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Lee et al. [1] recently published a paper that is part of the special issue “Genome-Scale Modeling
of Microorganisms in the Real World”. In this article, the authors selected Megasphaera elsdenii as a
promising industrial producer of hexanoic acid and developed the genome-scale model that has been
claimed to improve the mechanistic understanding of the metabolic control of microbial biosynthesis
important for optimization of industrial bioprocess. I feel that the authors underestimated several
remarkable features of Megasphaera that perhaps were even more intriguing and attractive than
production of hexanoic acid. Besides a number of derived from in silico analysis look contradictory
and worth of open discussion.

Why Megasphaera elsdenii? Presently, we have nearly 300,000 fully sequenced microorganisms,
while genome-scale reconstructions cover no more than 100 species. Therefore, the judicious selection of
organism is important. The authors justify their choice by the potential biotechnological significance of
M. elsdenii as a producer of hexanoic acid and as a probiotic for ruminant animals. Yet, there are several
other missed features of this bacterium, which are probably even more important. Let us start from
the name. The genus name Megasphaera stands for big spheres. Indeed, these bacteria are real giants
among prokaryotes with their 2.6 m coccoid cells organized into characteristic chains up to 20 m and
longer (Figure 1). It makes M. elsdenii a very attractive model organism for in vivo and in situ studies;
their cells can be easily identified with optical microscopy even in communal specimens due to their
distinctive morphology and especially in combination with selective staining (immune-fluorescence,
FISH). The specific epithet elsdenii came after the name of the famous British microbiologist Sidney
Elsden. He not only isolated and described these bacteria but also contributed to the fundamentals of
metabolic reconstruction, which is the central focus of this Special Issue. In particular, he introduced
the concept of molar yield, YATP [2], which links microbial growth with metabolic stoichiometry.

Figure 1. M. elsdenii cells, reproduced from [3] with permission.
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M. elsdenii is traditionally called a rumen organism [4,5]; however, recently, it was also discovered
as a permanent commensal in the human microbiome inhabiting the oral cavity, digestive tract,
and vaginal tract of humans [6–8]. Furthermore, several Megasphaera strains were found to have strong
immunomodulation or/and neuroprotective activities [9]; that is why they are currently engaged in
development of the anticancer bacteriotherapy and for treatment of neurodegenerative diseases such
as Parkinson’s and Alzheimer’s. Some Megasphaera are a kind of “misdemeanor”; e.g., M. cerevisiae is
known as the bottled beer spoiler.

Apart from highly promising practical applications, M. elsdenii has attracted the attention of
microbiologists by its unique structural and metabolic properties; some of them are listed below:

A. The bacteria have a unique pseudo-outer membrane, making their cells stained Gram-negative
contrary to other members of the phylum Firmicutes, which is the largest portion of the human gut
microbiome. The role of this membrane has not yet been clarified.

B. The energy-generating metabolic network of M. elsdenii is also unique, as it combines
fermentation (substrate-level phosphorylation) with anaerobic respiration (ATP generation via the
electron transport chain). The terminal electron acceptor (TEA) has been identified as acrylyl-CoA,
the fermentation intermediate; in the course of anaerobic respiration, it is reduced to propionate [10].
The uniqueness of this TEA is that it belongs to the category of intermediates, being produced and
instantly consumed in a metabolic network. For comparison, other known respiring anaerobes use
external sources of TEA, such as nitrate, sulfate, CO2, Fe(III), Mn(IV), etc.

C. The C sources for M. elsdenii are limited to lactate (the first choice) and several sugars [11],
while the spectrum of metabolic end products is rather wide, including a near-complete homologous
series of primary monocarboxylic C1 to C6 fatty acids. It remains unknown which factors (stoichiometric,
genetic, or environmental) control the mixed fermentation and the split of the C flow between multiple
(up to seven) alternative pathways.

