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Summary

Nitrogen (N) cycling microbial communities in marine
sediments are extremely diverse, and it is unknown
whether this diversity reflects extensive functional
redundancy. Sedimentary denitrifiers remove signifi-
cant amounts of N from the coastal ocean and
diazotrophs are typically regarded as inconsequential.
Recently, N fixation has been shown to be a potentially
important source of N in estuarine and continental
shelf sediments. Analysis of expressed genes for
nitrite reductase (nirS) and a nitrogenase subunit
(nifH) was used to identify the likely active denitrifiers
and nitrogen fixers in surface sediments from different
seasons in Narragansett Bay (Rhode Island, USA). The
overall diversity of diazotrophs expressing nifH
decreased along the estuarine gradient from the estua-
rine head to an offshore continental shelf site. Two
groups of sequences related to anaerobic sulphur/iron
reducers and sulphate reducers dominated libraries of
expressed nifH genes. Quantitative polymerase chain
reaction (qPCR) and quantitative reverse transcription
polymerase chain reaction (qRT-PCR) data shows the
highest abundance of both groups at a mid bay site,
and the highest nifH expression at the head of the
estuary, regardless of season. Several potential envi-
ronmental factors, including water temperature,
oxygen concentration and metal contamination, may
influence the abundance and nifH expression of these
two bacterial groups.

Introduction

Estuaries and continental shelves are dynamic ecosys-
tems that receive and process large inputs of nutrients

including those resulting from anthropogenic activities
(Pinckney et al., 2001; Liu et al., 2010). Most of the nitro-
gen (N) is removed by denitrification in sediments in these
coastal regions (Nixon et al., 1996; Seitzinger and Giblin,
1996). Denitrification is an anaerobic microbially mediated
process in which oxidized forms of N are sequentially
reduced to N2 gas. This pathway is responsible for the
major loss of fixed N in coastal margins, which in turn
drives the marine N deficit (Codispoti, 2007).

Biological N fixation, the conversion of N2 gas into
ammonia, is usually regarded as an inconsequential com-
ponent in most estuarine N budgets (Howarth et al.,
1988b; Galloway et al., 2004). However, N fixation is
being considered increasingly important in several
benthic habitats, particularly in areas associated with the
photic zone including photosynthetic microbial mats
(Capone, 1983; Paerl et al., 1996) and sediments veg-
etated by sea grasses (McGlathery et al., 1998; Herbert,
1999) and salt marsh plants (Welsh et al., 1996; Herbert,
1999). Non-vegetated estuarine sediments are generally
considered net sinks for N because of high rates of
denitrification (Nixon et al., 1996; Seitzinger and Giblin,
1996), and it has been thought that N fixation is a negli-
gible process (Capone, 1983). Measurements of N fixa-
tion in the benthic sediments of the temperate estuary
Narragansett Bay (Rhode Island, USA) during the 1970s
show that it accounted for < 1% of the total annual influx of
N into the system (Seitzinger, 1987). Recent measure-
ments of N2 gas flux in sediments from the Narragansett
Bay shows a seasonal switch in N cycling with high rates
of episodic net N2 fixation, challenging the denitrification-
dominated paradigm (Fulweiler et al., 2007).

Functional genes encoding cellular proteins that
mediate biogeochemical transformations not only provide
insight into the ecology of a system, but also can be used
to investigate the diversity of specific groups of micro-
organisms (e.g., denitrifiers and N fixers) in the environ-
ment. The key intermediate step in the denitrification
pathway, reduction of nitrite to nitric oxide, is catalyzed by
the NirS and NirK proteins, two known forms of dissimi-
latory nitrite reductase. Bacteria harbour copies of either
nirS or nirK genes and both have been used as gene
markers used for ecological studies to follow denitrifier
community composition (Braker et al., 2001; Avrahami
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et al., 2003). nirS was targeted for this study as the gene
is preferentially found in marine sediments through poly-
merase chain reaction (PCR)-based methods, while nirK
is detected more readily in soil (Braker et al., 2000). The
study of diazotroph diversity has been largely based on
the phylogenetic analysis of nifH, a reliable genetic
marker for microbes capable of fixing N (Zehr and
McReynolds, 1989; Zehr et al., 2003; Jenkins and Zehr,
2008). The nifH gene encodes the nitrogenase iron
protein component of the conserved nitrogenase protein
complex, an enzyme-catalyzing N fixation in these
microbes (Howard and Rees, 1996).

The capability to denitrify or fix N is distributed through
diverse prokaryotic taxa throughout the bacteria and
archaea (Young, 1992; Zumft, 1997). Several studies in
Chesapeake Bay (Maryland and Virginia, USA) have
sought to understand the mechanisms driving the distri-
bution of denitrifiers (Bulow et al., 2008) and diazotrophs
(Burns et al., 2002; Jenkins et al., 2004; Short et al.,
2004; Steward et al., 2004; Moisander et al., 2007).
These studies have highlighted that diverse communities
of microbes containing the nirS or nifH gene are present in
the estuarine ecosystem, but it remains unclear what
factors control their diversity and what fraction of these
microbes are metabolically active. In this study, we follow
gene expression to identify the likely active groups driving
denitrification and N fixation. Determining the functional
groups can help elucidate the environmental controls
regulating these two processes. Very few studies have
used gene expression as a method to examine biodiver-
sity of the most potentially active N-cycling microbes. Only
a few groups have detected nirS expression (Nogales
et al., 2002; Bulow et al., 2008), and to our knowledge,
there has been only one report of nifH expression in
non-vegetated estuarine sediments (Fulweiler et al.,
2013). Our purpose is to go beyond deoxyribonucleic acid
(DNA) diversity studies, targeting messenger ribonucleic
acid (mRNA) from sediments to understand the diversity
of the assemblages of denitrifiers and N fixers expressing
the nirS and nifH genes respectively.

