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Metabolomics is an expanding field of medical diagnostics since many diseases cause metabolic repro-
gramming alteration. Additionally, the metabolic point of view offers an insight into the molecular mech-
anisms of diseases. Due to the complexity of metabolic assignment dependent on the 1D NMR spectral
analysis, 2D NMR techniques are preferred because of spectral resolution issues. Thus, in this work, we
introduce an automated metabolite identification and assignment from 1H-1H TOCSY (total correlation
spectroscopy) using real breast cancer tissue. The new approach is based on customized and extended
semi-supervised classifiers: KNFST, SVM, third (PC3) and fourth (PC4) degree polynomial. In our
approach, metabolic assignment is based only on the vertical and horizontal frequencies of the metabo-
lites in the 1H–1H TOCSY. KNFST and SVM show high performance (high accuracy and low mislabeling
rate) in relatively low size of initially labeled training data. PC3 and PC4 classifiers showed lower accu-
racy and high mislabeling rates, and both classifiers fail to provide an acceptable accuracy at extremely
low size (�9% of the entire dataset) of initial training data. Additionally, semi-supervised classifiers were
implemented to obtain a fully automatic procedure for signal assignment and deconvolution of TOCSY,
which is a big step forward in NMR metabolic profiling. A set of 27 metabolites were deduced from
the TOCSY, and their assignments agreed with the metabolites deduced from a 1D NMR spectrum of
the same sample analyzed by conventional human-based methodology.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The study of metabolism (usually termed ‘‘metabolomics”) is an
expanding field of medical diagnostics. Many diseases result in an
altered metabolism (‘‘metabolic reprogramming”). Metabolic pro-
filing offers insights into the molecular mechanisms of diseases,
which provides a sound basis for identifying diagnostic and prog-
nostic biomarkers and rational drug design[1]. Even at early stages,
tumors have been found to modify the metabolic profiles of bioflu-
ids like e.g., blood and urine, and tissues, resulting in fluctuations
of the concentrations of already existing markers or the generation
of new ones [1]. On early stages, breast cancer has a curability rate
of 70–80%, nevertheless, progressed breast cancer can be mortal
[2]. NMR has been used to study metabolic alteration related to
breast cancer through detecting the potential and common meta-
bolic signature for early diagnosis and prognosis evaluation,
improving the realization of the metabolic pathobiology of breast
cancer for supporting the prediction of the cancer development
and planning tumor surgical procedures [3–7].

Nuclear Magnetic Resonance (NMR) spectroscopy has proven to
be of high value for identifying the components of complex mix-
tures of small molecules, like, e.g., metabolites [1]. Therefore, using
NMR as an analytical technique has gained increasing interest
since it is a non-invasive and highly accurate method that mainly
stems from the linear relationship between the area of the peaks
in the NMR spectrum and the concentration of the associated spe-
cies [8].
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However, consistent metabolic identification in biological flu-
ids, such as blood and urine or tissue [8], from the 1D NMR spectra
is one of the significant challenges since it requires deconvolution
of the NMR spectrum to overcome the spectral superposition of
several metabolites [9]. Additionally, the signals of each metabolite
in a 1H NMR spectrum often overlap, and the peaks shift due to pH
and ionic strength variations of the biological matrix [9,10]. In
principle, metabolic identification might be achieved by separating
the mixture components by physical means, followed by NMR
measurements of each component. In this approach, the overall
NMR spectrum is assumed to correspond to a weighted sum of
individual metabolite spectra measured individually or taken from
an available reference dataset. Accordingly, concurrent metabolic
identification by accurately matching the measured metabolites
in the sample with the peak positions of the reference spectra
can be achieved [10]. This approach is performed manually and
involves considerable experience in NMR spectroscopy, metabolic
assignment, and the sample type and is prone to operator bias
[9,10]. Moreover, this procedure is not only time-consuming,
labor-intensive, and impractical but might also be invasive since
some metabolites may lose their activity during separation [11].
Therefore, samples are measured without chemical separation into
individual metabolites, and afterward, the deconvolution of the
resulting NMR spectrum is performed based on specific approaches
such as ‘‘targeted metabolite fitting” [10,12,13]. Fortunately, in
many cases, peaks that overlap in 1D NMR spectra can be resolved
in 2D NMR spectra due to their higher spectral dispersion [8,14].
Therefore, 1H–1H TOCSY (total correlation spectroscopy) is well
suited for spectral dispersion. Consequently, the metabolomics
assignments can be achieved as the signals of each metabolite
occur on a single line (1D cross-sections (row) in the TOCSY spec-
trum). This approach eases the task of assignment as well as com-
putational analysis. Currently, analyzing the metabolites contained
in biological mixtures using TOCSY spectra in an automated or
computerized way biological mixtures using TOCSY spectra is lim-
ited [8]. Despite that, many existing methods can decompose the
mixed-signal spectrum into the individual spectra of the con-
stituent metabolites. However, they cannot cope with the presence
of spectral components induced by chemical shifts and overlapping
of metabolites because this source of ‘‘noise” leads to poor decom-
position results. In this article, we introduce the concept of semi-
supervised learning (SSL) and the implementation of our own
modified classifiers to analyze and identify metabolites of real
breast cancer tissue samples based on TOCSY spectra by integrat-
ing the concept of confidence bands during the SSL classification
process.
2. Analysis concept and related work

