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Abstract: In this work, we report the magnetocaloric effect (MCE) for an electron interacting with an
antidot, under the effect of an Aharonov-Bohm flux (AB-flux) subjected to a parabolic confinement
potential. We use the Bogachek and Landman model, which additionally allows the study of quantum
dots with Fock-Darwin energy levels for vanishing antidot radius and AB-flux. We find that AB-flux
strongly controls the oscillatory behaviour of the MCE, thus acting as a control parameter for the
cooling or heating of the magnetocaloric effect. We propose a way to detect AB-flux by measuring
temperature differences.
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1. Introduction

From a fundamental point of view, the magnetocaloric effect (MCE) consists of the temperature
variation of a material due to the change of a magnetic field to which it is subjected [1–7]. Nowadays
the research of the MCE effect reawakens a strong interest in the scientific community again [8–38].
We highlight the works associated with high-temperature caloric materials [21], antiferromagnetic
and ferromagnetic interactions [8,15,29,30], heavy lanthanides [31], Fe-Rh alloys [32], among others.
In particular, our interest lies in the oscillations of the MCE due the possibility of a wider range
of technological applications. In this direction, Reis et al. [33–38], describe the oscillations of the
magnetocaloric effect in diamagnetic systems (specially in graphene) that can be potentially applied in
the construction of magnetic sensors.

In physical terms, the MCE is closely linked to the behaviour of the total entropy (S) since there
is a connection between the temperature changes that a system experiences together with entropy
variations. In this context, in a recent work [39], the study of the degeneracy role in the Landau problem
shows a very interesting behaviour for the magnetic field along an isoentropic stroke compared with
the calculation in his absence. The low-temperature response of the entropy in the Landau problem,
only proportional to the amplitude of the external magnetic field, leads to a work where MCE for
this problem was being reported, including the case for an electron (with an intrinsic spin) trapped in
a quantum dot. Besides, nowadays it is physically possible to confine electrons in two dimensions
(2D). For instance, quantum confinement can be achieved in semiconductor heterojunctions, such
as GaAs and AlGaAs. At room temperature, the bandgap of GaAs is 1.43 eV while it is 1.79 eV for
AlxGa1−x As (x = 0.3). Thus, the electrons in GaAs are confined in a 1-D potential well of length
L in the z-direction. Therefore, electrons are trapped in 2D space, where a magnetic field along
z-axis can be applied [40]. A natural extension of the work [41] corresponds to the study of the
magnetocaloric response for an ensemble of antidots. In simple words, an antidot is a potential hill
inaccessible to 2D electrons [42–47]. The advances in technology allow these systems to work even
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below T = 1 K in temperature [48–51]. The model used is the one proposed by Bogachek and Landman
model [52], that constitutes a combination of repulsive potential (U(r) ∝ r−2) and attractive potential
(U(r) ∝ r2) leaving the electron confined in a finite region of space. Therefore, we investigated a
confined electron in a ring topology in the presence of a uniform external magnetic field and subjected
to an Aharonov-Bohm flux in the middle of the ring, as shown in Figure 1. In particular, we show that
the Aharonov-Bohm flux can be detected by measuring the magnetocaloric effect.

Figure 1. Pictorial representation of an antidot, with an electron trapped in a ring structure subjected
to an uniform magnetic field, plus an Aharonov-Bohm flux in the middle of the ring, depicted as an
infinite solenoid producing a magnetic field confined inside it.

