
the time taken for the death of 50% of mice) for mice injected
with bacteria alone (group A) was 60 h. The MST for mice

FIGURE 5 | The animal model of pneumococcal infection. Survival curves of
mice infected with different doses of pneumococci. The data are combined
from two separate experiments with six to eight mice for each dose of
pneumococci in each experiment.

injected with bacteria and either WT CRP (group B) or E-CRP-
1 (group C) could not be calculated because >50% of mice
survived. WT CRP and E-CRP-1 were not significantly different
in protecting mice from lethality. Increase in survival was due
to decrease in bacteremia (Figures 6B,C). By 44 h, in group
A, median bacteremia increased dramatically, and mice died
once bacteremia reached 109 cfu/ml; however, in groups B
and C, median bacteremia reached only ∼105 cfu/ml and then
decreased dramatically afterward. There was >99% reduction
in bacteremia in both WT CRP-treated and E-CRP-1-treated
mice. Since E-CRP-1 does not bind to PCh, and hence cannot
activate the complement system, these results indicated that the
increased resistance to infection in E-CRP-1-treated mice was
due to combined actions of E-CRP-1 and endogenous mouse WT
CRP. Most likely, E-CRP-1 bound to a protein ligand present
on the pneumococcal surface and, once bacteremia was already
lower, endogenous mouse WT CRP bound to PCh to activate the
complement system to reduce bacteremia further. Since the dose
of injected E-CRP-1 was same as that of WT CRP, it is unlikely
that the protection depended upon the residual PCh-binding
activity of E-CRP-1.

Next, we injected E-CRP-1 into mice 12 h after administering
pneumococci, a time point for CRP injection when WT CRP does
not confer protection (Figure 7A). A gap of 12 h is clinically
significant because all strategies for a sepsis drug have so far
failed in human clinical trials (51, 52). We included WT CRP,
30 min regimen, in all experiments to ensure that the animal
model was comparable from experiment to experiment. The MST
for mice injected with either bacteria alone (group A) or with
bacteria and WT CRP (group B) was 60 h. In contrast, the MST
for mice injected with bacteria and E-CRP-1 (group C) was 90 h
and the MST for mice injected with bacteria and both WT CRP
and E-CRP-1 (group D) was 108 h. In the WT CRP-treated
group, all mice died by 66 h. However, in the E-CRP-1-treated
groups, it took 4 days until 60–70% mice died, and 30–40% mice
survived up to 7 days. As reported previously (24, 29), WT CRP
was not protective. These data again suggested that endogenous
mouse WT CRP participated and that is why E-CRP-1 alone
was not different from the combination of E-CRP-1 and WT
CRP in protecting mice from lethality. In mice receiving E-CRP-
1 (groups C and D), median bacteremia was reduced by ∼99%
as early as 44 h and lower bacteremia was maintained for up to
92 h (Figures 7B,C).

Next, we injected CRP into mice four times, at 6, 12, 24 and
48 h, after administering pneumococci, to determine whether
multiple injections of E-CRP-1 were better than a single injection
at 12 h (Figure 8A). The MST for mice injected with either
bacteria alone (group A) or with bacteria and four doses of WT
CRP (group C) was 60 h. Like a single dose of WT CRP at
12 h, multiple doses of WT CRP were also not protective. In
contrast, the MST for mice injected with bacteria and multiple
doses of E-CRP-1 (group D) was 108 h. In E-CRP-1-treated mice,
median bacteremia was reduced by∼99% as early as 36 h and the
reduction lasted for up to 72 h. There was ∼48 h gain over WT
CRP for bacteremia to reach the deadly levels (Figures 8B,C).

The protective ability of E-CRP-1 when injected at
30 min, 12 h or at multiple time points were compared
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FIGURE 6 | Like WT CRP, E-CRP-1 is also protective against early-stage infection. The data are combined from two separate experiments with six to eight mice in
each group in each experiment. (A) Survival curves. Pneumococci and CRP were injected 30 min apart. The p-values for the differences in the survival curves
between groups A B, A C, and B C were <0.001, <0.001 and 0.43, respectively. (B) Bacteremia. Blood was collected from each surviving mouse shown in A. The
median bacteremia values are plotted. For 36-116 h, the p-values for the differences between groups A B and A C were <0.001. The p-value for the difference
between groups B C was >0.05 at all time points. (C) Scatter plots of the bacteremia data shown in B. The horizontal line in each group of mice represents median
bacteremia.