In this study, we examined the active nirS- and nifH-
transcribing microbial populations to determine the likely
functional denitrifiers and diazotrophs in benthic sediment
samples collected along the estuarine gradient from the
head of Narragansett Bay to an offshore continental shelf
site. One of our aims was to determine if the expressed
nirS and nifH sequence diversity patterns resembled the
unique distribution of denitrifiers and N fixers in Chesa-
peake Bay, in which the diversity of nirS and nifH
decreased along the estuarine gradient from the freshwa-
ter end to the more saline mouth (Moisander et al., 2007;
Bulow et al., 2008). N fixation in bare estuarine sediments
is recently becoming recognized as an important process
occurring in coastal systems (Fulweiler et al., 2007; 2013;

Bertics et al., 2010; 2012a,b), so for the remainder of the
study we focused on quantifying the transcriptional activ-
ity of bacterial populations actively expressing nifH. Pre-
dominant expressed nifH sequences were used to
develop primers and probes for quantitative PCR to follow
the changes in abundance, distribution and nifH expres-
sion of the microbial groups along the estuarine gradient
over an annual temporal cycle. To elucidate how the envi-
ronment potentially impacts the biodiversity of genetically
active diazotrophs, we also considered possible mecha-
nisms (e.g., oxygen, temperature and salinity) driving
shifts in these diazotroph communities in the benthic
sediments.

Results

Expression of functional genes associated with N fixation
(nifH) and denitrification (nirS) were analyzed at four sta-
tions [head of the estuary (PRE), mid bay site (MNB),
Rhode Island Sound (RIS2) and the Mud Patch (MP1)]
along the estuarine gradient of Narragansett Bay to an
offshore continental shelf site over a temporal cycle
(Fig. 1, Supporting Information Table S1). (Refer to
Experimental Procedures for more in-depth collection and
site description.)

Phylogenetic relationships of expressed nirS
and nifH sequences

Expression of nifH was detected at all four sites through-
out the temporal cycle (Fig. 2). The spatial distribution of
nifH mRNA transcripts was variable along the sediment
depth gradient and did not appear to be impacted by
location or season of collection (Fig. 2). nirS expression
was also observed at all four stations, however it was
usually detected in the warmer sampling months (May
through October) (Fig. 2). nirS expression was localized
to the top 2 cm except at station MP1 (Fig. 2). The expres-
sion of nirS was rarely detected without concurrent nifH
expression (Fig. 2).

Phylogenetic analysis of nirS mRNA transcript se-
quences shows that they are distributed throughout
several diverse groups amongst nirS phylogeny (Support-
ing Information Fig. S1, Supporting Information Table S2).
The majority of expressed nirS sequences group close
(> 70% sequence identity) to Azoarcus tolulyticus, a bac-
terium notable for its ability to both denitrify and fix N (Zhou
et al., 1995) (Supporting Information Fig. S1). Both spa-
tially and seasonally, a major shift was not detected in the
distribution of denitrifiers expressing nirS (data not shown).

Phylogenetic analysis of the expressed nifH sequences
from these sites shows that they are restricted to two main
nifH phylogenetic groups [nifH clusters I and III, as
previously defined (Zehr et al., 2003)] and group with
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Fig. 1. Map of Narragansett Bay and the
southern coast of Rhode Island and
Massachusetts. Sampling sites are
represented by black dots.
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Fig. 2. Downcore nifH (closed circles) and nirS (open squares) gene expression in 1 cm intervals in the sediment as a function of increasing
distance from site PRE. Blank spaces indicate that no gene expression was detected. Sampling month is indicated above each profile.
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known sulphate, sulphur and iron-reducing bacteria
(Fig. 3, Supporting Information Table S3). Most of these
nifH expressing groups (designated as NB), with the
exception of NB1, are classified as Mo-dependent
nitrogenase group II by (Raymond et al., 2004). The major-
ity of expressed nifH sequences (61) are within group NB3,
which has as its most closely related (> 94% sequence
identity) cultivated species Pelobacter carbinolicus, an
anaerobe known to reduce sulphur and iron compounds
(Lovley et al., 1995) (Fig. 3). The second most prevalent
expressed nifH sequence groups were NB7 and NB1,
which contained 22 and 20 nifH sequences respectively
(Fig. 3). Group NB7 is most closely related (> 88%
sequence identity) to the sulphate reducers Desulfovibiro
salexigens and Desulfovibrio vulgaris. Group NB1 clus-
tered with > 98% sequence identity to an uncultivated
marine cyanobacterium, [UCYN-A (Tripp et al., 2010)],
recently renamed Candidatus Atelocyanobacterium
thalassa (Thompson et al., 2012) (Fig. 3). Even though the

expressed nifH sequences we recovered are constrained
to a few broad taxonomic groups (clusters I and III), there
is microdiversity (groups NB1–3, NB5 and NB7–11)
detected among the different sites.