2. Model

Let us consider a system given by an electron in the presence of an antidot with an Aharonov-Bohm
flux (ΦAB) and an external magnetic field B, described by the Bogachek and Landman model. The
Hamiltonian which describes the system is given by

Ĥ =
1

2m∗
(p + eA)2 + UAD(r), (1)

where m∗ is the effective electron mass, A is the total vector potential, and the term UAD(r) given by

UAD(r) =
ζ

r2 , (2)

corresponds to a repulsive potential describing the effect of the antidot on the electron. The constant ζ

is related to the chemical potential µ and the effective radius of the antidot r0 given by the relation

µ =
ζ

r2
0

. (3)

The total vector potential involves two terms, A = A1 + A2, where A1 is related to the external
magnetic field B = ∇×A1, and A2 describes the additional magnetic flux ΦAB inside the antidot. For
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the case of an external perpendicular magnetic field along the z direction, B = ẑB, leads to energy
levels for the confined electron

Enm = h̄ωc

n +

[
(m + α)2 + a2

]2
+ (m + α) + 1

2

 , (4)

where, ωc =
eB
m∗ is the cyclotron frequency, n, m are the radial and magnetic quantum numbers and

a2 = 2m∗ζ
h̄2 = 2m∗µ

h̄2 r2
0 = k2

Fr2
0, is a constant proportional to antidot radius (r0), in which kF is the Fermi

wave vector of the electron. The values reported for a are located in the region of 0 ≤ a ≤ 10 in the
original research [52]. The parameter α is defined in the form α = ΦAB

Φ0
, where Φ0 = h

2e is the magnetic
flux quantum. Notice that when the parameter α = 0 and a = 0, the energy levels of Equation (4), take
the usual form of the Landau energy levels in cylindrical coordinates. The Landau levels of energy are
strongly degenerate for all negative values of m, but the inclusion of the antidot repulsive potential in
the form of Equation (2), causes the energy levels of Equation (4) to have an asymptotic degeneracy
when m→ −∞. In addition, we can include a parabolic confining potential UD

UD(r) =
1
2

m∗ω2
0r2, (5)

that modifies the energy levels in Equation (4) as follows

Ead
nm = h̄Ω

(
2n +

[
(m + α)2 + a2

]1/2
+ 1
)
+

1
2

h̄ωc (m + α) , (6)

where ω0 is the parabolic trap frequency, and Ω = ω0

(
1 +

(
ωc

2ω0

)2
) 1

2
. When α = 0 and a = 0,

Equation (6) is reduced to the well-know expression for the Fock-Darwin levels given by

Ed
nm = h̄Ω (2n+ | m | +1) +

1
2

h̄ωcm. (7)

Since a = 0 implies ζ = 0, we have that the antidot repulsive potential of Equation (2) vanishes and
the system then corresponds to a quantum dot.

From here, we can calculate the partition Zad function, using the general solution of Equation (6),
and summing over n (n = 0, 1, 2, ...) and m = 0, ±1,±2, ...

Zad = ∑
n,m

e−βEad
nm . (8)

In particular, when α = 0 and a = 0, the partition function have an analytical solution given by

Zd = ∑
n,m

e−βEd
nm =

1
4

csch
(

h̄βω+

2

)
csch

(
h̄βω−

2

)
, (9)

where the “effective frequency” Ω is defined in the form

Ω =

√
ω2

d +
ω2

B
4

, (10)

and ω+ and ω− is given by the expression:

ω± = Ω± ωB
2

. (11)
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The complete solution of the MCE for non-interactive quantum dots has been reported for
the authors previously, using the analytical thermodynamics from the canonical partition function.
Unfortunately, the structure of the energy levels of Equation (6) does not allow a full analytical solution,
so we use numerical calculations to obtain the canonical partition function of Equation (8). We separate
the contributions of antidot energy (Ead

nm) in the form

Z = ∑
n

e−2βh̄Ω(n+ 1
2 ) ∑

m
e−βh̄Ω[(m+α)2+a2]

1
2− βh̄ωB

2 (m+α) (12)

=
1
2

csch (βh̄Ω)∑
m

e−βh̄Ω[(m+α)2+a2]
1
2− βh̄ωB

2 (m+α)

