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A B S T R A C T   

Bayesian deep learning (BDL) has emerged as a powerful technique for quantifying uncertainty in 
classification tasks, surpassing the effectiveness of traditional models by aligning with the 
probabilistic nature of real-world data. This alignment allows for informed decision-making by 
not only identifying the most likely outcome but also quantifying the surrounding uncertainty. 
Such capabilities hold great significance in fields like medical diagnoses and autonomous driving, 
where the consequences of misclassification are substantial. To further improve uncertainty 
quantification, the research community has introduced Bayesian model ensembles, which com-
bines multiple Bayesian models to enhance predictive accuracy and uncertainty quantification. 
These ensembles have exhibited superior performance compared to individual Bayesian models 
and even non-Bayesian counterparts. In this study, we propose a novel approach that leverages 
the power of Bayesian ensembles for enhanced uncertainty quantification. The proposed method 
exploits the disparity between predicted positive and negative classes and employes it as a 
ranking metric for model selection. For each instance or sample, the ensemble’s output for each 
class is determined by selecting the top ‘k’ models based on this ranking. Experimental results on 
different medical image classifications demonstrate that the proposed method consistently out-
performs or achieves comparable performance to conventional Bayesian ensemble. This investi-
gation highlights the practical application of Bayesian ensemble techniques in refining predictive 
performance and enhancing uncertainty evaluation in image classification tasks.   

1. Introduction 

In recent years, machine learning in general and deep learning, in particular, have made remarkable advancements in image 
processing tasks, such as classification, recognition, and segmentation. Deep learning has proven to be a powerful tool for many 
applications across various fields. In classification, accurate classification of images is essential for decision-making, which is much 
easier with the availability of state-of-the-art models and tools. However, another equally critical aspect is the ability to quantify the 
uncertainty associated with these predictions [1,2]. Uncertainty quantification (UQ) plays a crucial role in situations in which 
confident and reliable predictions are essential, such as medical diagnosis [2], autonomous systems [3], physics [4–6], and material 
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science [7–10]. Even though traditional deep learning methods can perform well and even achieve state-of-the-art results, they often 
fail to determine the uncertainties associated with models and data. Without explicit UQ, the model cannot provide sufficient insight 
into whether the result can be reliable, and their lack in ability to convey prediction confidence will make it difficult for 
decision-making processes, particularly in decision-sensitive fields such as healthcare [2,11–13]. Several methods, including Bayesian 
methods and ensemble learning, have been employed and developed to address these shortcomings. Despite the fact that these 
methods have been around for years; they are underemployed compared to the number of published works in the field. 

Bayesian deep learning (BDL) is one of the successful approaches that incorporate Bayesian concepts into neural networks to 
quantify uncertainty effectively. Traditional deep learning methods often provide point estimates without explicitly accounting for 
uncertainty, whereas Bayesian deep learning models utilize a posterior probability distribution that relies on prior knowledge dis-
tribution and the likelihood of the data being utilized [14]. This Bayesian framework enables uncertainty estimation by representing 
model weights as random variables. Prior knowledge incorporated into BDL can take different statistical distributions; yet, the most 
popular deep learning models are Bernoulli/binomial and Gaussian distributions for computer vision tasks [15]. The posterior dis-
tribution of BDL is used for prediction and UQ and can be generated by using the prior and likelihood to sample from the posterior 
distribution. Sampling can be divided into two types: exact and approximate sampling methods. Markov Chain Monte Carlo (MCMC) 
[16] is one example of an exact sampling method which is the most popular method used to sample from the posterior distribution. 
However, it has not gained popularity in deep learning models because it is computationally expensive and difficult to scale up for 
large datasets or a large number of features such as image data [2]. On the other hand, the popular approximate methods for sampling 
are the Monte Carlo Dropout (MC-Dropout) [14] and Variational Inference (VI) [17]. The MC-Dropout method samples from the 
Bernoulli/binomial distribution whereas the VI method samples from the Gaussian (normal) distribution as an estimate posterior 
distribution. These two approximate methods can be scaled up since they have fewer parameters compared to the MCMC [15]. 
Although the BDL can provide information about the model’s uncertainties, it can have a negative impact on the model’s performance 
most of the time particularly in classification tasks [18]. 