Metabolic NMR spectral resonance patterns are available in
online databases. By incorporating this information into a Bayesian
model, NMR spectral resonance peaks can be deconvolved to iden-
tify metabolites and measure their concentrations [9]. The refer-
ence NMR spectra are stored in the form of chemical shifts, J-
couplings, and multiplet intensity ratios [9]. These properties are
used in the sense of a priori probability in a Bayesian framework,
allowing for slight deviations of the observed spectral parameters
from those of the reference spectra due to pH and ionic strength.
The problem of Bayesian analysis of 1D NMR spectra has been
solved [9], and the corresponding software is available as the
‘‘BATMAN” module in the R environment. 1D NMR spectroscopy
is commonly used for molecular assignments of chemical sub-
stances in solution [15]. However, in complex mixtures of chemical
species such as in metabolomics, strong peak overlaps are encoun-
tered, and then 2D NMR is an alternative approach since peak
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superposition in 1D NMR spectra can often be separated in 2D
NMR spectra [8]. Two-dimensional J-resolved (2D JRES) NMR spec-
troscopy is a favorable technique for analyzing metabolite mix-
tures as it allows for a record of a second spectral dimension
with little overlap between the signals [16]. Moreover, a software
tool has been suggested for the combined investigation of 1D
and 2D JRES spectra [10]. However, the number of metabolites that
can be automatically identified is strongly limited by the spectral
resolution of 2D-JRES.

Moreover, strong coupling effects influence this method, espe-
cially when the NMR magnetic field is weak. The 2D HSQC
[15,17] technique offers another parameter for the deconvolution
of an overlapped signal by incorporating 13C chemical shift infor-
mation. Therefore, a computational approach for automatic decon-
volution employing Fast Maximum Likelihood Reconstruction has
been introduced [17]. However, the sensitivity of HSQC is generally
inadequate for metabolomics studies [18]. Furthermore, there is
the disadvantage of missing spin system information, as all
cross-peaks are independent of each other in HSQC and 2D-JRES
spectra [19]. On the other hand, in 2D 1H–1H TOCSY spectra,
cross-peaks (Fig. 1) of the spin system of one metabolite show up
on horizontal and vertical lines in a spectrum, which allows iden-
tification of individual 1H spin systems [20]. For this reason, TOCSY
is appropriate for computational analysis and spectral assignment
[21] of 2D NMR spectra.

Fig. 1a displays a 2D 1H–1H TOCSY simulated experiment for
samples of proton groups (color-coded) in metabolites (according
to Simpson [21]). The blue proton group consists of the signals at
8.62, 7.55, 7.59, and 8.56 ppm, whereas the green proton group
appeared at 8.54, 7.34, 7.44, and 8.17 ppm. The signals appearing
at 7.76 and 8.32 ppm belong to the proton group indicated in red
and consist of two protons with a three-bond coupling constant
of 8.9 Hz. The signals of the proton group designated in yellow
are of two protons and have a small coupling constant of 1.9 Hz,
which corresponds to a four-bond correlation [21]. Signals belong-
ing to the particular protons of a metabolite occur along horizontal
(and vertical) lines in the spectrum.

Fig. 1b shows the 1H–1H TOCSY spectrum of a real breast cancer
tissue sample studied in this work at 600.13 MHz with mixing
times (sm) of 80 ms. The 2D TOCSY spectra were recorded using a
pulse sequence that suppresses zero-quantum coherences [22] to
avoid blurring the multiplet patterns with a relaxation delay of
1 s. In this way, the resulting multiplets exhibit the same structure
as in 1D NMR spectra, which facilitates classification. Measure-
ments with a high indirect frequency resolution can only be
obtained for a subdivision into many time increments, resulting
in long measurement cycles. The spectral range was set to 7 kHz
in both dimensions, 16 K and 128 data points acquired in the
horizontal and the vertical dimension (F2, F1), respectively. Before
2D Fourier Transform, zero filling were performed to 32 K and 1 K
data points in the horizontal and vertical dimensions. The spectral
widths in the two dimensions were 12.00 ppm, the spectral
width of 8.33 ppm (5000 Hz) is enlarged since TOCSY
cross-peaks of the metabolites of the sample appeared in the
enlarged spectral width. The NMR experiment has been acquired
at temperature of 279 K.

The spectral deconvolution is based on identifying traces over-
lapping with signals of other spin systems to be directly compared
with an NMR database. The 1D NMR spectral projections on the F1
and F2 axes are external projections evoked from extra 1D NMR
measurement using the CPMG pulse sequence with embedded
water suppression by excitation sculpting. CPMG was used to sup-
press macromolecules (protein and lipids), and it was recorded
employing 400 echoes with 1 ms echo time. The TOCSY chemical
shifts of both F2 and F1 were calibrated according to the alanine
diagonal peak and set to 1.46 ppm.