In particular, we work in a range of temperature from 0 K to 100 K that allows us to consider the
quantum number m = −300 to m = 300 for the energy levels of an anti-dot structure. This selection
of values is justified because when we recover the partition function of dot (model of Fock-Darwin),
the numerical calculations converge to the analytical results that we display for the specific heat,
magnetization and entropy in Figure 2. We can see in the lower row of Figure 2 similar behaviour for
the thermodynamics observables displayed for the cases of an electron in a dot with an intrinsic spin
and an antidot with the presence of Aharonov-Bohm flux. The MCE effect of the dots with intrinsic spin
is fully treated in the Reference [41] and shows that the inclusion of Zeeman term in the formulation
produces an oscillatory response of the magnetocaloric observables. Therefore, similar behaviour in
the principal thermodynamics quantities for the Bogachek and Landman model is found in our work,
making the antidot an interesting candidate for the study of the MCE effect of oscillatory type.

Figure 2. Upper row: Specific heat, magnetization and entropy for a quantum dot without intrinsic
spin for our numerical calculations using the parameters α = 0 and a = 0 in Equation (6). The inset
images correspond to the exact calculations obtained in the Reference [41] for the same observables. We
clearly observe a very good convergence of numerical results. Lower row: Specific heat, magnetization
and entropy for the case of antidot with a = 0.5 and α = 0.5. The inset images correspond to the exact
calculations obtained in the Reference [41] for the case of an electron in a dot with an intrinsic spin. We
observe here similar behaviour at low temperatures for the thermodynamics observables displayed.
Therefore, for the thermal observables, the inclusion of AB-flux in an antidot shows similar behaviour
as a function of temperature as compared to the case of an electron trapped in a quantum dot with
intrinsic spin.

Magnetocaloric Observables

For the observables ∆T and ∆S we use the following equations
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∆T = −
∫ B f

Bi

T
CB

(
∂M
∂T

)
B

dB, (13)

∆S =
∫ B f

Bi

(
∂M
∂T

)
B

dB, (14)

which correspond to standard expressions for the study of the adiabatic change of temperature and
the isothermal variation of the entropy in the MCE respectively. For the case of an electron in antidot,
we treat two instances, the case with an without Aharonov- Bohm flux (AB-flux). We report that the
AB-flux fulfills the same role as the spin term (Zeeman effect) in the MCE reported for quantum dots,
that is, the system experiences an MCE of the oscillatory type in the direct-inverse form. It is important
to recall that in our thermodynamic analysis, all the thermal quantities are derived from the partition
function Z . In the generic form:

S(T, B) = kBT
(

∂ lnZ
∂T

)
B

, (15)

CB =

(
∂U
∂T

)
B

, (16)

where U = kBT2
(

∂ lnZ
∂T

)
B

and finally

M = kBT
(

∂ lnZ
∂B

)
. (17)

Before presenting our results, it is essential to clarify that we are using a semi-classical approach
to explore the magnetocaloric effect, that is, our adiabatic path corresponds to a process identified
in terms of the entropy conservation due to the thermal isolation of the system with the thermal
bath [39]. The quantum part is related to the quantum nature of the working substance where the
energy spectrum was used to get the classical partition function and used it to analyze the classical
adiabatic strokes. We emphasize that the MCE has been studied at systems where considerations like
those used in this work reproduce experimental observations in good agreement with the classical
theory [53].

3. Results and Discussion

The results presented in the next two subsections consider an effective mass m∗ ∼ 0.067me. This
effective mass is associated with a GaAs heterostructures with a typical radius of 20–100 nm [54,55].
For the characteristic frequency of the trap ωd, we use the value of ωd = 4.4× 1012 s−1 which in terms
of energy represent approximately h̄ωd ∼ 2.896 meV. The selection of this particular value is in order to
compare the intensity of the trap with the typical energy of intra-band optical transition of the quantum
dots. The order of this transition is approximately around ∼ 1 meV for GaAs heterostructure [54].
Finally, in the last subsection, we increase the parabolic trap up to h̄ωd ∼ 5.8 meV to discuss the effect
in the MCE due to changes in ωd.