Another approach used for uncertainty quantification is ensemble methods [19], which can be particularly helpful when the noise 
ratio in the data is high or the model is complex. Uncertainty quantification in ensemble methods can be performed by combining 
various models or through fitting one model with diverse hyperparameters and capturing the uncertainty associated with different 
sources, such as training data, model architectures, or alternative initializations. Several techniques can be used to achieve that such as 
boosting, bagging, and stacking [1]. Bagging is a technique that involves training multiple models independently on different subsets 
of the training data. Each model is then applied to the test data to make a prediction, and the final prediction is obtained by averaging 
the outputs of all models. Boosting involves training models iteratively with the most difficult samples to classify. The idea is to 
combine several weak models into a single strong model. Stacking involves training multiple models, but instead of just averaging their 
outputs, it uses a method/model that learns how to integrate the underlying predictions of the base models. Ensemble for uncertainty 
quantification has been used in many applications, some examples of such applications are computer vision [1] spatiotemporal 
forecasting [20] mechanical machinery [21]. Published studies have demonstrated the ability and effectiveness of ensemble methods 
to quantify model uncertainty. 

While both Bayesian deep learning models and ensemble methods for uncertainty quantification have their advantages, each has its 
limitations as well. Bayesian deep learning generates probabilistic predictions, which provide a more comprehensive view of possible 
outcomes, rather than just a single-point prediction. However, this method is applied on a single model only. By combining predictions 
from multiple models, ensemble methods can prevent overfitting and improve generalization [22]. However, they cannot provide 
comprehensive outcomes and uncertainty quantification for each model. To overcome the limitations of both methods, combining the 
two methodologies can help improve capturing the uncertainty associated with each model; a typical approach to achieve this is 
through Bayesian model averaging (BMA) [23,24]. The BMA combines the predictions of individual Bayesian models, each repre-
senting a different uncertainty, by weighting them according to their posterior probabilities. This process results in an ensemble 
prediction that represents the uncertainty of combined models and provides a more robust estimate of the posterior distribution. This 
method can provide a good understanding of the uncertainty of each model also providing more generalized results simultaneously. 
However, BMA considers all models, even if one model performs poorly in particular instances of the data. 

Motivated by the need for reliable uncertainty quantification and improved accuracy of predictive models, this study presents a 
methodology that leverages Bayesian deep learning and ensemble methods. To achieve this, the proposed method used in this study is 
based on the ranking of uncertainty/confidence. The method picks only models with low uncertainty (high confidence) samples and 
averages these selected samples to sample from the posterior distribution. This can alleviate the issue of a model’s prediction when it 
performs poorly only on a particular type of input, which lead to increase the performance. 

The rest of this paper is organized as follows: In Section 2, we provide a comprehensive review of related literature in the fields of 
uncertainty quantification, Bayesian deep learning, and ensemble methods. Section 3 details the proposed methodology, explaining 
the architecture and training procedures for Bayesian deep learning models, and the ensembling approach. Section 4 presents the 
experimental setup and evaluation metrics as well as the results and discussion of the findings. Finally, Section 5 concludes the study 
with a summary of its contributions. 

2. Related work 

Bayesian deep learning for uncertainty quantification has attracted the attention of many researchers in recent years. BDL is 
particularly important in healthcare, where it has been applied to various medical imaging classification tasks, including cancer image 
classification, MRI image classification, histopathology image classification, X-ray image classification, and others. For example, Song 
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et al. [11] proposed a Bayesian deep learning method for reliable oral cancer image classification using Monte Carlo dropout 
(MC-Dropout). Yadav [12] proposed a Bayesian deep learning-based convolutional neural network for Parkinson’s disease classifi-
cation using functional magnetic resonance images. Their architecture combines a 3D convolutional neural network with a Bayesian 
network based on the LeNet-5 model. Meanwhile, Thiagarajan et al. [25] used Bayesian neural network classifiers to derive uncer-
tainty estimates for breast histopathology image classification using variational inference to approximate the posterior distribution. In 
the context of COVID-19 diagnosis, Gour and Jain [26] developed an uncertainty-aware convolutional neural network for COVID-19 
X-ray image classification using MC-Dropout to estimate the uncertainty of the model. Subramanian et al. [27] proposed a Bayesian 
optimization deep learning network to diagnose retinal disease through optical coherence tomography images to optimize the 
hyperparameters of the network. Additionally, Loey et al. [28] proposed a Bayesian-based optimized deep learning model for 
COVID-19 patient detection using chest X-ray image data. Variational Inference was used to estimate the posterior distribution. 
Addressing skin cancer classification, Abdar et al. [13] proposed a three-way decision-based Bayesian deep learning method for un-
certainty quantification. They used MC-Dropout to estimate model uncertainty. Although these methods have shown promising re-
sults, several challenges remain to be tackled. These include the necessity for diverse and unbiased datasets, potential data biases, and 
the difficulty surrounding the interpretation of the model’s uncertainty estimates. 