Fig. 1. (a) Simulated 2D Total Coherence Spectroscopy (2D TOCSY) 1H–1H TOCSY
spectrum for samples of proton groups (color-coded) in metabolites. Signals
belonging to a particular metabolite occur along horizontal (and vertical) lines in
the spectrum [21]. (b) The 1H–1H TOCSY spectrum of a real breast cancer tissue
sample at 600.13 MHz with sm of 80 ms. and relaxation time of 1 s, 16 K, and 128
data points acquired in the horizontal and the vertical dimension (F2, F1), resp. The
NMR projections on F1 and F2 axes are an extra 1D NMR spectrum acquired using
the CPMG pulse sequence with excitation sculpting water suppression.
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The manual spectral deconvolution is dependent on user expe-
rience, which is a severe bottleneck in the field [17,23]. Addition-
ally, it is an impractical and tedious process, especially for high-
throughput applications and complex biological mixtures [24,25].
Semi-automated approaches have been developed to decompose
TOCSY spectra into individual mixture components matching in
NMR databases for identification [20]. DemixC is a semi-
automated technique that deduces 1D cross-sections (row) of a
2D TOCSY spectrum that does not exhibit many peak overlaps
[20], and peak fitting is used to extract peak positions from a
TOCSY spectrum [20]. Frequently, metabolomics samples are com-
posed of hundreds of individual components, which may result in
overlapping peaks and, consequently, problems of the DemixC
method [20]. Therefore, the Demixing by Consensus Deconvolution
and Clustering (DeCoDeC) is a preferable approach to deal with
mixtures of higher complexity[26]. DeCoDeC identifies peaks
apparent in specific pairs of TOCSY 1D cross-sections so that over-
lapping peaks associated with other metabolites are eliminated
[20]. Significant limitations of both approaches are the peak shifts
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due to matrix effects which is the common case in metabolic pro-
filing investigation of real-time evolution measurements [24].

Machine learning is defined as building a classification system
that can distinguish between classes and generalize from training
models to predict unseen samples [27]. Typically, a machine learn-
ing system uses three types of datasets: The first data type is the
training dataset which is the labeled training data used to build a
generalization model. The second data type is the test dataset
which is the unlabeled data to be learned [27]. A third dataset,
the validation dataset, is used to tune the parameters of the classi-
fiers. Importantly, all datasets must belong to the same distribu-
tion. The trained system uses the generalized model to predict
the labels of the unlabeled data. In situations where labeled data
is scarce or when the process of labeling large amounts of data is
time-consuming and expensive, Semi-Supervised Learning can be
used [28].

In Semi-Supervised Learning (SSL), sometimes called self-
training, a classifier uses its prediction to update its training model
[29]. The system is provided with a limited amount of labeled train
data Xlabeled ¼ x1; . . . ; xLf g, the associated labels Ylabeled ¼ fy1; � � � :yLg
and unlabeled train dataset Xunlabeled ¼ fxLþ1; � � � ; xug. In the self-
training scenario, the classifiers build a training model based on
Xlabeled in the training phase. Later, in the learning phase, a new
subset of instances Si 2 Xunlabeled is selected to predict the labels
of this subset, where i 2 n is the number of subsets. Then the sub-
set Si is removed from Xunlabeled and added together with the pre-
dicted labels to the training dataset Xlabeled. Finally, the classifier
is re-trained using XLabeled and the labeled subset Si. This process
is repeated until the whole set Xunlabeled is exhausted or no confi-
dent predictions can be further added to the training dataset
[29]. Self-training is used as a wrapper method, so the prediction
function is not restricted to specific classifiers, and any classifier
can be wrapped in the self-training scenario [29]. On the other
hand, self-learning classifiers are sensitive to mislabeling; a wrong
prediction can boost itself, affecting the retrained model and the
overall performance [29]. A vital element in the self-training
method is the confidence measure used to select which xj 2 Si is
added to the training set. Only the most confident label predictions
are added to the training dataset and used to update the training
model [28,29].

Confidence bands are uncertainty measures of an estimate
obtained from limited data, and they define the area where the
true model lies with probability 1� a. Usually, a is set to 0.05,
which means we are 95% confident that our model is enclosed
by the confidence band [30]. The assured predictions in SSL can
be employed by introducing confidence bands, which are used to
reject possible outliers, i.e., do not lie in the confidence band
threshold [31]. Therefore, samples that lie within the confidence
threshold are added to the training set, and then, retraining of
the classifier is performed using the added data [31]. Confidence
bands can be calculated in several ways, for instance, using Monte
Carlo [32] or bootstrapping [33]. Confidence bands were used in
the field of SSL to add certainty to the prediction in gesture recog-
nition [34,35] and image classification [31]. In this work, we use
the output of the proposed classifiers to compute the confidence
bands following the established procedure presented in the litera-

ture [36–38]. The confidence band rconf g!
� �

of the classifier output

g! for a test sample x is measured by

rconf g!
� �

¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gTðJT JÞ�1

g
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i

ri2=v

vuut ð1Þ

where b ¼ t�1
cdf 1� a=2;vð Þ is the inverse cumulative t-student distri-

bution, a is the probability of the chosen confidence band, we use
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a = 0.05 for 95% confidence bands, and v is the number of degrees of

freedom associated with the t-student distribution. The term ðJT JÞ�1

represents the covariance matrix computed by finding the weighted

Jacobian J ¼ Jij
ri
where Jij ¼ @ri

@Pj
and ri is the associated uncertainty of

the sample label that may result from a human or self-training. The
residual r is the difference between the predicted value and the real
value of sample i; and Pj are the parameters of the classifiers to be
optimized [36].
Fig. 2. Linear classification cannot separate the blue circles from the orange squares
in two dimensions (left). By mapping the original linear feature space to a higher
dimension, a plane that separates the data into two classes can be found (right)
[41]. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article).

