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Fear extinction correlates with increased infralimbic (IL) neuronal excitability. Since small
conductance Ca2+-dependent K+ (SK) channels modulate neuronal excitability and certain
types of learning and memory, pharmacological modulation of SK channels could be used
to regulate IL excitability and fear extinction. To test this, we first determined the effect
of blocking SK channels with apamin on the intrinsic excitability of IL pyramidal neurons in
brain slices. In whole-cell patch-clamp recordings, apamin increased the number of spikes
evoked by a depolarizing current pulse, increased the firing frequency, and reduced the
fast afterhyperpolarizing potential (fAHP) indicating that blockade of SK channels could be
used to enhance the intrinsic excitability of IL neurons. Next, we assessed whether SK
channels in IL regulate extinction of conditioned fear by infusing apamin into IL of fear
conditioned rats prior to extinction training. Apamin infusion did not affect conditioned
freezing at the beginning of the extinction session or within-session extinction. However,
the following day, apamin-infused rats showed significantly less conditioned freezing. To
further examine the importance of SK channels in IL in fear extinction, we assessed the
effect of the SK channel activator DCEBIO on IL neuronal excitability and fear extinction.
Activation of SK channels with DCEBIO decreased the number of evoked spikes, reduced
the firing frequency, and enhanced the fAHP of IL neurons. Infusion of DCEBIO into
IL prior to fear extinction impaired recall of fear extinction without affecting acquisition
of extinction. Taken together, these findings suggest that SK channels are involved in
regulating IL excitability and extinction-induced plasticity. Therefore, SK channels are a
potential target for the development of new pharmacological treatments to facilitate
extinction in patients suffering from anxiety disorders.
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INTRODUCTION
Effective retrieval of the fear extinction memory is associated
with increased activation of neurons in a specific subdivision of
the medial prefrontal cortex (mPFC), the infralimbic (IL) cortex
(Milad and Quirk, 2002, 2012; Holmes et al., 2012). Consolida-
tion of fear extinction memory depends on NMDA, muscarinic,
and metabotropic glutamate type 5 receptor (mGluR5) activation
in IL (Burgos-Robles et al., 2007; Fontanez-Nuin et al., 2011;
Santini et al., 2012). After extinction, IL neurons respond more
robustly to the conditioned stimulus in part due to intrinsic
(Santini et al., 2008) and synaptic (Pattwell et al., 2012; Sepulveda-
Orengo et al., 2013) plasticity in IL induced by mGluR5 activation
(Sepulveda-Orengo et al., 2013).

NMDA, muscarinic, and mGluR5 receptors generate increases
in intracellular calcium that can activate small conductance
Ca2+-dependent K+ (SK) channels (Sourdet et al., 2003; Faber
et al., 2005; Ngo-Anh et al., 2005; Gulledge et al., 2007)
resulting in reduced neuronal excitability and afterhyperpolar-
ization potentials (AHP; Bond et al., 2005). Secondary to their
calcium-dependence and localization near NMDA receptors, SK

channels shunt NMDA receptor currents and can prevent the
induction of synaptic plasticity needed for memory formation
(Ngo-Anh et al., 2005; Hammond et al., 2006; Stackman et al.,
2008; McKay et al., 2012). In addition, the excitatory effects
of mGluR5 and muscarinic receptor activation are blunted by
the activation of SK channels through the release of intracel-
lular calcium (Power and Sah, 2008; El-Hassar et al., 2011).
Reducing SK channel activity enhances synaptic plasticity in hip-
pocampal slices and facilitates hippocampal-dependent learning
and memory (Stackman et al., 2002; Hammond et al., 2006).
Therefore, inhibiting SK channels in IL could enhance the exci-
tatory actions of NMDA, muscarinic and mGluR5 receptors
and facilitate fear extinction-induced plasticity and extinction
memory.

To test whether SK channels can modify IL neuronal excitabil-
ity and fear extinction memory, we examined the effects of
blocking and stimulating SK channels on the intrinsic excitability
of IL pyramidal neurons using whole-cell patch-clamp recordings
and on fear extinction using intra-IL infusions. In this study,
we demonstrate that blocking SK channels enhances IL intrinsic
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excitability and long-term retention of extinction memory while
stimulating SK channels has the opposite effects.