Over the years, various ensemble-based methods have been proposed for quantifying uncertainty. Althoff et al. [21] utilized 
dropout neural networks as an ensemble method for hydrological models. Although the proposed approach demonstrated efficiency, 
the choice of dropout rate was observed to affect the accuracy of the uncertainty estimates. Egele et al. [29] proposed an automated 
deep ensemble framework named Autodeuq, designed to simplify ensemble training for non-experts. However, they did not validate 
the reliability of the produced uncertainties. Hoffmann et al. [30] employed ensemble learning to quantify uncertainty in optical 
measurements; yet, they did not compare their results to Bayesian techniques for evaluating uncertainty. In summary, although 
ensemble methods exhibit promising potential for uncertainty quantification, certain challenges remain. These challenges encompass 
the fine-tuning of ensemble hyperparameters, the accurate assessment of uncertainty, and the comparative analysis with Bayesian 
approaches. 

A combination of ensemble models with Bayesian deep learning offers a solution to overcome the limitations inherent in both 
methods for uncertainty quantification. For this purpose, Pearce et al. [31] proposed using ensembles of neural networks to quantify 
the predictive uncertainty, revealing that an ensemble composed of Bayesian models effectively captures both aleatoric and epistemic 
uncertainties. Employing a neural tangent kernel approach, He et al. [32] developed Bayesian deep learning models that enable 
efficient posterior weights estimation and uncertainty quantification. However, their method focused only on epistemic uncertainty. In 
the context of intrusion detection, Zhang et al. [33] used an ensemble of Bayesian neural networks, achieving enhanced uncertainty 
quantification than a single Bayesian neural network. However, their proposed method required tuning of many hyperparameters. Li 

Fig. 1. Flowchart of the utilized method for uncertainty quantification.  
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et al. [34] developed a variational Bayesian deep-learning approach for hydrological modeling that efficiently estimates model un-
certainties. However, their method’s assumption of Gaussian approximation for posterior distributions may not always be applicable. 
Delving into the domain of distribution shift, Seligmann et al. [35] performed a large-scale evaluation of Bayesian deep learning 
models. They found that Bayesian ensembles performed best for uncertainty quantification under a distribution shift. In most cases, 
when ensemble methods and Bayesian deep learning are utilized, the BMA is used, or take the predictions of all models are predicted. 

In most instances where ensemble methods and Bayesian deep learning are utilized, they often involve Bayesian Model Averaging 
(BMA) or the aggregation of predictions from all models. The objective of this work is to integrate both ensemble and Bayesian models, 
retaining only those models with low uncertainty (high confidence) prediction. Subsequently, these selected predictions are averaged 
to yield samples from the posterior distribution. This can alleviate the issues related to poor model performance on particular types of 
inputs, potentially leading to enhanced overall performance. 

3. Methodology 

Bayesian ensemble deep learning is utilized in this study to quantify the uncertainty of the model outputs. The Bayesian method for 
deep learning is an excellent tool for uncertainty quantification; however, Bayesian models for deep learning cannot or marginally 
improve the model performance and can reduce the performance in many cases for image classification tasks. One way to improve 
performance in such cases is to utilize ensembles for Bayesian deep learning models. The goal of this work is to leverage Bayesian deep 
learning and ensemble methods to quantify uncertainty using Bayesian model averaging. Unlike the methods that consider all models 
for averaging, the proposed method only considers those models with the lowest uncertainty associated with them. This can be 
performed by ranking and selecting the top K model with the lowest uncertainty for the BMA. Details of the proposed method are 
presented in the following sections. Fig. 1 shows the flowchart of the proposed method for uncertainty quantification. 

3.1. Datasets 

The performance of the method proposed in this study was evaluated using two small-image classification datasets. The first dataset 
is called acute lymphoblastic leukemia (ALL) which has 3 K images with a low noise level and four different classes. The second dataset 
is a breast cancer dataset with grayscale images of breast cancer and has three classes. 