Fig. 3. Geometrical visualization of KNFST, where every class is mapped into a
single point. Test samples are mapped nearer to the class representation they
belong to and far away from different classes.
3. Classification methods

In the context of SSL for metabolic profiling of 2D TOCSY NMR
spectra, we present the polynomial classifier, support vector
machines, and Kernel Null Foley–Sammon Transform classifiers.
SSL with confidence bands for images and traffic sign classification
using the polynomial classifier and support vector machines has
been described in the literature [31,36]. In this work, we cus-
tomized these classifiers for metabolic profiling. In addition, we
have extended the KNFST classifier to be used in SSL scenarios by
employing the concept of confidence bands.

3.1. Polynomial classifier (PC)

Let N ¼ f1 � � �ng be the number of training samples X, where
X ¼ fx1!; � � � ; xn!g of C different classes and class labels y ¼
fy1; � � � ; yng. The polynomial classifier takes the following form [39]

g x!
� �

¼ APCu x!
� �

ð2Þ

where u x!
� �

is the polynomial structure representing all the possi-

ble multiplicative combinations of the original feature x depending
on the polynomial degree. The coefficient/weight matrix APC is
obtained during the training phase and is employed during the
learning process to obtain the probability that a given feature

belongs to class c. The polynomial discriminant function g x!
� �

cre-

ates a mapping from the feature space to a decision space that pro-
duces an output of posterior probability estimate to determine the
class membership [39]. In this work, we implemented third and

fourth-order polynomial classifiers, thus u x!
� �

contains linear,

quadratic, and cubic multiplicative combinations of the original fea-
ture vector. The quadratic multiplicative combination will be
employed as well in the case of a fourth-order polynomial function.
The model can be solved using least mean squares optimization

through minimizing the residual kAPCu x!
� �

� g x!
� �

k[39].

The Moore-Penrose pseudo-inverse approximation u x!
� �þ

¼

u x!
� �T

u x!
� �� ��1

u x!
� �T

is used to estimate the model parame-

ters APC ¼ u x!
� �þ

g x!
� �

during the training phase [27]. In the

learning phase, the estimated weight matrix APC is used to find
the label of the new sample [27,36,39]. The number of free param-
eters Npc in the confidence bands calculation is computed accord-
ing to Npc ¼ ðL� 1ÞM, where L is the number of classes and M is
the number of terms in the polynomial function [36].

3.2. Support vector Machines (SVM)

SVM performs a nonlinear mapping of the original feature vec-
tor into a higher-dimensional space and tries to find an optimized
hyperplane to separate non-linearly separable data [40]. The sup-
port vectors are training samples that act as decision boundaries
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for the optimal hyperplane [27]. SVM finds this hyperplane by
solving

f SVMð x!Þ ¼ xT
SVM/ð x!Þ þ b ð3Þ

where / is high-dimensional non-linear mapping of the fea-
tures X and x is the coefficient matrix, and b is the bias vector.
The hyperplane is optimized during the training phase by finding
x and b, which maximize the distance between the support vectors
from each class and the hyperplanes [27]. Only equation (3) has to
be computed for every new instancexl

! in the learning phase.

The implicit features mapping / x!
� �

: Rn ! F;where F is a high

dimensional inner-product space, can be used to define a kernel

function by K x!i; x
!

j

� �
¼ / x!i

� �T
/ x!j

� �
¼ P

/ x!i

� �
/ x!j

� �
[27].

Kernels are widely used in machine learning to implicitly map
the original data space into a higher dimension where it is
expected to give a better separation for non-linearly separated data
[27], as depicted in Fig. 2. Throughout this work, the Gaussian

radial basis function (RBF): Kðxa!; xb
!Þ ¼ expð� kxa

!�xb
!k2

2R2 Þ is used in

the classification process, where R2 controls the bandwidth of
the kernel function, and it is optimized during the training process
[27]. We use the implementation of SVM from the toolbox
LIBSVM [42]. Moreover, the confidence bands are calculated using
equation (1), the degree of freedom v is defined as the difference
between the total number of training samples and the number of
support vectors [36].
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3.3. Kernel null Foley–Sammon Transform (KNFST)

KNFST finds the projection direction x that achieves the best
separately between classes by minimizing the within-class scatter
Sw and maximizing the between-class scatter Sb. Consequently, a
Fig. 4. Class membership is determined according to the distance between the
projected class and the new red sample. The blue, yellow, and green classes are
mapped into one point for each class in the mapped class. The assignment of the
new red sample is determined according to the distance between its projection and
the projection of the other classes (d1, d2, d3). The distance d2 is the shortest
distance to the red class. Therefore, it is more probable that the red sample belongs
to the yellow class. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article).

Fig. 5. The training phase in semi-supervised KNFST algorithm. The training phase aim
consist of the optimized projection matrix, confidence bands values, and the class-wise
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sample is projected as close as possible to samples that belong to
the same class and as far as possible to samples that belong to a
different class [43,44]. KNFST is defined as
Ju xð Þ ¼ xTSubx
xTSuwx

ð4Þ

By enforcing the conditions xTSuwx ¼ 0 and xTSubx > 0 in
equation (4), we get a projection direction x that guarantees the
best separability between classes in a higher-dimensional space
[43,44] as shown in Fig. 3.