MATERIALS AND METHODS
SUBJECTS
The procedures were approved by the Institutional Animal Care
and Use Committee (IACUC) of the Ponce School of Medicine
and Health Sciences in compliance with NIH guidelines for the
care and use of laboratory animals. Male Sprague-Dawley rats
(25–30 days postnatal) were transported from the Ponce School
of Medicine and Health Sciences colony to a satellite facility
where they were housed in transparent polyethylene cages inside a
negative-pressure Biobubble (Colorado Clean Room, Ft. Collins,
CO). Rats were maintained on a 12/12 h light/dark schedule
with free access to food (standard laboratory rat chow) and
water.

SLICE PREPARATION AND RECORDINGS
Naive rats (P30) were deeply anesthetized with pentobarbital
(150 mg/kg), and were perfused through the heart with ice cold
high sucrose solution: 252 mM sucrose, 2 mM KCl, 1.25 mM
NaH2PO4, 3 mM MgSO4, 26 mM NaHCO3, 20 mM glucose and
1 mM CaCl2. Brains were quickly removed and placed in ice cold
artificial cerebral spinal fluid (ACSF) containing 126 mM NaCl,
3 mM KCl, 1.25 mM NaH2PO4, 1 mM MgSO4, 26 mM NaHCO3,
20 mM glucose and 2 mM CaCl2 and bubbled with 95% O2 and
5% CO2. Coronal slices of the mPFC were cut at a thickness of
300 µm with a Vibratome 1000 Plus (Vibratome, St. Louis, MO).
Slices were incubated at room temperature in ACSF for at least
an hour prior to experiments. The NMDA receptor blocker MK-
801 (10 µM) was added during the incubation of slices to increase
neuronal survival (Schurr et al., 1995).

Slices were transferred to a submersion recording chamber and
perfused at 2–3 mL/min with room temperature ACSF. Neurons
were visualized with infrared video microscopy using a 40x water
immersion objective on an upright E600FN microscope (Nikon
Instruments, Melville, NY). Whole-cell recordings were done with
glass pipettes with a resistance of 3–5 MΩ when filled with an
internal solution containing KCl (20), Kgluconate (115), HEPES
(10), sodium phosphocreatine (10), biocytin (10), ATP (2) and
GTP (3); pH was adjusted to 7.3 with KOH (290 mOsm).

Whole-cell current-clamp recordings were obtained from
the soma of mPFC pyramidal neurons located in layers II/III
and V of IL. Cells were held in current-clamp mode at −60 mV
and action potential discharges in response to the injection of
depolarizing current pulses were recorded with a patch-clamp
amplifier (MultiClamp 700A, Axon Instruments, Union City,
CA). Recordings were filtered at 4 kHz, digitized at 10 kHz,
and saved to computer using pCLAMP9 (Axon Instruments,
Union City, CA). Membrane potentials were not corrected for the
junction potential of 9 mV. The input resistance was measured
from a 5 mV, 50 ms depolarizing pulse in voltage-clamp mode. To
measure SK currents, IL neurons were held in voltage-clamp at a
holding potential of−50 mV and an 800 ms depolarizing pulse to
0 mV was used to evoke an outward current. Tetrodotoxin (1 µM)
and tetraethylammonium (1 mM) were included in the bath to
block voltage-gated Na+ channels and some voltage-gated K+

channels, respectively. The internal solution for voltage-clamp
recordings contained (in mM): KCl (12), Kgluconate (130),
HEPES (10), sodium phosphocreatine (10), biocytin (5), ATP (2)
and GTP (0.3); pH was adjusted to 7.3 with KOH and sucrose
was added to adjust osmolarity to 300 mOsm.

MORPHOLOGICAL ANALYSIS
Biocytin (5 mM) was included in the recording solution
to label the neurons for post hoc morphological identifica-
tion of IL pyramidal neurons. At the end of the electro-
physiological recordings, the slices were fixed overnight in
4% paraformaldehyde. Neurons were subsequently visualized
with a standard advidin-biotin peroxidase procedure (Vectastain
ABC kit, Vector Laboratories, Burlingame, CA) as previously
described (Porter et al., 2001) and visualized with brightfield
microscopy.