Diazotroph diversity shifts along the estuarine gradient

The diversity of microbes expressing nifH in the sediment
decreases along the estuarine gradient, from 10 groups
identified at the head of Narragansett Bay (PRE) to three
groups at RIS2 (Fig. 4). Even though we only sampled
site MP1 once, the trend continues and three groups were
detected to be expressing nifH at the most offshore
station (Fig. 4). Fisher’s alpha diversity index supported
these findings and decreased along estuarine gradient
with the highest values at site PRE and lower values at
the offshore sites RIS2 and MP1 (Supporting Information
Table S4). Principle component analysis (PCA) revealed
that the community composition at site PRE was most
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Fig. 3. Maximum likelihood protein tree of expressed nifH sequences obtained from sediment samples and nifH sequences from cultivated
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dissimilar to site MP1 (Supporting Information Fig. S2).
Group NB3, related to Pelobacter carbinolicus was
detected at all four sites and every time point, except in
January 2011 at site RIS2. The community composition of
the remaining diazotroph shifts from being comprised by
microbial groups with nifH sequences related to those
from several different sulphate and sulphur reducers at
sites PRE and MNB to a group of sequences related to
UCYN-A (Tripp et al., 2010) at the offshore sites (Fig. 4).
Seasonality and depth in the sediment column did not
appear to impact the overall diversity of the bacterial
populations expressing nifH at each site (Supporting
Information Figs S3 and S4).

Quantitative polymerase chain reaction (qPCR)
targeting specific diazotroph groups related to
anaerobic bacteria

Changes in abundance, distribution and levels of expres-
sion of the two dominant microbial groups related to
anaerobic bacteria expressing nifH, groups NB3 and NB7,
were determined by qPCR. The greatest overall abun-
dance of group NB3 was detected at site MNB at 3 to 4 cm
in depth (Fig. 5A and C). Site PRE maintains the next
highest levels of group NB3, with the lowest levels detected
at the offshore sites RIS2 and MP1 (Fig 5A and C). One-
way analysis of variance (ANOVA) tests revealed the
abundance of NB3 differed significantly among sites
[F(3,20) = 20.98, P < 0.0001], with the maximum differ-
ence between site MNB and the other three sites as
determined by the Tukey–Kramer honest significant differ-
ence (HSD) test (Supporting Information Table S5). The
highest nifH expression of group NB3 is observed at the
head of the Bay (site PRE), with a peak from 4 to 6 cm in
depth during June 2010 (Fig. 5B and D). Both the abun-

dance and nifH expression of group NB3 are lowest at the
offshore sites, RIS2 and MP1 (Fig. 5). Group NB7 followed
a similar distribution in the depth profile, with the greatest
abundance between 3 and 6 cm in depth at site MNB
(Fig. 6A and C). The abundance of group NB7 differed
significantly between sites [F(3,20) = 24.1, P < 0.0001],
with the greatest difference between the sites enclosed by
land, PRE and MNB, versus the offshore locations, RIS2
and MP1 (Supporting Information Table S6). Highest nifH
expression by group NB7 was also detected at lower
depths at site PRE, with the exception of peak nifH tran-
scripts detected at the sediment–water interface in
October 2010 (Fig. 6B and D). Even though both groups
NB3 and NB7 established highest abundances at site
MNB, expression of nifH by these groups follows the
estuarine gradient, with maximum levels observed at site
PRE decreasing out to the continental shelf station, MP1
(Fig. 7). The expression of both microbial groups, NB3 and
NB7, is significantly higher at site PRE compared with
the other three sites [F(3,20) = 12.74, P < 0.0001 and
F(3,20) = 48.19, P < 0.0001 respectively] (Supporting
Information Tables S5 and S6). No statistical differences
were detected in abundance or expression of groups NB3
and NB7 over the seasonal cycle or along the depth
gradient at the sampling locations.

Discussion

Recently, benthic sediments from several locations in
upper Narragansett Bay, including sites PRE and MNB,
were shown to exhibit a seasonal switch in N cycling with
high rates of net N fixation (up to −650 μmol N2-N m−2 h−1)
during the summer months (Fulweiler et al., 2007). These
findings challenge the denitrification-dominated paradigm
(Christensen et al., 1987; Hulth et al., 2005), in which N
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fixation was thought to be a negligible process occurring
in coastal systems due to the high input of N into the
system (Howarth et al., 1988a,b) and the process being
repressed by combined N (Postgate, 1982). Numerous
studies have reported the importance of N fixation in
coastal habitats, specifically in photosynthetic microbial
mats and in sediments vegetated by salt marsh plants and
seagrass (e.g., Capone, 1983; Paerl et al., 1996; Welsh
et al., 1996; McGlathery et al., 1998; Herbert, 1999).
However, estuaries are still considered a net sink for N.
More recently, N fixation (Bertics et al., 2010; 2012a) as
well as nifH expression (Fulweiler et al., 2013) has been
detected in non-vegetated, bare sediments. We present
gene expression data distinguishing and targeting the
likely active microbes driving N fixation in a background of
diverse genetic potential in marine sediments (Torsvik
et al., 1996). We hypothesize that anthropogenically influ-
enced changing environmental conditions including
increases in water temperatures (Scavia et al., 2002) and

eutrophication-induced hypoxia (Diaz and Rosenberg,
2008; Zhang et al., 2010) may be driving active hetero-
trophic N fixation in coastal and shelf sediments.