(Supplementary Figure 2). The injection of E-CRP-1 at 12 h
was found to be as effective as it was when administered
within 30 min. Based on the statistical analyses of the survival
curves and of the scatter plots for bacteremia (Figures 6–8),
no significant difference was found between 30 min and
12 h regimens in either the survival of or bacteremia in both
groups of mice (Supplementary Figures 2A,B). Likewise,
four injections of E-CRP-1 and one injection of E-CRP-1
were equally effective in reducing bacteremia; there was no
significant difference in either the survival of or bacteremia
in these two groups of mice (Supplementary Figures 2C,D).
In this study, mice were injected with E-CRP-1 four times
within 48 h of administering pneumococci. It is possible
that a different regimen for four injections of E-CRP-1 that
improves its availability over the course of the infection, such
as four injections spread over 4 days, would have shown
results different from that used in this study and, therefore,
be more protective than a single injection of E-CRP-1.
Overall, the data indicate that E-CRP-1, unlike WT CRP, is
protective against infection regardless of the time point of
injecting E-CRP-1.

E-CRP-2 Also Protects Mice Against
Late-Stage Infection
The results of protection experiments with E-CRP-2 are shown in
Figure 9. The MST for mice injected with bacteria alone (group
A) was 54 h. The MST for mice injected with E-CRP-2, 12 h
after administering pneumococci (group C), was extended to
132 h. The MST for mice injected with E-CRP-2, 30 min after
administering pneumococci (group B), could not be calculated
because >50% of mice survived, as expected (Figure 9A). There
was >99% reduction in bacteremia even when E-CRP-2 was
given to mice 12 h after administering pneumococci and the
lower bacteremia stayed as such for >96 h (Figures 9B,C). Since
E-CRP-2 binds to PCh, like WT CRP does, we do not know the
involvement of mouse endogenous WT CRP in this case.

DISCUSSION

In this study, two CRP mutants, E-CRP-1 and E-CRP-2, were
employed to investigate the mechanisms of anti-pneumococcal
function of CRP in a mouse model of pneumococcal infection.
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FIGURE 7 | Unlike WT CRP, E-CRP-1 is protective against late-stage infection. The data are combined from two separate experiments with six to eight mice in each
group in each experiment. (A) Survival curves. Pneumococci were injected first; CRP was injected 12 h later. The p-values for the differences in the survival curves
between groups A B, A C, A D, B C, B D and C D were 0.28, <0.01, <0.001, <0.001, <0.001 and 0.31, respectively. (B) Bacteremia. Blood was collected from
each surviving mouse shown in A. The median bacteremia values are plotted. The p-values for the differences between groups A B and C D were >0.05 at all time
points. For 44–92 h, the p-values for the differences between groups B C and B D were <0.01. (C) Scatter plots of the bacteremia data shown in B. The horizontal
line in each group of mice represents median bacteremia.

E-CRP-1 binds to factor H but does not bind to PCh and
E-CRP-2 binds to both factor H and PCh. Our major findings
were: 1. CRP with mutations in either the intersubunit contact
region or in the overlapping PCh-binding and Ca2+-binding
sites binds to immobilized factor H. 2. Unlike WT CRP,
both E-CRP-1 and E-CRP-2 were protective against late-stage
infection. 3. Injecting WT CRP along with E-CRP-1 into
mice did not enhance the protective ability of E-CRP-1. 4.
Multiple injections of E-CRP-1 were not different from a
single injection in protecting mice against infection. 5. Unlike
WT CRP, both E-CRP-1 and E-CRP-2 bound to broth-grown
pneumococci in the absence of Ca2+. Overall, these findings
indicate that a conformationally altered form of CRP capable of
binding to factor H is necessary for protection against late-stage
pneumococcal infection.

We previously reported a triple mutant of CRP,
F66A/T76Y/E81A, which does not bind to PCh and

a single mutant of CRP, E42Q, which binds to factor
H (18, 46). A quadruple mutant of CRP (E-CRP-1),
E42Q/F66A/T76Y/E81A, was constructed in which the
F66A/T76Y/E81A mutations were introduced to abolish
the PCh-binding and the E42Q mutation was added to confer
the factor H-binding ability to mutated CRP. The ability to
bind to PCh was abolished so that the observed effects could
be attributed solely to the factor H-binding ability of E-CRP-1.
While screening a library of CRP mutants for binding to factor
H, we found that Y40F/E42Q CRP (E-CRP-2) bound to factor
H more avidly than E42Q CRP did. That is why, E-CRP-2 was
employed in this study, instead of E42Q CRP, as the molecule
which binds to both PCh and factor H. The mechanism of
interaction between various CRP mutants and immobilized
factor H is currently being investigated in a separate project.