BEHAVIORAL APPARATUS
Rats were fear conditioned, extinguished and tested in a chamber
of 25 × 29 × 28 cm with aluminum and Plexiglas walls (Coul-
bourn Inst., Allentown, PA). The floor consisted of stainless steel
bars that could be electrified to deliver a mild shock. A speaker
was mounted on the outside wall and illumination was provided
by a single overhead light. The chamber was situated inside a
sound-attenuating box (Med Associates, Burlington, VT) with a
ventilating fan, which produced an ambient noise level of 60 dB.
The conditioned stimulus (CS) was a 4 kHz tone with duration of
30 s and an intensity of 80 dB. The unconditioned stimulus (US)
was a 0.4 mA scrambled footshock, 0.5 s in duration, which co-
terminated with the tone during the conditioning phase. Between
sessions, floor trays and shock bars were cleaned with soapy water
and the chamber walls were wiped with a damp cloth. Behavior
was recorded with digital video cameras (Micro Video Products,
Ontario, Canada).

SURGERY
Rats were anesthetized with ketamine and xylazine (10 ml/100 gr)
and placed in a stereotaxic apparatus. After anesthesia, the skin
was retracted and holes were drilled in the skull. Rats were
implanted with a single 26 gauge stainless-steel guide cannula
(Plastics One, Roanoke, VA) in the mPFC as described previously
(Santini et al., 2004). Stereotaxic coordinates aiming towards the
infralimbic cortex were 2.8 mm anterior, 1.0 mm lateral, and
4.1 mm ventral from bregma (Paxinos and Watson, 1986), with
the cannula angled 11◦ toward the midline in the coronal plane.
Rats were allowed 7 days to recover from surgery.

DRUGS AND INFUSION PROCEDURE
Ten minutes before extinction training, apamin (10 µM,
Ascent Scientific, USA) or 5,6-Dichloro-1-ethyl-1,3-dihydro-2H-
benzimidazol-2-one (DCEBIO, 1 mM, Tocris Bioscience, USA)
were infused into the mPFC. Apamin was dissolved in artificial
cerebrospinal fluid and DCEBIO was dissolved in 10% DMSO.
For the infusions, cannula-dummies were removed from guide
cannulas and replaced with 33 gauge injectors, which were con-
nected by polyethylene tubing (PE-20; Small Parts Inc., Miami

Frontiers in Behavioral Neuroscience www.frontiersin.org March 2014 | Volume 8 | Article 96 | 2

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Criado-Marrero et al. Fear regulation and SK channels in IL

Lakes, FL) to 5 µl syringes mounted in an infusion pump (Har-
vard Apparatus, Holliston, MA). Drugs were infused at a rate of
0.5 µl/min for 1 min.

BEHAVIORAL PROCEDURE
On day 1, rats (approximately P30) received 3 tone-shock pairings
(Conditioning phase). After matching for equivalent levels of
freezing conditioned rats were divided into the vehicle group
(Veh) and the drug group (apamin or DCEBIO). On day 2, rats
were infused with vehicle or drug followed by either 8 or 15
tone-alone trials (Extinction phase). Rats infused with apamin
were exposed to eight tones to induce a partial extinction, since
we expected apamin to enhance extinction. Rats that received
DCEBIO infusions received 15 tone trials to induce a more
complete extinction, since we anticipated that DCEBIO would
impair extinction. On day 3, rats received two tone-alone tri-
als in the same chamber to test for recall of extinction (Test
phase).

STATISTICAL ANALYSIS
The percent of time spent freezing (Blanchard and Blanchard,
1972) was used as a measure of conditioned fear. Freezing is
the cessation of all movements except respiration. The total time
spent freezing during the 30 s tone was scored from videotape
with a digital stopwatch by observers blinded with respect to
experimental group. The electrophysiological data were analyzed
using Clampfit (Axon Instruments, Union City, CA). Student’s
t-test or one-way ANOVA (STATISTICA, Statsoft, Tulsa, OK)
were used to analyze the behavioral and electrophysiological data.
Following a significant main effect, post-hoc tests were performed
with Tukey honest significant difference (HSD) tests. Values are
reported as the mean± the standard error of the mean (S.E.M.).