3.1. Influence of Antidot Radius on the MCE

We begin exploring the influence of the antidot radius r0 in the thermal response keeping the
trap’s frequency at a constant value ωd = 4.4× 1012 s−1. To observe only the effect of r0, we use α = 0
(absence of AB-flux), varying the external field from 0.6 to 5.0 units of Tesla. The Figure 3 shows the
entropy as a function of temperature using different values of r0 (i.e., the a parameter).
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(a) (b) (c)

Figure 3. Entropy as a function of temperature for different values of the a parameter in absence of
AB-flux. The range of the external magnetic field is between 0.6 ≤ B ≤ 5 in Tesla units. (a) Entropy
for the case of Fock-Darwin energy levels (i.e., α = 0, a = 0) which represents an electron trapped in a
quantum dot. (b) Antidot entropy with a = 1.5. (c) Antidot entropy with a = 3.0. We observe in (b,c),
non monotonic behavior of S vs T for some magnetic fields at low temperatures.

For a = 0 the entropy grows with the magnetic field, therefore, by calculating −∆S = S(T, Bi)−
S(T, B f ) with B f > Bi we obtain negative values. This result is expected due to the strong degeneracy
of the Fock-Darwin levels reflected in the dependence of the spectrum of Equation (7) in the azimuthal
quantum number m. When a starts to increase, the entropy shows an interesting behaviour for low
values of T, specifically, between 0.1 K to 7 K for (b) panel of Figure 4 also for the values 0.1 K to 3 K
for the panel (c) of the same figure. These regions show crosses for low and intermediate values of the
external magnetic field and thus giving a way to obtain −∆S = S(T, Bi)− S(T, B f ) > 0 (with B f > Bi).
Therefore, a direct magnetocaloric effect can be obtained in that region. For higher temperatures than
those mentioned before, we always found a −∆S negative and a MCE inverse is recovered. We recall
that a parameter is associated with r0 which can be modified due to experimental set-up. So, this
oscillatory type of MCE can be controlled in an experiment. From Figure 4c, we observe that the
positive part of −∆S increases notoriously for a = 3, so we expect greater value for ∆T at low working
temperature for this set of values. To explore if this effect is enhanced due to an increase in the a
parameter, we plot −∆S as a function of T for larger values of antidot radii. In Figure 5, we see that
the direct MCE effect for a = 5 (left panel (a)) and a = 10 (right panel (b)) vanishes and we only get
−∆S < 0. Therefore, we expect ∆T negative for all temperature region, thus obtaining an inverse
MCE solely. To obtain oscillatory behaviour in the MCE, the optimal region of the a parameter for the
antidot with zero AB-flux, is in the interval 0 < a < 5.

(a) (b) (c)

Figure 4. −∆S as a function of temperatures for different values of a parameter in absence of AB-flux.
The range of the external magnetic field is between 0.6 ≤ B ≤ 5 in units of Tesla. (a)−∆S for the case of
Fock-Darwin energy levels (i.e., α = 0, a = 0) which represents an electron trapped in a quantum dot.
Clearly we always appreciate negative values and absence of crosses for different values of external
magnetic field. (b) −∆S for and antidot with a = 1.5. (c) −∆S for an antidot with a = 3.0. Figure b,c
show positive values for −∆S at low temperatures, T < 7 K and then negative values for the entire
remaining temperature range.
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(a) (b)

Figure 5. −∆S as a function of temperature for large sizes of antidot radii. The (a) panel correspond to
the case of a = 5 and the (b) panel the case of a = 10. Clearly we see that −∆S < 0 therefore direct
MCE (∆T > 0) does not occur for this choice of parameters.