3.1.1. Acute lymphoblastic leukemia (ALL) 
The first dataset utilized in this study was the ALL image dataset collected by Mehrad et al. [36]. ALL refers to a malignant neoplasm 

cancer that affects the bone marrow and the blood. The bone marrow, which resides within bones, is responsible for producing blood 
cells. In ALL, immature white blood cells called lymphoblasts are excessively produced and fail to function properly, outnumbering 
normal blood cells. Consequently, this condition can lead to anemia, infection, and other severe health complications [37]. Leukemia, 
the broader category of ALL, can be classified into two main types: acute and chronic. Chronic leukemia is not very aggressive 
compared to the acute type, develops more slowly, and may not require immediate intervention [38]. In contrast, acute leukemia is 
more aggressive and necessitates immediate treatment, which is marked by the rapid production of underdeveloped blood cells. ALL, 
classified as acute leukemia, affects lymphoid cells, which are a particular variety of white blood cells responsible for enhancing the 
immune system in the human body. Children are more susceptible to ALL than adults and are characterized by rapid overproduction of 
immature lymphoblasts or lymphocytes. Immediate medical intervention is essential to prevent life-threatening consequences [39]. 

In this study, a dataset comprising Peripheral Blood Smear (PBS) images was used to diagnose ALL. Obtained from the bone marrow 
laboratory of Taleqani Hospital in Tehran, Iran, the dataset utilized ALL images from 89 individuals suspected of having ALL and 
collected 3256 PBS images [39]. Within the dataset, 25 individuals had benign conditions, whereas 64 individuals tested positive for a 
particular malignant lymphoblast type. Mehrad et al. [36] used this dataset to classify images into four categories: benign, early pre-B, 
pre-B, and pro-B. Some samples of these four classes are depicted in Fig. 2 ((A) Benign, (B) early Pre-B, (C) Pre-B, and (D) Pro-B). These 
images, which were captured using a Zeiss camera at 100× magnification, were improved and saved as JPG files. Despite its relatively 
small size, this dataset allowed a high level of accuracy to be achieved, which motivated its use in the present study. 

Fig. 2. Samples from the ALL dataset: (A) Benign, (B) early Pre-B, (C) Pre-B, and (D) Pro-B.  
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3.1.2. Breast cancer dataset 
Breast cancer is a type of malignancy that originates in the breast tissue and affects both women and men, although it is more 

commonly found in women. The disease is characterized by uncontrolled growth of abnormal cells within the breast tissue, leading to 
tumor formation. While some tumors are benign and lack the ability to spread, others are malignant and have the potential to 
metastasize to other parts of the body [40]. One of the most popular methods to diagnose breast cancer is by imaging techniques such 
as mammography or ultrasound [41]. The key to improved breast cancer survival rates and recovery is early detection and prompt 
medical attention [42]. 

Breast cancer detection and diagnosis have undergone significant advancements with the aid of medical image datasets. Al- 
Dhabyani et al. [41] contributed to this progress by introducing a Breast Ultrasound Dataset in 2018. This collection is specifically 
designed for breast cancer analysis using ultrasound scans and includes a diverse range of cases divided into three classes: normal, 
benign, and malignant. The dataset consisted of 780 grayscale breast ultrasound images gathered from 600 female subjects aged 
between 25 and 75 years old. A few samples from the breast cancer dataset are depicted in Fig. 3 ((A) Normal, (B) Benign, and (C) 
Malignant). The images had dimensions of approximately 500 × 500 pixels on average. The dataset was chosen for this study because 
of its relatively compact size and grayscale format, which facilitate classification tasks. The authors demonstrated the effectiveness of 
the dataset by employing machine-learning algorithms for breast cancer classification, detection, and segmentation. 

3.2. Data preparation 

In this study, we optimized the performance of our deep learning models through a series of steps during the data preparation. First, 
the images were resized to 128 × 128 pixels. This adjustment not only reduced computational demands but also maintained adequate 
resolution, allowing for accurate image analysis. Furthermore, addressing the challenge of class imbalance is crucial for achieving good 
classification performance of minority classes. This was accomplished by utilizing class weighting, in which each class was assigned a 
different weight. The objective was to test the performance of the ensemble model of Bayesian deep learning models and the un-
certainty associated with them rather than performing state-of-the-art results. Therefore, this study did not utilize any type of data 
augmentation, resampling, or other techniques to improve accuracy. Although these methods might have enhanced the accuracy, this 
work intentionally kept things simple to stay focused on the intended goals to be achieved. In the utilized model setup, the data were 
split into three subsets: 20 % allocated to the test set, 10 % assigned to the validation set, and the remaining 70 % dedicated to the 
training set. Finally, all data were normalized to ensure that the feature scales were similar for all the utilized models and data. This 
step is important for the generalizability and convergence of the model. 