KNFST has used an outlier detection in previous work
[43,45,46]. Nevertheless, in this work, we have extended the func-
tionality of KNFST to be employed in the SSL scenario as follows:
During the training phase, the projection direction x, the class-
wise projections of training data into the null space D[43], in addi-
tion to the confidence band for each sample are computed using
the training data. During the learning process, for each sample
zunlabeled 2 Xunlabeled, the projection z� usingx is computed. The class
membership is computed according to
Classðz�Þ ¼ min
1�i�C

distðz�;DÞ ð5Þ

In equation (5), the class membership Classðz�Þ is computed by
calculating the Euclidean distance between the projected sample z�

and the projection of all classes in the mapped null space. The
instance z� is assigned to the nearest class, as depicted in Fig. 4.
Next, the confidence band for z� is computed according to equation
s to generate a training model based on the training dataset. The training models
projections of training data into the null space.
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(1). The degree of freedom for the t-student distribution is the dif-
ference between the size of the feature space and the size of the
projected dimension [47].

Initially, confidence bands are computed from the training data,
and their values are the main criterion to decide whether a sample
is used to update the training set. A relative deviation of the confi-
dence value of training data is allowed, i.e., an unlabeled sample
can be added to the training set once its corresponding confidence
value falls within this deviation. Once the sample is accepted, it is
added to the training set together with its label and confidence
value. At last, the classifier is retrained after a maximum of t sam-
ples has been added. For the sample z, we construct a two-sided
normalized confidence band ðrmin;rmaxÞ using a bootstrap method
Fig. 6. Learning phase in semi-supervised KNFST algorithm. The learning process starts b
unlabeled data. The classifier predicts a label for the sample where new labels are accep
samples are added to the initial training set and their predicted labels after t accepted sam
retraining the classifier. The classifier is retrained on those t samples, creating a new trai
This procedure is repeated until no more unlabeled data matches the confidence band c
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such that probabilityððrmin;rmaxÞ 3 rzÞ ¼ 1� a, where rz is the
computed confidence band for sample z. The values of rmin and
rmax are calculated as rmin ¼ quantileðrTrain; l

minÞ, and
rmax ¼ quantileðrTrain; l

maxÞ, where lmax and lmin are experiment-
dependent and rtrain is the confidence band vector of the training
data. Generally, all possible combinations values
0 < lmax � 1and;0 < lmin � 1 could be examined [48]. In our set-
tings, if multiple combinations of lmax and lmin achieve a similar
accuracy and misclassification rate, then we choose the configura-
tion with the narrowest confidence band. Fig. 5 and Fig. 6 summa-
rize and demonstrate the steps in training and the learning phases
of KNFST, respectively.
y using the pre-generated training model. SSL iteratively selects a sample from the
ted if the confidence band value is within a range rmin � r � rmax . Those accepted
ples, where t is a re-train flag used to check the number of accepted samples before
ning model that will be used to predict the labels for the rest of the unlabeled data.
onditions. If there is no qualified example left, the algorithm terminates.
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4. Dataset

4.1. Acquisition and preprocessing

1D and 2D TOCSY NMR spectra were acquired experimentally
on a real breast cancer tumor tissue sample [49] by employing a
broadband high resolution 600.13 MHz (B0 = 14.1 T) NMR Bruker
spectrometer (AVANCE III 600 with the Bruker magnet ASCEND
600) supported with the room temperature probe (BBO model-
Bruker) and Magic Angle Spinning (MAS) probehead. 1D and 2D
NMR spectra acquisition and processing were achieved by using
the TopSpin software package 3.6.

1D NMR spectrum of the sample was measured, analyzed, and
assigned based on expert knowledge with the help of the Chenomx
NMR Analysis Software from (Chenomx Inc.). A number of 27
metabolites were assigned in the measured real breast cancer tis-
sue sample as following, namely: ’Valine’, ’Isoleucine’, ’Leucine’,
’Lysine’, ’Glutamate’, ’Alanine’, ’Glutamine’, ’Aspartate’, Sn-
Glycero-3-phosphocholine (GPC), ’Serine’, ’O-Phosphoethanola
mine’, ’Ascorbate’, ’Myo-Inositole’, ’Lactate’, ’Proline’, ’3-Hydroxybu
tyrate’, ’O-Phosphocholine’, ’Threonine’, ’Glutathione’, ’Inosine’,
’Beta-Glucose’, ’Alfa-Glucose’, ’Tyrosine’, ’Phenylalanine’, ’Uracil’,
‘Taurine’ and ’Methionine’.

The 2D TOCSY spectra were recorded, as mention earlier.
The peak (F2, F1 in Hz) entries are deduced from the experi-

mental 2D TOCSY NMR spectrum (shown in Fig. 1b and explained
earlier) of the real breast cancer tissue from the 2D contour lines
using the automatic peak picking function (pp2d) in Bruker Top-
Spin 3.6. The peaks picking level was adjusted based on the con-
tour projection magnitude threshold to avoid picking artifacts
and noise peaks. Peaks are annotated on the TOCSY spectrum using
the red square symbol associated with peak number, as illustrated
in Fig. 7. The peaks are listed and transferred as a text file to the
semi-supervised classifiers programmed in Matlab for the succes-
sive analysis.
Fig. 7. The peaks deduced from the experimental 2D TOCSY NMR spectrum (shown
in Fig. 1b) from the 2D contour lines using the automatic peak picking function
(pp2d) in Bruker TopSpin 3.6. The peak picking level was adjusted according to the
contour projection magnitude threshold to avoid picking artifacts and noise peaks.
Peaks are annotated in the TOCSY spectrum using the red square symbol associated
with the peak number. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article).
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4.2. Data representation