For the MCE observable ∆T, we show the Figure 6 where we appreciate for a magnetic field close
to B ∼ 2 T to B ∼ 2.5 T, very small peaks in coherence with the values of −∆S (lower than 0.1 kB)
that we can see in the (b) panel of Figure 4. This value of ∆T is more notorious for the case of a = 3
reaching a value close to +2 K which is obtained for values close to B = 0.7 T. Considering that the
initial field is Bi = 0.6 T, we only need a small change in the magnetic field, ∆B = B f − Bi = 0.1 T, to
maximize ∆T at low temperatures.

(a) (b) (c)

Figure 6. MCE effect for electrons in an antidot in absence of AB-flux. ∆T as a function of temperatures
for different values of antidot radii. The (a) panel correspond to a values of a = 0. The (b) panel
corresponds to a = 1.5 and the (c) panel to a = 3.0. For all graphics shown here, the initial value of the
magnetic field is given by Bi = 0.6 T. The quantity ∆T(T, B) is in units of Kelvin. Here, the horizontal
axis represents the initial temperature of the system.

3.2. The Influence of AB-flux in the MCE for Antidots

In this subsection, we treat the case of AB-flux influence in the MCE effect for antidot with
different radii. As we discussed in the previous subsection, large antidot radii (a > 5) show only an
inverse MCE, as well as for small radii (a < 1). Therefore, the region of interest is between these two
regions for the a parameter. The reason for this is because we are looking for an oscillatory response of
the MCE with temperature due to AB-flux. So, to quantify and discuss the effect of the AB-flux, we
kept the antidot radius at a low constant value. The connection between the α parameter with the
AB-flux is given by

α =
ΦAB
Φ0

=
AH
Φ0

=
πr2

sH
Φ0

, (18)
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where rs corresponds to the radius of the solenoid,H the value of the magnetic field generated by
the current inside the same, and A = πr2

s is the solenoid section area, whose normal vector is parallel
to the magnetic fieldH. We recall that the fieldH only exists for 0 < r ≤ rs and is zero outside of the
solenoid (i.e., for r > rc). Thus, for given α, the intensity of the magnetic field inside the solenoid has
the form of H = αΦ0/πr2

s . Recent advances in technology allow fabricating nano-solenoids with a
radius of rs = 35 nm, made by graphene [56]. This result reinforces the idea to explore a small radius
for the antidot structure (a < 1). Using the value α = 0.5, selected for discussions, the value ofH is of
the order of 0.27 T.

First, we plot the value of −∆S for a small radius of the antidot and a value of α = 0.5 fixed in
the panel (b) of the Figure 7. We compare those results with those of a = 0.2 and α = 0 in the (a)
panel of the same figure. We see a notorious peak for low temperatures in panel (b) of Figure 7 that
can only be associated with the AB-flux, remembering that for small values of the a parameter we do
not have oscillation in the MCE. Besides, it can be seen that the effect of the AB-flux not only creates
an oscillatory direct-inverse magnetocaloric effect but also the inverse response is shifted to higher
temperatures, giving the system a wider range of working temperatures.

(a) (b)

Figure 7. −∆S as a function of temperature between 0.1 K to 40 K. In the (a) panel we consider α = 0
and a = 0.2 (pure antidot radius effect). In the (b) panel we use α = 0.5 and a = 0.2. We observe
notorious positive peak close to 4 K for a direct MCE. The positive peak on the right is caused by the
switching on of the AB-flux. For these two graphics, the value of the initial field is Bi = 0.6 T.