3.3. Bayesian method for uncertainty 

Bayesian methods in deep learning have gained significant attention owing to their ability to quantify uncertainty in predictive 
models. Bayesian methods estimate uncertainty by treating model parameters (weights) as probability distributions rather than as 
fixed values. BDL offers advantages over conventional deep-learning models for image classification tasks by quantifying uncertainty, 
improving robustness, enabling transfer learning, improving model calibration, and supporting generalization. These advantages make 
BDL an appealing approach for different applications that require accurate predictions and reliable uncertainty estimates. 

BDL relies on Bayes’ theorem, which is a fundamental principle in probability theory. The Bayes’ theorem equation [15] can be 
written as follows: 

P(H|E)=
P(E|H) P(H)

P(E)
(1) 

The term P(H|E) represents the posterior probability of the hypothesis when the evidence is confirmed to be true. The term P(E|H)

which is called likelihood, which indicates the probability of evidence occurring under the assumption that the hypothesis is valid. The 

Fig. 3. Samples from breast cancer dataset: (A) Normal, (B) Benign, and (C) Malignant.  
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term P(H) refers to the prior assumption or probability of the hypothesis. Finally, the term P(E) refers to the probability that the 
evidence is true. 

In the context of BDL, equation (1) can be rewritten as: 

p(ω|D)=
p(D|ω) p(ω)

p(D)
(2)  

Where p(ω|D) refers to the posterior probability of weights given data, p(D|ω) indicates the likelihood of weights given data, p(ω) is the 
prior probability of weights, and p(D) is the marginal likelihood of data. 

In classification problems [18], the predictive distribution based on equation (2) can be calculated as: 

p(y′|x′,D)=

∫

p(y′|x′,ω)p(ω|D)dω ≈

∫

p(y′|x′,ω)q(ω)dω (3)  

The true posterior distribution in equation (3) which is p(ω|D) (or expressed as p(ω|x, y) for deep learning models), representing the 
model parameters ω, is inherently untraceable. However, it can be approximated with a simpler distribution q(ω), which must be 
traceable. In this study, the MC-Dropout method was employed to draw samples from the posterior distribution. MC-Dropout is a 
simple yet highly effective method for quantifying uncertainty in deep-learning models. It capitalizes on dropout layers that are used 
during training to prevent overfitting. During testing, MC-Dropout performs multiple forward passes through the network, retaining 
active dropout layers instead of deactivating them as in the conventional dropout method. MC-Dropout uses the Bernoulli distribution 
for each run, which leads to the generation of a binomial distribution over multiple-run averaging. MC-Dropout can have different 
rates for different models and can be managed through adjusting hyperparameters. Thus, the output of the network is transformed into 
a sample originating from the approximate posterior distribution of the model’s parameters. The predictive distribution for MC- 
Dropout [18]can be calculated as 

p(y′|x′,D)=

∫

p(y′|x′,ω)p(ω|D)dω ≈
1
T
∑T

t=1
p(y′|x′,ω) (4)  

The term p(y′|x′,ω), in equation (4), is the predicted probability for each class in the t-th dropout sample, and T denotes the number 
of samples used to predict the binomial distribution. The summation of the predicted values for each class can be used to draw the 
predicted destruction, subsequently quantifying the associated uncertainty in the predictions. 

3.4. Ensemble approach incorporating BDL models based on ranking 

Ensemble methods, which refer to the use of multiple models to produce a common output, have been employed in deep-learning 
models for a relatively long time. The main purpose of employing ensemble models is to provide more robust predictive results 
compared to those produced by individual models. Bayesian model averaging is a well-established method that integrates Bayesian 
models and ensembles by averaging the predictions of given outputs. For classification, Bayesian model averaging calculates the mean 
for each class by averaging the predictions of the classes from each model. 

The proposed method leverages Bayesian model averaging through the use of a ranking mechanism. While the conventional BMA 
uses averages for all models, the proposed method just averages the top-K model with the lowest uncertainty. The metric used to 
determine the top K predictions involves calculating the sum of the difference between the predicted probability of the “positive” class 
and that of the remaining “negative” classes. The predicted class is then determined by utilizing Softmax, a technique commonly used 
for multiclass classification, which assigns the class with the highest probability as the predicted class. It is important to note that the 
probability provided by Softmax sums to one, indicating the relative likelihood of each class. The difference utilized for ranking 
purposes can have a value between zero and one. A value of zero indicates that all classes have the same probability and there is high 
uncertainty in the model prediction. Conversely, a value of one denotes the situation where the positive class is assigned a probability 
of one while the remaining classes have probabilities of zero, which means that the model is very confident. However, it is worth noting 
that these two values, zero and one, are two extreme cases that rarely occur. Most of the time, the difference approaches one when the 
model is confident while deviating from one otherwise. This difference can be calculated using the following equation. 