In our datasets, each metabolite is represented by two main
characteristic features of the 2D TOCSY spectra: the chemical shift
frequencies on the horizontal and vertical axes, respectively. Since
sufficient data samples is a vital element for classification, data
augmentation is implemented in this work to overcome the small
datasets due to limited NMR data [50,51]. Data augmentation is
implemented to extend the number of data samples by simulating
anticipated deviation on the original samples [52]. Thus, data aug-
mentation results in duplicates of the samples, and the classifiers
will deal with the same sample in different versions [53]. Data aug-
mentation has been applied in spectrum classification in NMR [54],
Raman spectra [52], and infrared spectra [55]. Before starting the
classification process, the data augmentation is used to create four
disjoint datasets, training and validation, learning and testing sets.
Each dataset will have 1200 data instances. In the training dataset,
white Gaussian noise is added to the original frequencies with a
different random signal-to-noise ratio. In the learning set, random
noise is added to each instance of the original dataset. The valida-
tion and testing datasets are created by shifting the horizontal and
the vertical frequency by a random value under a predetermined
chemical shift constraint, within 30 Hz, 0.049 ppm, which is suffi-
ciently more than the limit chemical shift fluctuation due to the
NMR environmental matrix change [56]. An example of the data
augmentation procedure for proline is shown in Table 1.
5. Experiments

In the scenario of semi-supervised learning, a third (PC3) and
fourth-order (PC4) polynomial classifier, KNFST, and SVM classi-
fiers are tested. The performance of the classifiers for increasing
the size of the initial training set was investigated and plotted in
Figs. 8-11. The learning procedure is repeated for different initial
amounts of training data to examine the role of the size of the ini-
tial dataset on the learning process and to observe the minimum
ratio of the initial training set, which is sufficient to produce an
acceptable performance. The labeled dataset is partitioned into
ten portions of training data. The system uses random initial train-
ing samples, starting from 10%, 20%, 30%, until reaching 100% of the
training data.

This random division and permutation of the training dataset
will lead to a different number of samples per metabolite; this is
important to monitor how classifiers will handle unbalanced data-
sets in diverse experimental situations. Therefore, it is essential to
repeat the experiment multiple times and enforce the classifiers to
deal with random permutation and partition to obtain accuracy
expectations independent of the partition of the training dataset.
The labeled dataset is partitioned into ten portions of training data.
The system starts by using random initial training samples, start-
ing from 10%, 20%, 30%, until reaching 100% of the training data
size. For each portion of the initial training dataset, ten runs are
performed. Thus, the classifiers will perform the experiments ten
times for each of the ten partitions of the training dataset.

The assessment of the results is based on the accuracy of the
classification: Accuracy = Number of correctly classified samples /
Total number of samples and the rate of mislabeled samples added
to the training set: Mislabeling rate = Number of wrongly classified
samples added to the training set / Total number of learned examples
added to the training set.
6. Results and discussion

The accuracy and the mislabeling of the classifiers versus the
size of initial training data are displayed as boxplots of median



Table 1
A subset of the training dataset showing the output of the data augmentation procedure for proline. From one standard chemical shift for a metabolite, multiple versions of the
same metabolite can be created.

Chemical shift½Hz�
Experimental Augmented

Metabolite Horizontal freq. Vertical freq. Horizontal freq. Vertical freq.

proline 2471.9 1402.2 2476.29 1399.85
2474.27 1398.34
2468.91 1400.06
2472.68 1403.74
2469.03 1398.45
2470.36 1404.45
. . .. . . . . .. . .

. . .... . . .. . .

Fig. 8. The accuracy of classification versus different sizes of initial training data.

Fig. 9. Mislabeling rates versus different sizes of initial training data.
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and standard deviation for ten different processing runs. Fig. 8
shows the classification accuracy of KNFST, SVM, PC3, and PC4
classifiers. From the plot, the accuracy of KNFST and SVM increases
with an increasing initial amount of labeled data until reaching
around 100% at the size of 20% of the initial training dataset, where
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it is corresponding at this point to only eight samples per metabo-
lite. Conversely, in comparison to KNFST and SVM, PC3 and PC4
showed a lower accuracy and no improvement in the performance
with the increasing size of the training dataset. The most probable
explanation is the highmislabeling rate, shown in Fig. 9, where PC3



Fig. 10. The accuracies of classification versus the size of the initial training data set for small initial amounts of labeled training data (�9% of the entire dataset).

Fig. 11. Comparison between the mislabeling rates of class cation using small sizes of the initial labeled training data set.
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and PC4 have mislabeling rates of around 60% and 45%, respec-
tively, regardless of the sizes of the training dataset. Noticeably,
both PC3 and PC4 were unable to learn any samples until using
30% and 40% initial labeled training data. Remarkably, the misla-
beling (misclassification) of KNFST and SVM start with a rate of less
than 5% (considered significantly low), and it was decreasing with
increasing training set size reaching nearly 0%.