Variable nifH and nirS expression

We detected nifH expression at all sites and time points,
however the expression varied throughout the depth
profile with no apparent seasonal correlation. These
results were not surprising as variable nifH expression
has been recently reported in mesocosm experiments
from sediments collected at site MNB (Fulweiler et al.,
2013) and N fixation has been detected in sediments at
depths > 5 cm (Bertics et al., 2010). nirS expression was
likely only detected in the top 2 cm because in coastal
sediments denitrification is typically coupled to nitrification
(Seitzinger et al., 1984; Nowicki, 1994), an oxygen requir-
ing process and therefore needs to occur in the surface
sediments. nirS expression was detected in deeper

Fig. 5. Downcore abundance and nifH expression of group NB3 (related to P.carbinolicus) enumerated by quantitative PCR in 1 cm intervals
from sediment samples collected at four sites, PRE (red), MNB (green), RIS2 (blue) and MP1 (purple). NB3 (A) abundance and (B) nifH
expression during each sampling month as indicated by different line styles. NB3 (C) average abundance and (D) average nifH expression
over the sampling time points. Graphs are plotted on a log scale and the standard error of the mean indicated by the error bars.
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sediments at site MP1, an area that has not been well
studied. The horizon of observed expression may be
attributed to dissolved oxygen penetrating deeper in
open-ocean sediments (Glud, 2008) and a deeper niche
for bacteria that can use alternatives to oxygen for respi-
ration. Slightly increased rates of direct denitrification,
reduction of water column nitrate that diffuses into the
anoxic sediment, occurring on the continental shelf may
also explain the observed nirS expression deeper in the
most offshore sediments. For example, on the mid-
Atlantic Bight, 9% of N removed was accounted for by
direct denitrification (Laursen and Seitzinger, 2002).

Fluctuating environmental conditions may promote
diazotroph diversity

The diversity of major N cycling organisms, including
denitrifiers, nitrifiers and N fixers, have been well studied
in Chesapeake Bay by detecting the functional genes nirS

(Bulow et al., 2008), amoA (Francis et al., 2003; Ward
et al., 2007) and nifH (Moisander et al., 2007) respec-
tively. In the Cheasapeake Bay, the diversity pattern was
similar for all genes studied, with the greatest diversity
observed at the freshwater head decreasing to the mouth.
We see a similar pattern in Narragansett Bay for the
potentially active N fixers, in which the highest diversity of
microbes expressing nifH is detected at site PRE, near
the head of the Bay and decreasing out to site MP1 on the
continental shelf. Narragansett Bay, like Chesapeake Bay,
exhibits an estuarine gradient with respect to tempera-
ture, salinity and nutrients (Kremer and Nixon, 1978;
Oviatt, 2008). The northernmost area, site PRE, is a
dynamic region with large fluctuations in temperature,
salinity, oxygen and nutrients over a temporal cycle
(Granger, 1994). Because of these wide ranges in envi-
ronmental conditions, microbes need to adapt to a con-
tinuously changing ecosystem. Conversely, the offshore
sites (RIS2 and MP1) remain relatively stable because of

Fig. 6. Downcore abundance and nifH expression of group NB7 (related to D. salexigens and D. vulgaris) enumerated by quantitative PCR in
1 cm intervals from sediment samples collected at four sites, PRE (red), MNB (green), RIS2 (blue) and MP1 (purple). NB7 (A) abundance and
(B) nifH expression during each sampling month as indicated by different line styles. NB7 (C) average abundance and (D) average nifH
expression over the sampling time points. Graphs are plotted on a log scale and the standard error of the mean indicated by the error bars.

3134 S. M. Brown and B. D. Jenkins

© 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd,
Environmental Microbiology, 16, 3128–3142



exchange with the Atlantic Ocean and the deeper waters.
For example, the bottom water at Rhode Island Sound
ranges from 4.5 to 14°C over the course of a year and
salinity remains stable between 29.75 to 33.5 ppt (Codiga
and Ullman, 2010). The intermediate disturbance hypoth-
esis (IDH) suggests that species diversity is maximized
when ecological disturbance is neither too rare nor too
frequent (Connell, 1978; Huston, 1979). At low levels of
disturbance, more competitive organisms will dominate
the ecosystem while at high levels of disturbance, organ-
isms may not be able to adapt to their surroundings. IDH
was originally developed for tropical rainforests and coral
reefs (Connell, 1978), and has recently been applied to
plankton communities (Floder and Sommer, 1999). We
may be detecting the greatest diversity of diazotrophs
expressing nifH at the head of Narragansett Bay because
the microbes are competing to adapt to the intermediate
fluctuating environmental conditions, while at the more
stable offshore sites, the benthos is dominated by the
more competitive microbes.