Diffrence=

∑n

i=1
ClassP − Classi

n − 1
(5) 

The term ClassP refers to the highest probability associated with the predicted class “positive class”. The term Classi refers to all 
probabilities of classes. The division by n − 1 is used to find the average of all differences between the positive and negative classes. The 
discrepancies (Diffrence) for all models are calculated and sorted. Subsequently, the highest-ranking K models are chosen from the 
sorted models based on the magnitude of the discrepancy, signifying lower uncertainty. These chosen models then undergo the BMA 
procedure. For example, if K is set to 3, then the top three models are chosen with the highest discrepancy between positive and 
negative classes, which means the lowest uncertainty; then, the BMA is applied to find the prediction of each class. 

Algorithm 1summarizes the proposed ranking-based Bayesian deep learning ensemble method for uncertainty quantification for 
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image classification. 

Algorithm 1. Pseudocode of the proposed Ranking-based Bayesian deep learning ensemble method  
Input: Training, validation, and test data 
Output: Predicted class, posterior predictive distribution (mean and standard deviation) 

Method: 
Begin 

1) Load training, validation, and test data. 
2) Resize images to 128 × 128 pixels. 
3) Normalize data to have a similar scale. 
4) Find class weights of testing data to address imbalanced data issues. 
5) Load pre-trained CNN models on ImageNet. 
6) Tailor dense layers into a pre-trained model for classification. 
7) Train the model with MC-Dropout. 
8) Evaluate the model on testing data using MC-Dropout. 
9) Repeat steps 1 to 8 for different models. 
10) For each instance or sample predict the output classes. 
11) Find the difference between the predominant “positive” class and other “negative classes” using Eq. (5). 
12) Select Top K models for the ensemble and calculate BMA. 

End   

4. Experiments and results 

To check the effectiveness of the proposed method, we utilized five deep-learning models based on CNN architectures. These 
models were trained and tested using two separate image datasets, ALL and Breast Cancer, to evaluate the performance of the proposed 
method for tasks related to image classification. The training phase involved varying the number of epochs using the early stopping 
criteria. Typically, most of the models were trained for 30–60 epochs. 

In this study, an assessment was conducted to determine the effectiveness of the proposed method using five pre-trained deep 
learning models, namely, DenseNet, MobileNet, MobileNetv2, VGG16, and VGG19 from the TensorFlow library. These models, 
distinguished by their unique architectural attributes, were chosen as prime candidates for evaluating the performance of the proposed 
method. The use of pre-trained versions of these models, which were initially trained on the ImageNet dataset, was extended to the two 
datasets used in this study for the classification task. To facilitate efficient processing and feature extraction, a global average pooling 
layer was incorporated following the output of each model. Subsequently, the resulting feature vectors were channeled through a 
series of three dense layers, 1024, 64, and 4/3 neurons per layer, respectively. These layer configurations were specifically tailored to 
accommodate the characteristics of each dataset. The Softmax activation function was applied to the final layer, facilitating the 
generation of class probabilities for each instance or sample. 

Targeted fine-tuning was implemented to optimize model performance. For this purpose, the final ten layers of each model were 
fine-tuned using the abovementioned datasets, while the remaining layers were frozen to retain their original pre-trained features on 
ImageNet. Throughout the training phase, the Adam optimizer and Rectified Linear Unit (ReLU) activation functions were maintained 
across all model variants. It is important to highlight that the main goal of this research was not solely to attain state-of-the-art results 
within the utilized datasets but also to showcase the effectiveness and adaptability of the proposed method. 

To provide a comprehensive overview of the models employed, it is important to outline their specific attributes. DenseNet, 
characterized by a robust deep CNN architecture, involves a total of 121 layers, contributing to its capacity for complicated feature 
extraction and representation. In contrast, MobileNet features a more streamlined architecture with approximately 28 layers, resulting 
in an efficient computational performance while maintaining good accuracy. The MobileNetv2 model, an advanced version of 
MobileNet, takes this efficiency of the original version a step further, with an extended architecture of approximately 53 layers, 
maintaining a balance between model complexity and computational cost. On the other hand, utilizing VGG models, the VGG16 is 
characterized by an architecture comprising 16 layers, while VGG19 is an extended version with 19 layers. This design variation 
facilitates a deeper representation of hierarchical features. 