The comparison between the ∆T can be appreciated in Figure 8. In the panel (a) we plot ∆T for
α = 0 and a = 0.2 and in the (b) panel we show the results by switching on the AB-flux, maintaining
the antidot radius, α = 0.5 and a = 0.2. We observe a standard inverse MCE in the absence of AB-flux
for the small radius of the antidot, as we expected due to the structure that we obtain for −∆S in the
(a) panel of Figure 7. By switching on the AB-flux, α 6= 0, and using the same radius of the antidot, a
positive peak for ∆T ∼ 3.5 K is obtained close to T ∼ 3.5 K for an external magnetic field B ∼ 2.5 T in
the case of α = 0.5. This peak does not increase as the external field increases, on the contrary, it tends
to decrease for magnetic field values larger than B f > 2.5 T.
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(a) (b)

Figure 8. MCE effect for a small antidot radius and the effect of AB-flux. In the (a) panel we plot the
case in the absence of AB-flux. We observe only the typical inverse response in the MCE effect. The
case of α = 0.5 is presented in the (b) panel, a positive MCE is observed at low temperatures caused by
the AB-flux. The quantity ∆T(T, B) is in units of Kelvin. Here, the horizontal axis represents the initial
temperature of the system.

Now we show results for increasing values of the AB-flux. In Figure 9 we show results for ∆T as a
function of temperature for fixed value of antidot radius, a = 0.2, but different values of α. We observe
in the (a) panel of Figure 9 only an inverse MCE effect, even in the presence of AB-flux. The same
occurs for α = 0.8 as we see in the (c) panel of the same figure. For α = 0.5, we appreciated a notorious
peak in the (b) panel of Figure 9 as we discussed before. Therefore, increasing α does not necessarily
lead to an increase in the positive peak of the MCE. The optimal region for obtaining a MCE of direct
type (only associated to AB-flux ), is between the values of 0.25 < α ≤ 0.5 and low values of a (a < 1).
Outside these values, the two effects (antidot radius and AB-flux) begin to interfere and cannot be
differentiated separately.

(a) (b) (c)

Figure 9. Comparative MCE effect for a fixed small antidot radius and different values of the AB-flux.
The a parameter is fixed at the value of a = 0.2. The (a) panel shows the results for the case α = 0.2, in
the (b) panel results for the case α = 0.5 and the (c) panel, results for α = 0.8. The quantity ∆T(T, B) is
in units of Kelvin. Here, the horizontal axis represents the initial temperature of the system.

By reversing the current in the solenoid at the center of the antidot, the AB-flux changes sign,
therefore α can be positive or negative. If we consider an AB-flux in the same direction of the applied
external magnetic field α has positive values. Opposite case occurs if the flux is contrary to the external
field and therefore α takes negative values. This change can be controlled by varying the potential
difference applied to the solenoid (i.e., change the direction of the current inside the solenoid).

In the Figure 10 we observe the two cases previously discussed and the case of α < 0. We
observe, in the (a) panel and (b) panel of Figure 10, a pure inverse MCE, while in the panel (c) a direct
(positive) MCE is obtained. The two first panels (a) and (b), reflect the discussions of the previous
subsections. For a < 1.5 and in the absence of α we do not expect a positive peak in the MCE, as
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for the case of α > 0.5. The only effect that we expect for α > 0.5 is an increased response in the
inverse magnetocaloric response as reflected in the panel (b) of the Figure 10, but this is not seen in
the entire range of the magnetic field under study. Only the middle values of the external magnetic
field (2 < B < 3 in units of Tesla ) they change their value of ∆T notoriously. On the other hand, when
α < 0, (α = −0.8 for this example ) we observe a direct (positive) response in the magnetocaloric effect
as we can appreciate in the (c) panel of Figure 10. This interesting response can only be associated with
the change in the AB-flux over the sample.

(a) (b) (c)

Figure 10. MCE effect for electron in an antidot with AB-flux in different direction. In the (a) panel we
show the case without AB-flux. The (b,c) panels shows a comparative MCE effect for a positive AB-flux
and negative AB-flux respectively. The quantity ∆T(T, B) is in units of Kelvin. Here, the horizontal
axis represents the initial temperature of the system.