Analyzing the performance of the classifiers in the presence of
an extremely small amount of initial training data, as low as one
or two labeled samples per metabolite, is also noteworthy for this
work since an NMR dataset is always kept as small as possible to
save measuring time and to avoid sample alteration with time,
leading to data scarcity. Fig. 10 shows the accuracy of the classi-
fiers in these cases with only 1% of the training dataset, ensuring
one sample per metabolite per multiplet. Interestingly, the accu-
racy of SVM and KNFST kept increasing steadily despite the extre-
mely small size of the initial training dataset. Additionally, the
accuracies of both KNFST and SVM reached 90% at an initial train-
ing dataset of size 9%.
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The mislabeling rate of the SVM is around 40% at 1% of the ini-
tial training dataset, as shown in Fig. 11. No mislabeling rates
appear for KNFST because it was not able to learn any sample. Later
on, the values of mislabeling of KNFST and SVM were around 15%
and 25%, respectively. These values of mislabeling were decreasing
with increasing initial training data set size. Within the low train-
ing data set size settings, KNFST showed a higher performance than
SVM, while both showed better accuracy than PC3 and PC4 at
extremely low size settings. The mislabeling rates of PC3 and PC4
for extremely low sizes of the initial training data could not be
defined (see Fig. 11). This is typical for polynomial classifiers since
they commonly require a relatively large amount of training data
in order to be able to generalize [36]. It is essential that when a
classifier is unable to learn any data samples and hence does not
appear on the figures, the whole classification process turns into
a supervised learning procedure rather than semi-supervised
learning. This happens because no new data samples will be added
to the initial training data set when the classifier does not learn any
sample. Therefore, the test dataset will be tested against the
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un-updated original training data set. This explains the accuracies
that appear in Fig. 10 despite the absence of mislabeling in Fig. 11.
7. Validation

The metabolite assignments of the breast cancer sample were
validated based on the matching between the metabolites stan-
dard chemical shift from 1D NMR and 2D TOCSY with the experi-
mental 2D TOCSY on the same sample (breast cancer tissue).
Every metabolite 2D TOCSY standard chemical shift was deduced
from the standard chemical shift 1D NMR from the BATMAN [9],
BMRB [57], and HMDB [58] databases as well as relevant literature
[59,60].

Standard (F2, F1) cross-peak entries of 1H–1H TOCSY of the
metabolites that appeared in the studied breast cancer tissue are
Table 2
Standard and experimental (F2, F1) Hz cross-peak entries of 1H–1H TOCSY of the metabolit
table) were deduced from the coupled peaks that appeared in standard 1D NMR spectra f
from the experimental TOCSY measurement of the sample. Only characteristic (F2, F1) Hz
and annotated in Fig. 7.

1D SpectraPeak Position

# Metabolite [PPM]

1 Valine 0.976, 1.029, 3.601
2 Isoleucine 1.249, 1.458, 1.249, 1.969, 3.657, 0.92
3 Leucine 0.94, 0.953.719, 1.701
4 Lysine 1.72, 3.01, 3.751.895

5 Glutamate 3.747, 2.078, 2.339
6 Alanine 1.46, 3.76
7 Glutamine 3.764, 2.13, 2.447

8 Aspartate 3.886, 2.802, 2.651

9 sn-glycero-3-phosphocholine (GPC) 3.605, 3.672,3.903, 3.871.3.946, 4.312

10 Serine 3.833, 3.958
11 O-phosphoethanolamine 3.240, 4.014
12 Ascorbate 4.857, 4.771, 3.734, 3.440

13 Myo-Inositole 3.518, 4.049, 3.611, 3.265

14 Lactate 4.104, 1.317
15 Proline 4.119, 3.407, 3.323, 2.002, 2.080, 2.33

16 3-Hydroxybutyrate 4.160, 2.414, 2.314, 1.204

17 O-Phosphocholine 4.285, 3.644
18 Threonine 4.241, 1.318, 3.573

19 Glutathione 4.557, 2.97, 2.9433.766, 2.548, 2.158

20 Beta-Glucose 4.630, 3.230, 3.473, 3.387, 3.450, 3.88

21 Inosine 8.189, 8.310, 6.066, 4.752, 4.439, 4.27

22 Alfa-Glucose 5.216, 4.630, 3.519, 3.698, 3.822, 3.82

23 Tyrosine 7.192, 6.898, 3.200, 3.055, 3.936

24 Phenylalanine 3.283, 3.113, 3.983, 7.322, 7.420, 7.36

25 Taurine 3.246, 3.410
26 Uracil 5.79, 7.52
27 Methionine 3.850, 2.183, 2.122, 2.629
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listed in Table 2. Standard entries (indicated in the table) were
deduced from the coupled peaks that appeared in standard 1D
NMR spectra from affirmed databases as well as standard 2D
TOCSY [1,9,57–60]. Experimental cross-peaks are deduced from
the measured TOCSY of the sample. Characteristic (F2, F1) cross-
peak entries of every metabolite that has been used for the assign-
ment are listed. These peaks are labeled with P1 until P48, and they
are annotated in Fig. 7.

After the chemical shift verification of the cross-peak entries,
the chemical shifts had been assigned to metabolites. The results
were verified and confirmed according to the published work on
the same sample of the same scientific group [49,61].