Dominant active diazotrophs may be influenced by
oxygen, temperature and metals

Sequence analysis revealed that the majority of nifH
mRNAtranscripts grouped with anaerobic bacteria (Fig. 3).
The two dominant anaerobic microbial groups, NB3 and
NB7, were related to the iron/sulphur reducer Pelobacter
carbinolicus, and the sulphate reducers D. salexigens and
D. vulgaris respectively. nifH expression at the offshore
sites, RIS2 and MP1, was dominated by aerobic organisms
related to the unicellular cyanobacterium Candidatus
Atelocyanobacterium thalassa (NB1). Interestingly, the
majority of our nifH ribonucleic acid (RNA) sequences
phylogenetically group with DNA sequences reported from
sediments in coastal California and Eckernförde Bay, Baltic
Sea (Bertics et al., 2010; 2012a). In both studies, nifH
sequence types were identified that were related to various
sulphur- and sulphate-reducing bacteria, including Desul-
fovibrio spp. and Desulfobacter spp., which are microbes
that have been shown to fix N in culture (Sisler and ZoBell,
1951; Widdel, 1987). Based on acetylene reduction and
sulphate reduction inhibition assays, Bertics et al. attrib-
uted the N fixation rates to sulphur- and sulphate-reducing
bacteria (Bertics et al., 2010), corroborating our findings
that these microbes are likely to be driving N fixation in
these sediments. Our expressed nifH sequences also
group with nifH RNA sequences recently reported from
mesocosm experiments with sediment collected at site
MNB (Fulweiler et al., 2013). N fixation by these anaerobic
microbial communities could provide unanticipated inputs
of N into ecosystems already stressed by eutrophication,
including Narragansett Bay. Denitrification may not
balance the anthropogenic inputs of N to the extent previ-
ously believed, and the sediments could instead become a
net source of N exacerbating the nutrient loading into the
system.

To better understand controls on the activity of the
anaerobic diazotrophs, we followed the dominant anaero-
bic nifH-expressing groups, NB3 and NB7. Both microbial
groups are more abundant and have increased nifH
expression in the sediment at sites PRE and MNB in
upper Narragansett Bay compared with the offshores
sites (Fig. 7). Within Narragansett Bay, environmental
conditions may be shifting to those that promote the
increased proliferation and activity of these N fixing anaer-
obes. During the summer of 2006 when high rates of net
N fixation were recorded at sites PRE and MNB (Fulweiler
et al., 2007), there were several bouts of widespread
hypoxia that severely impacted regions of upper Narra-
gansett Bay (Codiga et al., 2009). For the last several
decades, episodic hypoxia has been documented in Nar-
ragansett Bay (Oviatt et al., 1984; Bergondo et al., 2005;
Deacutis et al., 2006; Melrose et al., 2007; Deacutis,
2008; Saarman et al., 2008). The severity of hypoxia

Fig. 7. NB3 (closed circles) and NB7 (open circles) (A) abundance
and (B) nifH expression integrated over depth and sampling time at
the four sites as a function of increasing distance from site PRE.
Graphs are plotted on a log scale and the standard error of the
mean indicated by the error bars.

Active nitrogen fixers in coastal marine sediments 3135

© 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd,
Environmental Microbiology, 16, 3128–3142



generally decreases in intensity with distance from site
PRE, in the Providence River Estuary, following the north–
south gradient of nutrients, phytoplankton and freshwater
influence (Oviatt et al., 2002; Prell et al., 2004; Melrose
et al., 2007; Deacutis, 2008; Oviatt, 2008; Saarman et al.,
2008). The occurrence of these low-oxygen events may
be stimulating the growth and activity of groups NB3 and
NB7. We observed the highest bulk expression of nifH at
site PRE, which is an area that usually experiences
severe hypoxia during the summer months (Saarman,
2002). In some years, hypoxia can reach as far south as
site MNB (Deacutis et al., 2006; Melrose et al., 2007).
Anoxic or hypoxic conditions have not been reported for
waters in Rhode Island and Block Island Sounds. Perhaps
these persistent hypoxic conditions in Narragansett Bay
are selecting for the proliferation of anaerobic sulphur/iron
and sulphate reducers over time.

Along with dissolved oxygen concentrations, tempera-
ture may be another key driver of growth and activities of
NB3 and NB7 as these groups are related to mesophilic
anaerobes. We detected the highest nifH expression
along the entire depth profile during the summer months
when the water temperature was the warmest (18°C) at
site PRE. The water temperatures in Narragansett Bay
can reach up to 24°C during the summer (Kremer and
Nixon, 1978). Bottom water temperature at site RIS2
during July 2010 was 13°C and at site MP1 during August
2011 only reached 8°C. We detect the lowest abundance
and nifH expression of NB3 and NB7 at sites RIS2 and
MP1, so the offshore regions may not provide an optimal
temperature range for these microbial populations.

Narragansett Bay waters also exhibit a strong north to
south gradient with regard to several environmental
factors, including temperature, salinity, nutrients and phy-
toplankton (Kremer and Nixon, 1978; Oviatt, 2008). This
gradient is also observed in the sediment. For example,
both organic carbon and metal concentrations, such as
iron, decrease along the estuarine gradient (King et al.,
1995; Nixon, 1995; Murray et al., 2007). Several of the
potentially active N fixers are related to heterotrophic
anaerobes that have the ability to also reduce iron, includ-
ing Pelobacter carbinolicus (Nealson and Saffarini, 1994;
Lovley et al., 1995). The energy gained from respiring
iron, a fairly energy-yielding electron acceptor, and con-
suming organic carbon may be promoting the growth and
activity of these diazotrophs in upper Narragansett Bay
sediments.

From our study, it is more difficult to conclude whether
there is greater N fixation potential in offshore sediments.
Prior to the measured net N fixation rates during the
summer of 2006, sediments in Narragansett Bay, includ-
ing sites PRE and MNB, were shown to be dominated by
denitrification (Seitzinger et al., 1984; Fulweiler et al.,
2007). Offshore sediments continue to be a sink for N as

recent measurements of net sediment denitrification rates
at several locations off the coast of southern Rhode
Island, including RIS2, ranged from 20 to 75 μmol
N2-N m−2 h−1 (Heiss et al., 2012) and were not significantly
different between sites or over a temporal cycle. These
measurements are within the range of values reported
from nearby continental shelf areas, including the Mid-
Atlantic Bight and South Atlantic Bight (Devol, 1991;
Devol et al., 1997). The gradient and conditions in upper
Narragansett Bay may be more optimal for growth and
activity of groups NB3 and NB7, while offshore sediments
may not provide an appropriate niche for these microbes
to thrive.