3.3. The Role of the Harmonic Trap in the MCE Effect

In the two previous subsections, it was shown that the antidot radius and the AB-flux could be
used to control, in the low-temperature range, an oscillation in the MCE of direct-inverse type. In
addition, we observe that an increase of the parameter α does not produce necessarily an increase in
the positive peak in the MCE. In the case of the modification of the a parameter (antidot radius), the
∆T does not increase significantly for significant variations of the parameter, and even the oscillation
in the MCE tends to disappear for a ≥ 5. Therefore, to have control of the magnetocaloric response in
the system, it is important to find a suitable parameter set, (ωd, a and α), that allows us to drive the
MCE. Next, in Figure 11, we present results by varying the dot frequency, keeping fixed the antidot
radius and for the three cases of AB fluxes, positive, negative and zero.

The dot frequency can be changed by modifying the parabolic trap on the sample. If we compare
the cases shown in the lower row of Figure 11, we clearly appreciate an increase of the direct peak
response in the MCE around T ∼ 4.5 K. The value of ∆T is close to 11 K for a Bi = 0.6 T and B f ∼ 3 T
as we see in the last image of the lower row in Figure 11. The only parameter that has been changed
corresponds to the frequency of the harmonic trap, increasing its value two times as compared with
the value used in the central column. As we can see from the last figure of the central column, beyond
to T ∼ 12 K, the inverse MCE is recovered. Increasing the frequency of the harmonic trap causes the
electron to be more confined near the center of the antidot. The confinement in the central area of the
antidot makes the electron to stronger feel the AB-flux because the magnetic potential vector decays as
1/r away from the solenoid.

Therefore, this result allows to control the size of the magnetocaloric response (i.e., the ∆T peak)
with the parameter ωd of the present model. For the case of the quantum dot with spin, in reference [41],
the oscillation of the MCE is destroyed for higher values of ωd and only direct MCE is obtained. Here,
we find that the peak of the direct MCE increases without suppressing the oscillations of the MCE. This
is an advantage of antidot over the dot because we obtain a different type of magnetocaloric response,
which can be used for adiabatic demagnetization refrigerators and magnetic field sensors [57].

However, for a more fundamental reason, we have demonstrated that under the controlled
election of parameters (a and ωd), the AB flux can be determined by measuring MCE. i.e., the switching
on or off of the AB flux can be detected by measuring the temperature difference that this switching



Entropy 2018, 20, 888 11 of 15

provokes. This constitutes an alternative way to detect AB fluxes as compared to the standard effect
of interference.

Figure 11. MCE effect (∆T) for three different values of harmonic trap frequencies and three different
values of AB-flux, with a fixed value of the antidot radius a = 1.2. Upper row: We display the case of
α = 0.6, middle row: α = 0 and lower row: α = −0.6. Left column: We treat the case of parabolic trap
frequency ωd = 2.2× 1012 s −1, which in terms of energy represent 1.448 meV. Central column: The
case of ωd = 4.4× 1012 s−1, which in terms of energy represent 2.896 meV. Right column: The case of
ωd = 8.8× 1012 s−1, which in terms of energy represent 5.792 meV. The inset in each figure shows
∆T in a larger range of temperature, up to T = 50 K. In general we observe an enhancement of the
positive peak in the MCE for the system with higher frequency. In addition, the differences in the MCE
for the cases with positive and negative AB fluxes can be noticed in the system with higher frequency.
Therefore, there is a clear way to distinguish an AB flux by measuring the MCE. The quantity ∆T(T, B)
is in units of Kelvin. Here, the horizontal axis represents the initial temperature of the system.