To quantify the uncertainty of each model, MC-Dropout was used as a Bayesian approximation method to derive samples from the 
posterior distribution. A total of 100 samples were drawn from the posterior distribution for each instance of the model. The method 

Table 1 
The performance of individual models using ALL dataset.  

Models Base Model Accuracy Bayesian version 

Accuracy Mean S. deviation 

DenseNet 0.9815 0.9661 0.9784 0.0780 
MobileNet 0.9861 0.9861 0.9946 0.0392 
MobileNetV2 0.9768 0.9661 0.9842 0.0705 
VGG16 0.9876 0.9876 0.9974 0.0240 
VGG19 0.9738 0.9738 0.9878 0.0567  
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was utilized in two different ways to evaluate the effectiveness of the top K uncertainty ranking. The first method utilized the top K on 
the samples themselves, and the second method applied the same method to the mean of the classes after sampling. The detailed results 
from these methodologies are presented in Tables 1–4 for both datasets used. 

Table 1 presents an exhaustive compilation of various models deployed along with their corresponding performances within the 
ALL dataset. Each model was tested in two distinct versions, and their performances were captured in terms of accuracy: the base 
model and the Bayesian version of the model. Both versions of the models were very similar in terms of the hyperparameters. Some 
Bayesian versions of models lack a bit behind non-Bayesian versions counterparts. Table 2 illustrates the performance of the ensemble 
of all five models, with the top three models referring to those models that used the difference (discrepancy) equation and ranking 
technique to select only the top three models with the highest difference rate between positive and negative predicted classes per 
instance. In general, the non-Bayesian model ensemble exhibited comparable or marginally lesser performance compared to Bayesian 
models. Intriguingly, Bayesian models that adhered to the top k = 3 in the tables performed better in terms of accuracy than Bayesian 
models that used all models to calculate the performance of the ensemble. Two distinct scenarios were explored: the first entailed 
conducting sampling on a single image, followed by the derivation of the posterior distribution for that image, and then using the mean 
to test the performance of the ensemble. In the second scenario, the difference (discrepancy) per sample was calculated to find the 
probability of each class, and then determine the posterior distribution of each class for an image. The ensemble performed better in 
both scenarios, particularly when the top three models were chosen, compared to models were all models used to test performance. 

Table 3 presents the performance of the models used in this study on the breast cancer dataset. The table provides accuracy 
regarding both the base models and their corresponding Bayesian versions. Importantly, the configurations of both models were 
similar in terms of the hyperparameters used. Table 4 illustrates the performance of the ensemble for all five models across three 
distinct setup environments. In the first setup, an ensemble of non-Bayesian models was tested. When non-Bayesian models were used, 
the ensemble of all models demonstrated superior performance compared to the application of the difference (discrepancy) equation 
with the top k = 3. However, the performance of the non-Bayesian ensemble lags behind the Bayesian versions of the ensemble. In the 
second setup, Bayesian versions of models were utilized, where the posterior distribution of each class for an image was calculated, and 
then the difference (discrepancy) equation was applied to the mean of these classes with k = 3 to select the top three models with the 
highest difference between the predicted negative and positive classes. In this setting, ensembles with all models performed less 
compared to those comprised of the top three models. In the last setup, the discrepancy equation applied to each sample of an image for 
the prediction of each class was calculated. These samples were then used to draw the posterior distribution. Evidently, the ensembles 
with the top three models outperformed the other ensembles encompassing all models, manifesting enhanced accuracy. Moreover, the 
accuracy of Bayesian ensembles demonstrated a noteworthy enhancement of 1.52% for the top k = 3 models when the mean was used, 
and 0.76% for ensembles where samples were used. Overall, the results revealed that Bayesian ensembles, particularly those using the 
top-k models, outperformed non-Bayesian ensembles and ensembles using all models in terms of accuracy. 