Conclusion

Benthic N-cycling processes are influenced by changes in
environmental conditions, including temperature, dis-
solved oxygen concentrations, salinity and organic-matter
loading. Climate change is predicted to increase seawater
temperatures (Scavia et al., 2002) and exacerbate
eutrophication-driven hypoxia (Diaz and Rosenberg,
2008; Zhang et al., 2010). Since the 1960s, the number of
hypoxic zones has approximately doubled each decade
(Diaz and Rosenberg, 2008) and these expanding low-
oxygen events have the potential to perturb the function-
ing of the N cycle in estuarine ecosystems. Narragansett
Bay, like many coastal ecosystems, is exposed to
elevated water temperatures and exhibits seasonal
hypoxia (Diaz and Rosenberg, 2008; Zhang et al., 2010).
Microbes related to iron/sulphur and sulphate reducers
that express nifH are highly abundant and have increased
levels of nifH mRNA transcripts in Narragansett Bay sedi-
ments compared with the offshore sites. N fixation by
these anaerobic micro-organisms in coastal sediments
could provide unanticipated inputs of N into environments
already stressed by eutrophication, significantly altering
the N cycle in unprecedented ways.

Experimental procedures

Study sites

We sampled for sediment at four sites in southern New
England coastal waters from May 2010 to August 2011. Sites
PRE (41°46.7′, 71°22.8′) and MNB (41°35.3′, 71°22.4′) are
located within the temperate estuary, Narragansett Bay,
Rhode Island. The offshore sites, RIS2 (41°17.1′, 71°18.2′)
and MP1 (40°26.1′, 70°28.9′), are located in Rhode Island
Sound and on the continental shelf 110 km south of Cape
Cod, Massachusetts respectively. Sites PRE and MNB were
sampled in June and October 2010 and January 2011. Site
RIS2 was sampled in May, July and October 2010 and
January 2011. The most offshore site, MP1, was only
sampled in August 2011 (Fig. 1, Supporting Information
Table S1).
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Field methods

Intact sediment cores (10 cm inner diameter and 30.5 cm
long) were collected at site PRE using a 5 m pull corer and at
site MNB by scuba divers. At sites RIS2 and MP1, sediment
cores were collected using a box corer (0.25 m2) and pre-
mounted polyvinyl chloride (PVC) cores. All cores were trans-
ported to and stored in the dark at field bottom-water
temperature in a walk-in environmental chamber at the
Graduate School of Oceanography at the University of Rhode
Island. The cores were left uncapped with air gently bubbling
through the overlying water for about 8–12 h prior to net N2

flux incubations (Heiss et al., 2012) and subsequent molecu-
lar analysis.

Subsampling and nucleic acid extractions

The cores were subsampled using a 60 ml syringe. The
subcores were flash frozen in liquid N2 and sectioned into
1 cm segments from the sediment water interface to 6 cm in
depth. The frozen sediment cross-sections were cut up to
yield 0.25 g and 0.5 g of wet sediment for DNA and RNA
isolation respectively. Total DNA was extracted using the MO
Bio Powersoil DNA Isolation Kit (Carlsbad, CA, USA) and
quantified using Invitrogen’s Qubit dsDNA HS Assay Kit. All
DNA samples were diluted to a concentration of 1 ng μl−1 for
qPCR analysis. Total RNA was extracted using the MO Bio
Powersoil RNA Isolation Kit (Carlsbad, CA, USA); however,
the kit was designed to extract RNA from 2 g of soil. To
accommodate this reduction in reaction scale, a quarter of
the volumes of the Bead, SR1, SR2, SR3 and SR4 solutions
and phenol-chloroform-isoamyl alcohol were used. After the
RNA precipitation step, the dried pellet was resuspended with
100 μl of nuclease-free water, 10 μl of 10X TURBO DNase
buffer and 1 μl of TURBO DNase from the TURBO DNase-
free Kit (Ambion, Austin, TX, USA) and incubated at 37°C for
30 min. To inactivate the reaction, 10 μl of DNase Inactivation
reagent was added and incubated at room temperature for
5 min. The remaining RNA purification steps were carried out
using the RNeasy Mini Kit (Qiagen, Valencia, CA, USA)
according to the manufacturer’s instructions. Total RNA was
quantified using Invitrogen’s Qubit RNA Assay Kit and all
RNA samples were diluted to 4 ng μl−1. Complementary DNA
(cDNA) copies of RNA were generated with Invitrogen’s
SuperScript First-Strand Synthesis System for reverse tran-
scription polymerase chain reaction. For all samples, 8 μl of
DNase-treated RNA at a concentration of 4 ng μl−1 was added
to the reaction. Each reaction was primed with 1 μl of 2 μM
outer reverse primers for both our genes of interest, nifH3
and nirS6R (Supporting Information Tables S7 and S8). After
the reverse transcriptase was added, the mixture was incu-
bated at 50°C for 50 min. All the other steps followed the
instructions of the manufacturer. For every sample, we also
included controls that did not contain reverse transcriptase to
confirm there was no DNA contamination in the subsequent
PCR amplification.

