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Editorial

Artificial Intelligence for clinical decision support in Critical Care,
required and accelerated by COVID-19

Artificial Intelligence (AI) is transforming medical practice and
precision medicine in Intensive Care Unit (ICU) [1]. The adoption of
AI in healthcare began with the development of expert systems in
the early seventies. Such systems have been utilised for centralised
monitoring (e.g., tele-ICU), automated surveillance (e.g., VAEs,
sepsis), and most recently to help with digital contact tracing amid
the COVID-19 pandemic.

The current pandemic is accelerating the need to take
advantage of AI to make real time clinical and operational
decisions, wisely integrating the vast amount of heterogeneous
data and emerging knowledge generated in the critical care
environment [1]. Safe, effective, efficient, and ethical clinical
management of COVID-19 patients in ICUs urgently requires
bringing AI capabilities to the bedside.

Prior to COVID-19, up to 20 million people annually required
ICU admission and mechanical ventilation (MV) [2]. The burden for
critical care services has risen exponentially in response to the
COVID-19 pandemic [3]. Facing this ‘‘new reality’’, ICUs and
emergency departments (EDs) need to be re-designed. For
instance, creative ways of accommodating frequent ventilator
adjustments while reducing the risk of exposure to health care
workers need to be found (HCWs) [4]. AI, big data, and machine
learning can help health care systems respond to these unprec-
edented challenges. If appropriately designed and deployed, AI can
allow for early diagnosis (e.g. computer-aided methods to help
radiologists identify COVID-19 specific lesions in chest X-rays),
distance monitoring, and can assist the clinical decision-making
process, and improve efficiency.

Predictive analytics can be used to estimate the probability of
either presenting (diagnostic models) or developing a particular
disease or outcome (prognostic models) [1]. Diagnostic models have
been proposed in a variety of clinical situations including early
detection or stratification of sepsis [5], bacterial and viral
infections (e.g., COVID-19) [5], and delirium in the ICU [5], as
well as pulmonary embolism in primary care [6]. Prognostic models

have focused on predicting ICU-related mortality [7], infections
(e.g., positive blood culture, MRSA) [5], responses to treatments [5],
antibiotic resistance [5], asynchronies during assisted ventilation
[8], prolonged MV [9], extubation failure [10], and death in
influenza [11], COVID-19 [12,13], and community-acquired
pneumonia [14]. Best performances were observed in models that

[1]. Indeed, such information would substantially improve
prediction performance [15].

Beyond predicting specific outcomes, one should expect
advances in the direction of predicting the entire temporal
evolution of a patient. Techniques such as structured output
prediction or latent embedding have been successfully used both
in the ICU and elsewhere [16,17]. This approach can be used for
developing personalised patient management and treatment
plans, based on the success on previous patients with similar
prognosis.

AI and machine learning (ML) have largely been applied to the
data collected since the beginning of the COVID-19 pandemic.
Traditional epidemic models have described the spreading of a
contagious disease in a population using differential equations.
Most recently, AI has been used to predict COVID-19 incidence and
evaluate the impact of mitigating measures such as population
confinement and social distancing [18]. Geolocated critical care
demand prediction, optimal hospital resource planning, and
intelligent patient flow management with decision support
algorithms can also be achieved by integrating real time clinical
data with population statistics and health interventions. Comput-
er-assisted detection systems can be used for early identification,
grading, and monitoring of infectious and non-infectious lung
diseases. Interestingly, they can also be used to distinguish viral
pneumonia from bacterial pneumonia [19]. Most recently,
however, ML techniques have focused on detecting COVID-19
infections in chest X-rays and CT scans [20,21]. Overall, sensitivity
of CT scan has ranged from 57–100% for symptomatic and 46–100%
for asymptomatic COVID-19 patients [21].

The worldwide shortage of personal protective equipment has
promoted the utilisation of robotic technologies to minimise
human-to-human contacts and the workload of health care
workers. A robotic telepresence is seen as a natural successor to
telemedicine. Robots have also been used to automate and scale up
testing capabilities, with rapid prototyping, development, and
validation of automated clinical diagnostic tests for COVID-19
[21]. Robot-assisted rehabilitation has been shown to be more
effective than conventional therapy alone to improve functional
recovery in critically ill patients, whereas the effectiveness of
robot-assisted endovascular/intravenous catheterisation and tra-
cheal intubation, for instance, are under investigation [22–24].
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lternatives to traditional microbiological diagnostics. Commer-
ially available electronic nose sensors have been developed to
iagnose ventilator-associated pneumonia (with and without
seudomonas aeruginosa) [25]. Using several ML algorithms, a
igh diagnostic accuracy has been detected therein. In the future,
etecting, tracing, and managing new viral outbreaks will require
eploying inexpensive and ubiquitous sensor networks. Intelligent
iosensors may be become part of our smart cities and buildings,

ntegrated in our environment, air, sewage, and waste manage-
ent systems. Wearable personal biosensors will monitor our

odies while synthetic molecular biosensors will be part of our
issues and cells.

Engineering biology capabilities are exponentially accelerating
s DNA/RNA reading and writing costs rapidly approach zero.
very mutation of COVID-19 has been sequenced and synthesised

n record time, and many regions in the world are beginning to
ntegrate WGS human data with EHR systems for personalised

edicine diagnostics and treatment [26]; research projects are
ow correlating genomic biomarkers with infection severity and
rognostic treatment efficacy [27,28]. ML allows searching

ibraries of available drugs and known molecules, accelerates
ffective vaccine and treatment development, enables digital
odelling and testing, and engineering antibodies. Furthermore,

y sharing information and using standards, synbio factories are
ble to locally manufacture physical biomolecules designed
lsewhere.

Assessment tools for AI and robotics need to be further
eveloped [29] and the standardisation of data and semantics
oding, integration, and usability have to be further improved. In
ddition, signal processing and thus, signal quality control at the
edside have to be developed [1]. Better human interpretability,
xplainability and traceability of ML predictions and AI decisions
re also required. While ML capabilities will be progressively
mbedded in every physical system in the ICUs, from sensors to
edical devices to clinical and operational information systems, it

s important and urgent to address the need of developing new AI
anagement structures in our health systems, like the Clinical AI
epartment [30], that play an essential role in the implementation,
tilisation and enhancement of the infrastructures that underlie AI
olutions. Human-AI cooperation in ICUs is a growing must, which
s accelerated and needed to treat COVID-19 and the next
andemics patients. Currently, due to poor interoperability
etween platforms, legal barriers and questions of data reliability,
nly a small fraction of the clinical data generated in the ICUs are
ccessible for research [1].
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