Figs. 4, 5, 6, and 7 show the probability of distribution of three images for all datasets, using ensemble samples. Fig. 4 indicates a 
case where the predicted image was misclassified. The early Pre-B class was erroneously identified as the predominant class despite not 
being so. In this particular image, four out of five models had misclassified predictions, with three of them incorrectly labeling it as 
early Pre-B. Notably, only one model classified it successfully; however, it also exhibited high uncertainty in the predicted class 
compared to the model uncertainty in general. Fig. 5 shows a case with low uncertainty and a correctly classified image. In this 
particular example, three models correctly classified prediction with low uncertainty, while two models classified it correctly but with 
moderate and high uncertainty in prediction. However, when utilizing the top three models, the predicted ensemble had low un-
certainty and correctly classified images. Fig. 6 depicts an illustration of high uncertainty paired with accurate classification. In this 
example, three Bayesian models misclassified the true class in the prediction, whereas the other two models correctly classified true 
classes. Nonetheless, both ensemble versions, those picking the top three models or utilizing all models to predict the class, effectively 
classified input images with high uncertainty. The last illustration, Fig. 7, indicates the case where ensembles witnessed a shift in 
model predictions. In this particular case, the three Bayesian models made incorrect predictions, whereas the other two models 
correctly classified the outputs. Interestingly, the top three ensemble versions appropriately classified the input, whereas the ensemble 
version, whereas the ensemble version employing all models for prediction encountered misclassification of the input image. 

In summary, the Bayesian deep-learning-based ensemble can leverage the performance of the Bayesian model while being able to 
quantify uncertainty. Bayesian ensembles generally perform better than non-Bayesian models, even though some individual Bayesian 
models may have lower accuracy rates. This is because the Bayesian model can generalize the prediction better than conventional 
models. Empirical evidence derived from this study indicates that the top K model in differences, according to these research findings, 
can perform better than averaging all models to calculate the prediction of ensembles, or at the very least, perform similarly with an 

Table 2 
The performance of different ensembles utilizing ALL dataset.  

Type of ensemble Accuracy Mean S. Deviation 

Base model (non-Bayesian) (top 3) 0.9953   
Base model (non-Bayesian) (all models) 0.9953   
Bayesian per mean (top 3) 0.9969 0.9924 0.0484 
Bayesian per mean (all models) 0.9953 0.9742 0.0731 
Bayesian per samples (top 3) 0.9969 0.9924 0.0449 
Bayesian per samples (all models) 0.9953 0.9742 0.0731  
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Table 3 
The performance of individual models using the breast cancer dataset.  

Models Base Model Accuracy Bayesian version 

Accuracy Mean S. deviation 

DenseNet 0.7948 0.7692 0.9244 0.1261 
MobileNet 0.8076 0.7948 0.9567 0.1010 
MobileNetV2 0.8012 0.8141 0.9382 0.1238 
VGG16 0.8141 0.8141 0.9292 0.1129 
VGG19 0.7884 0.7884 0.9558 0.0942  

Table 4 
The performance of different ensembles utilizing the breast cancer dataset.  

Type of ensemble Accuracy Mean S. Deviation 

Base model (non-Bayesian) (top 3) 0.8269   
Base model (non-Bayesian) (all models) 0.8397   
Bayesian per mean (top 3) 0.8525 0.9281 0.1395 
Bayesian per mean (all models) 0.8397 0.8690 0.1593 
Bayesian per samples (top 3) 0.8461 0.9216 0.1445 
Bayesian per samples (all models) 0.8397 0.8690 0.1593  

Fig. 4. Posterior distribution of misclassified ALL classes of ensemble output.  

Fig. 5. Posterior distribution of correctly classified ALL classes of ensemble output with low uncertainty.  
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appropriate number of models. Further investigations are needed, particularly on larger datasets, to demonstrate the general impact of 
choosing only some models based on predefined criteria, such as the differences (discrepancy) proposed within this study. 

5. Conclusion 

Bayesian deep learning emerges as a potent approach for assessing uncertainty in image classification tasks. However, there are 
cases where the performance of Bayesian models in uncertain classification legs behind conventional classification models. To bridge 
this performance disparity, a promising way involves harnessing the power of Bayesian model ensembles. These ensembles have 
exhibited the capability to outshine individual Bayesian models and even marginally outperform non-Bayesian ensembles across 
various scenarios. 

In this study, a novel technique has been introduced to leverage the ability of Bayesian ensembles to enhance uncertainty quan-
tification. The proposed method utilizes the difference (discrepancy) between predicted positive and negative classes, employing this 
metric to effectively rank models. By selecting the top-k models for each sample or instance, the ensemble generates outputs for 
positive and negative classes. The experimental results illustrate that this method enhances the performance of the predicted outputs 
or, at the very least, yields a comparable impact in terms of accuracy. Notably, the Bayesian ensemble’s accuracy witnessed an 
enhancement of up to 1.52% across various test datasets. 

Additional information 

No additional information is available for this paper. 

Fig. 6. Posterior distribution of correctly classified ALL classes of ensemble output with high uncertainty.  

Fig. 7. Posterior distribution of correctly classified only for k = 3 ensemble for ALL classes with high uncertainty.  
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