The demonstrated assignment in Fig. 12 was done considering
the results of the KNFST classifier only because it has shown the
highest accuracy. The metabolite assignment was perfect (100%)
es appeared in the studied real breast cancer tissue. Standard entries (indicated in the
rom affirmed databases [9,57–60]. Experimental (F2, F1) Hz cross-peaks are deduced
cross-peak entries of every metabolite are listed, and they are labeled with P1 to P48

Peak Standard Experimental
From1D NMR
coupling

From2D TOCSY

position F1 [Hz] F2 [HZ] F2 [Hz] F1 [HZ]

P1 2160.6 617.4 2159.4 615.4
7, 0.998 P2 2194.2 1181.4 2190.4 1182.2

P3 2231.4 1020.6 2238.4 1020.2
P4, P5 1806.0 1032.0 1812.3 1026.2

2250.0 1032.0 2244.4 1026.2
2250.0 1137.0 2244.4 1140.2

P6 2248.2 1403.4 2259.2 1404.3
P7 2256.0 876.0 2262.4 882.2
P8, P9 2258.4 1278.0 2262.4 1278.2

2258.4 1468.2 2262.4 1464.3
P10, P11 2332.1 1590.9 2323.2 1602.2

2332.1 1681.6 2323.4 1685.1
,3.659, 3.212 P12, P13 2587.8 2195.8 2587.9 2210.5

2342.3 2163.5 2367.8 2117.7
P14 2375.3 2300.0 2390.2 2294.6
P15 2408.9 1944.4 2390.4 1941.1
P16, P17 2240.9 2064.4 2217.1 2090.0

2405.3 2241.5 2435.0 2204.1
P18, P19, P20 2112.5 1959.4 2076.8 1958.9

2167.1 1959.4 2170.2 1958.9
2429.9 2112.5 2432.1 2109.0

P21 2462.9 790.4 2468.2 787.5
6, 2.022 P22, P23 2471.9 1213.2 2468.2 1217.7

2471.9 1402.2 2468.2 1389.7
P24, P25, P26 2496.0 722.4 2506.6 718.4

2496.0 1388.4 2506.6 1376.6
2496.0 1448.4 2506.6 1438.7

P27 2571.6 2186.9 2550.5 2161.1
P28, P29 2545.2 791.0 2543.6 787.7

2545.2 2144.3 2543.6 2143.4
P30, P31 1529.0 1295.0 1572.0 1277.7

2262.5 1295.0 2260.7 1277.7
2, 3.707 P32, P33, P34 2778.6 1938.4 2788.3 1944.4

2778.6 2084.3 2788.3 2083.8
2778.6 2081.9 2788.3 2080.3

8, 3.882 P35, P36 3640.4 2567.4 3543.4 2501.8
3640.4 2664.0 2868.5 2603.0

6, 3.749 P37, P38, P39 3130.3 2112.0 3131.9 2115.7
3130.3 2224.7 3140.2 2248.9
3132.0 2568.5 3127.7 2464.9

P40, P41 23,621 1920.4 2374.5 1920.4
4316.1 4139.7 4307.3 4124.8

9 P42, P43P44 4453.0 4394.3 4443.9 4387.0
4453.0 4422.5 4443.9 4425.9
2390.3 1970.1 2384.4 1954.8

P45 2049.9 1949.7 2078.7 1951.2
P46 4513.0 3474.8 4513.3 3471.7
P47, P48 2310.5 1308.3 2316.6 1285.1

1578.3 1308.3 1571.4 1286.3



Fig. 12. The metabolite assignment based on (a) the experimental 2D TOCSY NMR
spectrum of the breast cancer tissue after considering (b) the results of the KNFST
classifier, which provides the highest accuracy. Acronyms of the metabolites are
Val: Valine; Ile: Isoleucine; Leu: Leucine; Lys: Lysine; Glu: Glutamate; Ala: Alanine;
Gln: Glutamine; Asp: Aspartate; GPC: sn-glycero-3-phosphocholine; Ser: serine;
PE: O-phosphoethanolamine; Asc: ascorbate; mIno: myo-Inositole; Lac: Lactate;
Pro: Proline; HB: 3-Hydroxybutyrate; PCho: O-Phosphocholine; Thr: Threonine;
GSH: Glutathione; b-Glucose; a-Glucose; Ino: Inosine; Tyr: Tyrosine; Phe, pheny-
lalanine; Tau: Taurine; Ura: Uracil; Met: methionine.
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without an occurrence of mismatching of the entries. Interestingly,
the KNFST classifier matched all metabolites, although, for some
metabolites, the chemical shift deviation was around 30 Hz
(0.049 ppm), corresponding to a severe deviation that may cause
substantial uncertainty in the metabolic assignment.
8. Conclusions

This work enabled the automatic and accurate spectral assign-
ment of metabolites based on deconvolution of 2D-TOCSY NMR
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spectra by employing a semi-supervised machine learning
approach. We have customized and extended four semi-
supervised learning classifiers to test the automatic assignment
under different initial training set sizes. The correctness of the
metabolic assignments by our approach in applying 2D TOCSY
spectra was based on comparing the results deduced from 1D-
NMR spectra by human specialists on the same samples (real
breast cancer tissue sample). The KNFST and SVM classifiers show
high performance and low mislabeling rates for small and large
sizes of the initially labeled training data set. To accept or reject
the classification results of the classifiers, the concept of confi-
dence bands was implemented. Under the same settings, both
polynomial classifiers show a much weaker performance. For an
extremely small size (�9% of the entire dataset) of the initial train-
ing data set, PC3 and PC4 polynomial fail to provide good perfor-
mance compared to KNFST and SVM classifiers, while the latter
provided satisfactory performance as well as a low mislabeling
rate. Hence, KNFST and SVM show superior performance over the
other tested classifiers at every size of the initial training dataset.
Our study demonstrates that machine learning in metabolite
assignments based on the 2D TOCSY NMR spectra approach can
be considered accurate and robust.
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