3.4. The Role of the Spin in the MCE Effect for Antidot

In order to complement the results presented in the previous subsections, we also take into
account the electron spin of value h̄σ̂

2 and magnetic moment µB, where σ̂ is the Pauli spin operator
and µB = eh̄

2m∗ . Here the spin can have two possible orientations; one is ↑, and the other corresponds
to ↓ with respect to the applied external magnetic field B in the direction of the z-axis. Therefore,
we need to add the Zeeman term in the Bogachek-Landman energy levels presented in Equation (6).
Consequently, the new energy spectrum is given by

Ead
nmσ = h̄Ω

(
2n +

[
(m + α)2 + a2

]1/2
+ 1
)
+

1
2

h̄ωc (m + α)− µBσB. (19)
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The partition function can be easy calculated in the form

Z = ∑
n

e−2βh̄Ω(n+ 1
2 ) ∑

m
e−βh̄Ω[(m+α)2+a2]

1
2− βh̄ωB

2 (m+α) ∑
σ

eµBσB (20)

= csch (βh̄Ω) cosh
(

h̄βωB
2

)
∑
m

e−βh̄Ω[(m+α)2+a2]
1
2− βh̄ωB

2 (m+α)

In Figure 12 we see the effect of the AB flux on the MCE as a function of temperature and magnetic
field for the system with spin and fixed frequency of the dot (ωd = 8.8× 1012 s−1), and fixed antidot
radius, (a = 1.2). These results have to be compared with Figure 11, right column, corresponding
to the same set of parameters but for a spinless electron. We notice that the inclusion of the electron
spin changes the overall behaviour of the MCE, however, noticeable differences are still present when
comparing the cases of α > 0, α < 0 and α = 0. At final external fields around and above B = 4 T, and
in the temperature range of 2 K < T < 6 K, we have a large negative, ∆T < 0, response for α = 0.6, a
small negative response for α = 0, but a large positive effect, (∆T > 0) for α = −0.6. Therefore, in this
region of parameters, we can design an experiment to detect the presence of a positive or negative
AB-flux.

Figure 12. The MCE effect for a electron with spin in an antidot. For all graphics displayed in this
figure, we use the value of ωd = 8.8× 1012 s−1 and for a para meter the value of a = 1.2. This case
corresponds to the one shown in Figure 11, right column, for a spinless electron. For (a) we select
α = 0.6, for (b) the case of α = 0 and for (c) α = −0.6. The quantity ∆T(T, B) is in units of Kelvin. Here,
the horizontal axis represents the initial temperature of the system.

4. Conclusions

In this work, we explored the MCE effect for a parabolic trapped electron in an antidot, subjected
to a uniform external field and under an Aharonov-Bohm flux. The model used is the one proposed by
Bogachek and Landman model [52], that constitutes a combination of repulsive potential (U(r) ∝ r−2)
and attractive potential (U(r) ∝ r2) leaving the electron confined in a ring shape finite region of
space. We analysed all thermodynamics quantities and obtained the variation of the entropy and the
temperature along the adiabatic strokes that characterize the MCE. In particular, we found a transition
between the direct magnetocaloric response to inverse type by two different parameter changes: the
antidot radius (a) and the AB-flux (α). We report that a small and big antidot radius only present
inverse MCE effect. For values of the antidot radii between 1.5 < a < 5 we obtain a peak in the
magnetocaloric response of direct type for low-temperature behaviour (less than 7 K). This ∆T is
superior to 1 K for a small variation in the external magnetic field (close to 0.1 T). For the case of
AB-flux, we note that for a small radius of the antidot structure, AB-flux generates a direct response
on the MCE effect, when the parameter α reaches up to 0.5. For values higher than α = 0.5, we note
that the oscillation of direct-inverse type tends to disappear. Additionally, by reversing current in the
solenoid (α < 0), we found similar results to the previous case, but only for values of α greater than
0.5 in absolute value. Moreover, we show an advantageous form to increase the peak in the direct
MCE without losing the oscillatory behaviour found for antidot radius and AB-flux, which is the
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manipulation of the frequency of the harmonic trap, that confines the electron more or less to a finite
region of space.

Finally, we have demonstrated that under the controlled election of parameters, the switching on
or off of an Aharonov-Bohm flux can be detected by measuring the magnetocaloric effect. The effect of
the interactions among antidots in the MCE is currently under study.
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