RESULTS
BLOCKADE OF SK CHANNELS INCREASED THE NUMBER OF EVOKED
SPIKES AND BURST FIRING IN IL PYRAMIDAL NEURONS
First, we examined whether SK channels modulate the excitability
of IL neurons by assessing the effect of the SK channel blocker,
apamin, on the intrinsic excitability of IL pyramidal neurons
using whole-cell patch-clamp recordings in coronal slices of
the mPFC. Neuronal excitability was measured as the number
of spikes evoked by depolarizing current steps and the first
inter-spike interval (ISI). Figure 1A shows that bath perfusion of
apamin (100 nM) blocks the AHP current (IAHP) in IL pyramidal
neurons (0.04% of baseline, t = 5.28, df = 2, p = 0.03). As
shown in Figures 1B–E, apamin caused a persistent increase in
the number of spikes evoked by a constant depolarizing current
pulse (124% of baseline, n = 5, t = 4.24, df = 4, p = 0.01) and
a decrease in the first ISI (35% of baseline, n = 5, t = 5.28,
df = 4, p = 0.006). These results indicate that blocking SK
channels increases the intrinsic excitability and burst firing of
IL pyramidal neurons. The resting membrane potential and
the input resistance were not affected by apamin indicating a
lack of open SK channels at the resting membrane potential
and suggesting that apamin preferentially affects active neurons
(Figure 1E). Consistent with a previous study (Gu et al.,
2008), apamin did not reduce the medium afterhyperpolarizing

potential (mAHP) measured as the peak of the AHP at the end
of the depolarizing pulse (Figures 1B, E). However, apamin
did reduce the fast afterhyperpolarizing potential (fAHP; 77%
of baseline, n = 6, t = 3.98, df = 5, p = 0.01) which was
measured as the peak AHP between the second and third spike
subtracted from the threshold potential for spike initiation
(Figures 1B, E).

BLOCKADE OF SK CHANNELS FACILITATED EXTINCTION RECALL
After showing that blocking SK channels enhances IL neu-
ronal excitability in slices, we tested whether blocking SK chan-
nels in IL could facilitate extinction of conditioned fear. Rats
were fear conditioned with three tone-shock pairings on day 1
(Figure 2A). Both groups showed similar levels of freezing to the
last tone of conditioning (apamin 88%, vehicle 93%, t = 0.59,
df = 16, p = 0.56). The next day, rats received intra-IL infu-
sions of apamin (10 µM; n = 11) or vehicle (n = 7) prior
to extinction. Both groups showed similar levels of freezing
to the first tone of extinction (apamin 78%, saline 87%, t =
0.82, df = 16, p = 0.42) indicating that apamin did not affect
recall of the conditioned fear. Both groups also acquired similar
levels of extinction. A repeated-measures ANOVA across the
extinction trials of day 2 showed no trial by group interaction
(F(7,112) = 0.66, p = 0.70) indicating that apamin did not sig-
nificantly affect acquisition of extinction. However, on day 3,
the rats that received the intra-IL infusion of apamin showed
reduced fear expression (mean freezing day 3, apamin 49%,
saline 79%; t = 2.12, df = 16, p = 0.05), indicating that SK
channel blockade in IL facilitates the recall of extinction memory
(Figures 2B–C).

STIMULATION OF SK CHANNELS REDUCED THE NUMBER OF EVOKED
SPIKES AND BURST FIRING IN IL PYRAMIDAL NEURONS
Next, we tested whether stimulation of SK channels with the
SK channel activator DCEBIO (Pedarzani et al., 2005) depresses
the intrinsic excitability of IL neurons. Consistent with previ-
ous findings (Pedarzani et al., 2005), DCEBIO enhanced the
IAHP in IL neurons (Figure 3A). Recording action potentials
in response to an injected current pulse showed that DCEBIO
(30 µM) decreased the number of evoked spikes in IL pyramidal
neurons (45% of baseline, n = 5, t = 5.67, df = 4, p = 0.005;
Figures 3B–C). Figure 3D shows that DCEBIO also increased
the first ISI (262% of baseline, n = 5, t = 2.77, df = 4, p =
0.05) indicating that SK channels reduce bursting in IL neurons.
DCEBIO also increased the fAHP (125% of baseline, n = 5, t =
5.35, df = 4, p = 0.006). As with apamin, DCEBIO did not
affect the resting membrane potential, input resistance, or mAHP
(Figures 3B, E).