Functional gene sequence analysis

The nifH gene from environmental cDNA was isolated using
nested PCR with degenerate outer primers nifH4-nifH3 and

inner primers nifH1-nifH2 (Supporting Information Table S7).
Both rounds of PCR consisted of an initial denaturation step
of 2 min at 94°C, cycling steps that included: a denaturation
step of 30 s at 94°C, an annealing step of 30 s at 50°C, and
an extension step of 1 min at 72°C. All reactions had a final
extension step of 7 min at 72°C. First round reactions had 25
cycles and the second round reactions had 30 cycles (Zehr
and McReynolds, 1989; Kirshtein et al., 1991). nirS was
amplified using the primer pair nirS1F-nirS6R (Supporting
Information Table S8). After a 2 min initial denaturation step
94°C, a touchdown PCR was performed that consisted of a
denaturation step of 30 s at 94°C, an annealing step of 30 s,
and an extension step of 1 min at 72°C. During the first 11
cycles, the annealing temperature decreased 0.5°C every
cycle starting at 56°C. For the last 25 cycles, the annealing
temperature was 54°C. A final extension step was performed
for 7 min at 72°C (Braker et al., 1998; 2000).

After amplification, the PCR products were loaded on to a
1% agarose (wt/vol) TAE gel. Bands of the correct size were
purified using the QIAquick Gel Extraction Kit according to the
manufacturer’s protocol (Qiagen Valencia, CA, USA).
The purified products were cloned into pGEM-T vectors
(Promega, Madison, WI, USA), transformed into JM109
Escherichia coli competent cells (Zymo Research, Irvine, CA,
USA) and identified by blue–white screening. The plasmids
were purified using the QIAprep Spin Miniprep Kit (Qiagen)
and sequenced on the Applied Biosystems 3130 xl Genetic
Analyzer (Applied Biosystems, Foster City, CA, USA) at the RI
Genomic Sequencing Center at the University of Rhode
Island. For every expressed nifH and nirS amplicon we col-
lected 4–5 sequences. The total number of nifH clones per site
was 30 for site PRE, 31 for site MNB, 34 for site RIS2 and 19
for site MP1. The total number of nirS clones per site was 5 for
site PRE, 10 for site MNB, 15 for site RIS2 and 4 for site MP1.

Expressed environmental nifH sequences from sites PRE,
MNB, RIS2 and MP1, accession numbers KF285284-
KF285397, were combined with nifH sequences (23) from
closely related cultivated species in GenBank (Benson et al.,
2009) as determined by top BLASTN hits (Altschul et al., 1990).
Translated NifH protein sequences were aligned using the
multiple sequence alignment tool, MUSCLE (Edgar, 2004)
within the GENEIOUS software package. A nifH maximum like-
lihood tree of aligned protein sequences was constructed in
GENEIOUS (Biomatters, Auckland, New Zealand) using the
PhyML plugin (Guindon et al., 2010) with 1000 bootstrap
replicates.

A nirS database was created by collecting all the nirS
sequences from the National Center for Biotechnology Infor-
mation (NCBI) (Benson et al., 2009) and importing the
GenBank files into ARB (Ludwig et al., 2004). Translated NirS
protein sequences were aligned using the multiple sequence
alignment tool, MUSCLE (Edgar, 2004) within the GENEIOUS

software package. A NirS protein maximum likelihood tree
including the Narragansett Bay expressed nirS sequences,
accession numbers KF285398-KF285429 was constructed
using the PhyML algorithm in GENEIOUS with 1000 bootstrap
replicates.

Quantitative real-time PCR

qPCR was conducted on all environmental DNA and cDNA
samples using the Roche’s LightCycler 480 Probes Master
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Mix and were analyzed using Stratagene’s Mx3005 qPCR
System. Sets of degenerate qPCR primers and dual-labeled
TaqMan probes (Sigma-Aldrich Corporation, The Woodlands,
TX, USA) were designed to target the nifH gene specifically
related to nifH groups NB3 and NB7 (Fig. 3, Supporting Infor-
mation Table S9). Both probes were labelled with a
fluorophore FAM (Sigma-Aldrich Corporation, The Wood-
lands, TX, USA) on the 5′ end and BHQ1 quencher (Sigma-
Aldrich Corporation) on the 3′ end. A standard curve was
produced with triplicate 10-fold dilution series ranging from
1 ng to 1 ag of linearized plasmid containing a sequenced
nifH clone from group NB3 and NB7 respectively. The qPCR
reactions consisted of 10 μl of the Roche LightCycler 480
Probes Master mix (Roche), 5.7 μl of water, 2 μl of a primers/
probe mix (at concentrations of 0.4 μM and 0.2 μM respec-
tively), and 0.3 μl of Stratagene Brilliant II qPCR reference
dye (ROX; Agilent Technologies, Santa Clara, CA, USA). A
saturation test was used to determine the optimal concentra-
tion of DNA and cDNA template going into the reaction. The
optimal amount was 2 μl of 1 ng μl−1 DNA sample or 2 μl of
1.5 ng μl−1 cDNA sample to be added to the reaction, totalling
20 μl. The qPCR thermocycling conditions were identical for
both targeted groups, except for the annealing temperature: 1
cycle of 95°C for 10 min, followed by 45 cycles of 95°C for
30 s and 60°C (NB3) or 55°C (NB7) for 1 min. The standard
curve was used to determine groups NB3 and NB7’s absolute
nifH gene copy or transcript copy number in the environmen-
tal samples. The efficiency of the qPCR assays targeting
groups NB3 and NB7 was 93% and 101%, respectively, and
the detection limit was 1 × 10−8 ng.