The data indicate that endogenous murine WT CRP also
participated, along with E-CRP-1, in protecting mice against
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FIGURE 8 | One injection of E-CRP-1 was sufficient to protect against late-stage infection. The data are combined from two separate experiments with six to eight
mice in each group in each experiment. (A) Survival curves. CRP was injected four times: 6, 12, 24 and 48 h after injecting pneumococci. The p-values for the
differences in the survival curves between groups A B, A D, B C and C D were <0.001. (B) Bacteremia. Blood was collected from each surviving mouse shown in A.
The median bacteremia values are plotted. The p-value for the difference between groups A C was >0.05 at all-time points. For 36–116 h, the p-value for the
difference between groups B C was <0.001. For 44–116 h, the p-values for the differences between groups B D and C D were <0.05. For 44-116 h, the p-value for
the difference between groups A D was <0.01. (C) Scatter plots of the bacteremia data shown in B. The horizontal line in each group of mice represents median
bacteremia.

infection in our animal model. Both E-CRP-1 (cannot bind
to PCh and hence unable to activate the complement system)
and E-CRP-2 (can bind to PCh and hence able to activate
the complement system) protected mice against late-stage
infection. Since complement activation by CRP-complexes is
necessary for protection (31), endogenous murine CRP must
have participated along with E-CRP-1 in protecting mice against
infection. Involvement of endogenous murine CRP in protection
is also supported by the finding that the addition of human
WT CRP to E-CRP-1 did not change the protective ability of
E-CRP-1. The finding that the outcome of multiple injections
of E-CRP-1 within 48 h of administering pneumococci was
not different from a single injection at 12 h suggested that the
effects of E-CRP-1 lasted for at least 48 h. Overall, the data
indicate that CRP functions in two different conformations:
in the WT conformation to bind to PCh and activate the

complement system and in the altered conformation to bind
to factor H to remove the inhibitory effect of factor H on
complement activation. Experiments employing CRP-deficient
mice are in progress to confirm the participation of endogenous
murine CRP in E-CRP-1-mediated protection against late-
stage infection.

As expected, E-CRP-1 acquired the ability of E42Q CRP
to bind to factor H. Unexpectedly, CRP triple mutant,
F66A/T76Y/E81A, which was not investigated before for factor
H-binding (18), also bound to factor H, without the E42Q
mutation (50). These results were not available till we generated
and tested E-CRP-1 for binding to factor H. Since the expression
of E-CRP-1 cDNA was higher than the expression of the triple
mutant cDNA, we used E-CRP-1 in this study. Previously,
we reported that CRP triple mutant, which does not bind to
PCh, protected mice against infection and we interepreted the
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FIGURE 9 | Like E-CRP-1, E-CRP-2 is also protective against late-stage infection. The data are combined from two separate experiments with six to eight mice in
each group in each experiment. (A) Survival curves. CRP was injected first; pneumococci were injected either 30 min or 12 h later. The p-values for the differences in
the survival curves between groups A C and A B were <0.001 and between groups B C was 0.01. (B) Bacteremia in each surviving mouse shown in A. The median
values of bacteremia are plotted. For 36–116 h, the p-values for the differences between groups A B and A C were <0.001. The p-values for the differences
between groups B C was >0.05 till 60 h and <0.05 after 60 h. (C) Scatter plots of the bacteremia data shown in B. The horizontal line in each group of mice
represents median bacteremia.

data to suggest that CRP protects mice against pneumococcal
infection without binding to pneumococci. Recent findings
that triple mutant CRP can also bind to factor H (50)
and that complement activation is critical for protection (31)
indicate that in previously published experiments employing
CRP triple mutant (18, 30), endogenous murine CRP had also
participated, along with triple mutant CRP, in protecting mice
against infection.

A model for the mechanism of action of E-CRP-1 and
E-CRP-2 in protecting mice against infection is proposed
(Figure 10). During early-stage infection, at a time when
pneumococci have not recruited factor H yet on their surface to
become complement-resistant, WT CRP is sufficient to decrease
bacteremia. WT CRP (human or murine or both) would bind
to PCh on pneumococci, activate the complement system, and
reduce bacteremia. During late-stage infection, pneumococci
recruit factor H and become resistant to WT CRP-activated
complement-mediated killing. E-CRP-1 or E-CRP-2 would
then bind to factor H on pneumococci, enabling complement
activation by WT CRP/E-CRP-2-PCh complexes to proceed,
resulting in the decrease in bacteremia. Thus, during late-stage

infection, two different structural conformations of CRP are
required for protection.