STIMULATION OF SK CHANNELS IN IL IMPAIRED RECALL OF FEAR
EXTINCTION
Since blocking SK channels in IL enhanced recall of extinction
memory, we hypothesized that stimulation of these channels
would impair extinction recall. To test this, we examined the
effect of infusing DCEBIO (1 mM) into IL on fear extinction.
Rats received fear conditioning consisting of three tone-shock
pairings, and 24 h later they were exposed to 15 tone-alone
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FIGURE 1 | Blockade of SK channels with apamin increases the
intrinsic excitability of IL pyramidal neurons. (A) Voltage-clamp
recordings showing that bath application of the SK channel antagonist
apamin (100 nM) blocked the IAHP. (B) Traces showing the number of spikes
evoked by a current pulse during baseline and following the application of
apamin. Inserts below show the overlapping fAHPs, following the second

spike, and the mAHPs from the same traces. (C–D) Time courses showing
that apamin (red area) persistently increased of the number of spikes and
decreased the first ISI, consistent with enhanced bursting in IL neurons. (E)
Summary of the effects of apamin on spike count, ISI, resting membrane
potential (Emem), input resistance (Rinput), mAHP, and fAHP. n = 5;
* p < 0.05.

FIGURE 2 | Infusion of apamin into IL prior to extinction training
facilitated extinction recall. (A) Freezing to the tone during fear conditioning
and extinction for vehicle-infused rats (n = 7) and rats infused with apamin
(n = 11) into IL. Arrow indicates the time of the infusion. (B) Average freezing

to two test tones on day 3. Apamin-infused rats showed reduced fear
expression on day 3, consistent with enhanced recall of extinction memory.
(C) White dots vehicle group (VEH) and red dots (apamin) represent the
cannula placements for infusions.

extinction trials 10 min after an intra-IL infusion of DCEBIO
(n = 12) or vehicle (n = 12). As shown in Figure 4A, both
groups were matched for similar levels of freezing to the last
conditioning tone (DCEBIO 72% freezing, vehicle 68% freez-
ing, t = 0.46, df = 22, p = 0.65). The next day, both groups
showed similar levels of freezing to the first tone of extinction
(DCEBIO 70%, saline 72%, t = 0.18, df = 22, p = 0.86) indi-
cating that DCEBIO did not affect recall of the conditioned

fear. Infusion of DCEIO also did not affect acquisition of
extinction. A repeated-measures ANOVA across the extinction
trials of day 2 found no trial by group interaction (F(14,308) =
1.04, p = 0.41). However, the next day DCEBIO-infused rats
showed enhanced fear expression (DCEBIO 81% vs. vehicle 49%
freezing; t = 2.99, df = 22, p = 0.007), indicating that activa-
tion of SK channels in IL impaired recall of extinction memory
(Figures 4B–C).
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FIGURE 3 | Stimulation of SK channels with DCEBIO reduced the
intrinsic excitability of IL pyramidal neurons. (A) Voltage-clamp
recordings showing that bath application of the SK channel agonist
DCEBIO (30 µM) enhanced the IAHP. (B) Traces showing the number
of spikes evoked by a current pulse during baseline and perfusion of
DCEBIO. Inserts below show the overlapping fAHPs, following the

second spike, and the mAHPs from the same traces. (C–D) Time
courses showing that application of DCEBIO (blue area) decreased
the number of evoked spikes and increased the first ISI, consistent
with reduced bursting in IL. (E) Summary of the effects of DCEBIO
on spike count, ISI, Emem, Rinput, mAHP, and fAHP. n = 5;
* p < 0.05.

FIGURE 4 | Infusion of DCEBIO into IL prior to extinction impaired
extinction recall. (A) Freezing to the tone for vehicle-infused rats (n =
12) and rats infused with DCEBIO (n = 12) into IL. Arrow indicates the
time of the infusions. (B) Average freezing to two test tones on day 3.

DCEBIO-infused rats showed enhanced fear expression on day 3,
consistent with impaired recall of extinction memory. (C) White dots
(VEH) and blue dots (DCEBIO) represent the cannula placements for
infusions.

DISCUSSION
Despite an increased understanding of the role of SK channels
in the process of memory formation (Kuiper et al., 2012), no
previous study has examined whether SK channels are involved
in extinction of conditioned fear. In this study, we examined
the effect of SK channel blockade and activation on IL intrinsic
excitability and recall of extinction memory. Our findings show
that blocking SK channels with apamin enhances the intrinsic