Statistical analyses

Diversity index. Fisher’s alpha diversity index was calculated
using EstimateS 9.1.0 to compare diversity of nifH expressing
groups between sites (Colwell, 2013). The following param-
eters were used: 100 runs (number of randomizations),
extrapolate rarefaction covers by a factor of three, and esti-
mate at every sample. The alpha mean values are reported.

PCA. Sequences recovered for each season at a given site
were summed and normalized to the number of total
sequences recovered. PCA were performed using the R and
ADE4TKGUI software packages (Thioulouse et al., 1997). Box
plots were generated using R. Pairwise compositional simi-
larity between samples was performed in EstimateS 9.1.0
(Colwell, 2013) and Bray–Curtis values supported PCA
results.

Analysis of variance. One-way ANOVA tests were conducted
using JMP 10.0.2 to determine statistically significant differ-
ences among samples for qPCR and quantitative reverse
transcription polymerase chain reaction. If the P value was
deemed significant (< 0.05), a Tukey–Kramer HSD post-hoc
test was performed to distinguish statistical significance
between samples compared.
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Supporting information

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Fig. S1. Maximum likelihood protein tree of expressed nirS
sequences from sediment samples and nirS sequences
observed from cultured organisms. The number inside the
group indicates the number of total sequences within
the grouping. Supporting Information Table S3 describes
all sequences within a collapsed group. Bootstrap
values (1000 replicates) > 50% are shown at respective
nodes.
Fig. S2. Principal component analysis (PCA) of the relative
distribution of OTUs, as designated by the nifH Maximum
Likelihood tree (Fig. 3), for each site and season. These
results are supported by Bray–Curtis values. The highest
value (0.909) is for RIS2 Oct and RIS2 July, while the lowest
value (0.087) is for PRE Oct and MP1 August.
Fig. S3. Percent of total expressed nifH sequences per
site as a function increasing distance from site PRE
separated by month sampled. Each color represents a culti-
vated species our environmental expressed sequences are
related to as depicted in the nifH Maximum Likelihood tree
(Fig. 3).
Fig. S4. Percent of total expressed nifH sequences per site
as a function of depth and increasing distance from site PRE.
Each color represents a cultivated species our environmental
expressed sequences are related to as depicted in the nifH
Maximum Likelihood tree (Fig. 3).
Table S1. Coordinates and water column depth of study
sites with bottom water temperature during collection.
Table S2. List of nirS sequences (GenBank accession
numbers) from mRNA in this study, closely related cultivated
species and uncultivated species (Bulow et al., 2008) con-
tained within groups NB1-NB9 (Supporting Information
Fig. S1). Numbers in the parentheses indicate number of
sequences collected at that time point.
Table S3. List of nifH sequences (GenBank accession
numbers) from mRNA in this study and closely related culti-
vated species contained within groups NB1-NB3, NB5 and
NB7-NB11 (Fig. 3).
Table S4. Fisher’s alpha diversity index comparing diversity
of nifH expressing groups, as designated by the nifH
Maximum Likelihood tree (Fig. 3), between sites and month
sampled.
Table S5. Statistical analyses of group NB3 abundance and
expression using one-way ANOVA and Tukey–Kramer HSD
post-hoc tests. F ratio (df1 = degrees of freedom between
groups, df2 = degrees of freedom within groups) and P values
are denoted. Asterisk (*) indicates statistically significant P
values (< 0.05). If the one-way ANOVA test revealed statistical
significance between samples compared, a Tukey–Kramer
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HSD post-hoc test was performed. Only the resultswitha P
value < 0.05 are included underneath the corresponding
ANOVA test.
Table S6. Statistical analyses of group NB7 abundance and
expression using one-way ANOVA and Tukey–Kramer HSD
post-hoc tests. F ratio (df1 = degrees of freedom between
groups, df2 = degrees of freedom within groups) and P
valuesare denoted. Asterisk (*) indicates statistically signifi-
cant P values (< 0.05). If the one-way ANOVA test revealed
statistical significance between samples compared, a Tukey–
Kramer HSD post-hoc test was performed. Only the results
with a P value < 0.05 are included underneath the corre-
sponding ANOVA test.
Table S7. Primers and cycling conditions for PCR of nifH
from environmental samples. All thermocycles included an

initial 2 min denaturation at 94°C, and a final extension for
7 min at 72°C. *The outer reverse primer nifH3 was used to
prime the RT reactions. **First round cycling conditions for
RT products included 3 additional initial cycles with annealing
steps at 44°C, 46°C, and 48°C.
Table S8. Primers and cycling conditions for PCR of nirS
from environmental samples. All thermocycles included an
initial 2 min denaturation at 94°C, and a final extension for
7 min at 72°C. *For the first 11 cycles the temperature
decreased 0.5°C every cycle.
Table S9. Primers, probe and cycling conditions for quanti-
tative PCR targeting the nifH gene of group NB3 and NB7
(Fig. 3). The quantitative PCR cycling conditions for both
target groups included an initial 10 min denaturation at 95°C
followed by 45 cycles of 95°C for 30 s and 60°C for 1 min.
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