Based on the model for E-CRP-1 and E-CRP-2, we propose
a possible mechanism of action of endogenous CRP in humans
in pneumococcal infection. Pneumococci are usually harbored
in the nasopharynx but can spread to lungs and bloodstream.
From the blood, after evading the attack by the complement
system, pneumococci can spread to multiple other organs causing
septicemia (53–55). Pneumococci release toxic substances
including H2O2, creating a localized inflammatory environment
(56, 57). H2O2 has been found to modify the pentameric
conformation of CRP, and H2O2-treated CRP binds to factor
H (47). The presence of conformationally altered pentameric
CRP has been shown to be one of the features of inflamed
sites (40, 42, 58). The binding of conformationally altered
CRP to factor H on complement-resistant pneumococci would
result in converting pneumococci back to being complement-
sensitive. WT CRP can then bind to PCh on pneumococci
and activate the complement system to attack pneumococci.
In this regard, CRP is similar to serum amyloid A (SAA)
which is another acute phase protein in humans (59). SAA
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FIGURE 10 | A proposed model for the mechanism of action of CRP in pneumococcal infection. moCRP, endogenous mouse WT CRP; hCRP, exogenously
administered human WT CRP.

has recently been shown to exhibit pH-dependent antibacterial
action against Staphylococcus aureus. Both CRP and SAA are
produced not only by hepatocytes but also by a variety of
cells in extrahepatic tissues (59–63). The expression of SAA is
increased in abscesses of S. aureus cutaneous infected mice, and
SAA then binds to bacterial cell surface and disrupts the cell
membrane in acidic conditions (59). Similarly, it is possible that
extrahepatically synthesized CRP may be responsible for the
availability of conformationally altered CRP generated at sites
of inflammation.

The finding that E-CRP-1 and E-CRP-2 bound to broth-
grown pneumococci in the absence of Ca2+ suggests the
involvement of a pneumococcal surface protein in the interaction
between E-CRP-1/E-CRP-2 and pneumococci. Thus, the binding
of E-CRP-1/E-CRP-2 to factor H may not be the only
mechanism for protection against infection; as E-CRP-1/E-CRP-
2 can interact directly with the surface virulence factors to
eliminate their virulence. Since E-CRP-1 and E-CRP-2 bind to
a variety of proteins immobilized on microtiter wells (data not
shown), and not just to factor H, and because pneumococci
also recruit other serum proteins to their surface, such as
complement C1q, ficolins and complement inhibitor C4BP,
our findings may be applicable to infections with a wide
range of pneumococcal strains (64–71). The advantage of our
strategy is that it is dependent on the recruited proteins
and not on the serotype of pneumococci. We speculate that
E-CRP could be therapeutically beneficial for infections with
antibiotic-resistant pneumococcal strains, such as, strain 106
resistant to clindamycin, strain 109 resistant to clarithromycin,
strain 999 resistant to penicillin, and others (72, 73). E-CRP
could also be protective against infections with other bacterial
species that use factor H to evade complement-mediated killing.

For example, Bordetella pertussis, Borrelia burgdorferi, Borrelia
hermsii, Haemophilus influenzae, Neisseria gonorrhoeae, Neisseria
meningitis, Pseudomonas aeruginosa, and Streptococcus suis, are
all known to recruit factor H (74–79). It is possible that CRP
plays a general antibacterial role, as exemplified in studies that
show CRP protecting mice against infection with Salmonella
typhimurium also (80).

We conclude that CRP functions in two different structural
conformations. Our data provide a proof of concept that the
structure of CRP is subtly modified in vivo to execute full anti-
pneumococcal activities. We hypothesize that in individuals in
whom the conformation of CRP remains unchanged, perhaps
due to inappropriate inflammatory conditions around CRP,
CRP is not fully functional during infection. If this hypothesis
is correct, then our findings provide a new strategy to treat
pneumococcal infection by injecting exogenously prepared pre-
modified CRP, such as E-CRP-1 and E-CRP-2. Pre-modified
CRP could also be therapeutically beneficial for infections
with antibiotic-resistant pneumococcal strains and for infections
with other bacterial species that use host proteins to evade
complement-mediated killing.
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