excitability of IL pyramidal neurons. In addition, rats infused with
apamin directly into IL prior fear extinction training showed facil-
itated extinction recall. Conversely, stimulation of SK channels
with DCEBIO depressed the intrinsic excitability of IL pyramidal
neurons and infusion of DCEBIO into IL prior to fear extinction
impaired extinction recall. Together our findings suggest that SK
channels in IL modulate the neuronal plasticity required to form
a long-term extinction memory.
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SK channels could modulate extinction by reducing NMDA
signaling in IL. Recall of fear extinction is impaired by blocking
NMDA receptors in IL during extinction training (Burgos-Robles
et al., 2007) indicating that the formation of extinction memory
requires NMDA receptor-dependent plasticity in IL. Calcium
influx through NMDA receptors activates SK channels which
reduce the duration of NMDA-mediated depolarization and cal-
cium influx into dendritic spines (Ngo-Anh et al., 2005) and
can, thereby, impair synaptic integration and NMDA receptor-
dependent synaptic plasticity (Stackman et al., 2002). Therefore,
apamin could enhance consolidation of the extinction memory
by relieving this brake on NMDA-dependent synaptic plasticity.
In support of this hypothesis, apamin enhances NMDA currents
in pyramidal neurons in the mPFC (Faber, 2010).

Blocking SK channels could also enhance fear extinction
memory by increasing signaling via mGluR5 and muscarinic
receptors in IL which also contribute to the consolidation of
fear extinction memory (Fontanez-Nuin et al., 2011; Santini
et al., 2012; Sepulveda-Orengo et al., 2013). Both mGluR5 and
muscarinic receptors induce the production of inositol 1, 4, 5-
trisphosphate which releases intracellular calcium to activate SK
channels (Gulledge and Kawaguchi, 2007; Hagenston et al., 2008;
El-Hassar et al., 2011; Clements et al., 2013). The activation of SK
channels on dendritic spines suppresses synaptic currents and cal-
cium signaling to reduce synaptic plasticity (Giessel and Sabatini,
2010). Therefore, apamin could facilitate extinction memory by
enhancing mGluR5 or muscarinic receptor-mediated plasticity in
IL.

Apamin enhanced spike firing without affecting the resting
membrane potential suggesting that apamin would primarily
affect actively firing neurons such as those responding to the
tone CS during extinction training (Milad and Quirk, 2002;
Holmes et al., 2012). The increased neuronal firing would allow
for stronger Hebbian plasticity (Cooper, 2005) and increase the
probability that these neurons would form part of the circuit
consolidating the extinction memory (Zhou et al., 2009). In sup-
port of this possibility, apamin enhanced recall of fear extinction
without affecting fear expression or extinction learning suggesting
that apamin enhanced extinction recall primarily by facilitating
consolidation of extinction. Consistent with our findings, sys-
temic activation of SK channels does not affect fear expression
suggesting that SK channels in other structures also do not modu-
late fear expression (Atchley et al., 2012). In contrast to the effects
of apamin, blocking M-type K+ channels depolarized IL neu-
rons and reduced fear expression at the beginning of extinction
training (Santini and Porter, 2010) suggesting that different K+
channels in IL regulate fear expression and extinction plasticity.
However this relationship may be altered by stress, since systemic
activation of SK channels reduces conditioned fear expression
after repeated stress (Atchley et al., 2012).

Our findings expand the growing literature showing that SK
channels regulate various types of learning and memory (Kuiper
et al., 2012). Blocking SK channels enhances hippocampal-
dependent spatial, object recognition, and contextual fear
memory (Stackman et al., 2002; Vick et al., 2010) and prefrontal-
dependent spatial working memory (Brennan et al., 2008).
Furthermore, overexpression or pharmacological activation of

SK channels impairs hippocampal- and amygdala-dependent
learning and memory (Blank et al., 2003; Hammond et al., 2006;
McKay et al., 2012). Thus SK channels appear to be key regulators
of memory consolidation.

To overcome the extinction-deficits seen in post-traumatic
stress disorder (PTSD) patients (Milad et al., 2009), there is con-
siderable interest in developing compounds that enhance NMDA
receptor signaling to facilitate extinction memory (Davis, 2011).
One compound designed to enhance NMDA receptor signaling,
D-cycloserine (Walker et al., 2002), has shown promise in improv-
ing PTSD symptoms (de Kleine et al., 2012; Difede et al., 2014).
Given their potential for potentiating NMDA receptor activity, SK
channel inhibitors present a new alternative that could be used in
combination with D-cycloserine to increase the effectiveness of
behavioral therapies for patients suffering from anxiety disorders
such as PTSD. Since blocking SK channels systemically could
increase fear by activating fear promoting structures such as the
prelimbic cortex and amygdala (Peters et al., 2009; Mahan and
Ressler, 2012; Marek et al., 2013), future studies will need to
determine the net affect of systemic SK channel antagonists on
fear extinction.
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