D. Many basic metabolic features of M. elsdenii are strain-dependent. The majority of other
microorganisms also display variability between strains, but these qualities are mostly non-essential
for growth activity such as secondary metabolism. In the case of Megasphaera, variability has been
observed in the most essential qualities; e.g., some strains can grow in a chemically defined media with
a single C source, while other require complex media with peptone and yeast extract. Some strains are
stable and robust, while others are fastidious. Generally, Megasphaera and closely related human and
ruminal commensals (Veillonella, Dialister, Anaeroglobus, Negativicoccus) have a speculative reputation
of highly fastidious and hard to culture organisms: they display an extended and poorly predictable
lag phase, frequent inoculation failures, low yield, and high mortality. The spectra of fermentation
products also vary among different strains of the same species [12].

Thus, M. elsdenii is interesting not only because of its industrial potential; it also triggers research
curiosity by many intriguing features. The genome-scale metabolic models (GEMs) could give a
powerful impetus for a better understanding of their biology and biotech optimization. GEMs are
especially attractive for “accelerated domestication” of the recently discovered microorganisms
including the development of chemically defined media and resolving numerous operational issues
behind growth instability [13–15]. Let us see now how efficiently the GEM works for M. elsdenii,
and whether it is able to explain any of the enigmatic qualities outlined above.

The genome-scale reconstruction of M. elsdenii was performed by Lee et al. [1] according to the
firmly established procedure [16]. It does not mean that this job was easy and straightforward. Any GEM
for a new organism requires a lot of manual effort, which includes searching published records and other
resources, correcting elemental and charge imbalances, matching genes to appropriate biochemical
reactions, filling the gaps, correcting annotation errors, etc. The developed FBA model called iME375
covers about 16% of the total genome accounting for 375 genes, 521 reactions, and 443 metabolites.
It was a significant step forward. The indisputable achievement of this work is that the first carefully
designed and refined FBA (Flux Balance Analysis) model for M. elsdenii was made available in a
standard SBML (Systems Biology Markup Language) format to other potential users. Now they can
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download iME375 and run the model for their own specific applications, add new elements, and further
improve it including a higher coverage of genes and reactions.

The experimental validation of GEM was based on a comparison of simulation with three sets
of experimental data (Table 1 in [1]); the authors proudly depict these results as evidence of the
“remarkably high consistency” of their iME375 model authentically reproducing (i) the specific growth
rate of bacteria (µ), (ii) specific C source (lactate or glucose) uptake rates (qs), and (iii) the rates of
fermentation products formation (qp). The statement seems to be overoptimistic. Three points below
specify our concern.

1. Selection of Verification Variables. We should distinguish the rates generated by a model and
those used as boundary conditions, i.e., the fixed values taken from published sources. The glucose or
lactate uptake rates qs belong to the second category [16]; therefore, they cannot be used for validation.
The µ-value is also not a perfect validation test because of linear correlation with qs [17]:

µ = Y(qs −m) ≈ Yqs (1)

where Y and m are two very conservative biokinetic parameters, the yield and maintenance coefficient,
respectively. The maintenance account is really significant only under deep substrate limitation in
chemostat culture but not in the substrate-sufficient exponential growth phase of a batch culture when
qs � m. The growth yield Y (g cell mass produced per g consumed substrate) does not vary too
much among diverse fermenting organisms. Thus, with the freedom to select any qs, the successful
µ simulation is equivalent to an adequate prediction of Y, which is not a challenging task and not a
strong validation test. Potentially only qp values, specific rates of products formation, can be used
fruitfully for model verification. Unfortunately, out of six potential M. elsdenii products, we can see
only 2–4 entries, and there was not any discussion of why the other products were missed.

2. Wrong Choice of Experimental Data Sets. The heart of FBA is the balance of mass, energy,
charge, elements, etc. However, the balancing would be impossible if some consumed C-sources are
completely ignored. That is what exactly happened with the validation of iME375: two out of three
sets of experimental data were obtained by using complex media with glucose or lactate combined
with yeast extract (YE) and peptone (P), the complex component being not accounted for in the model.
The authors try to convince reader that the YE and P contribute no more than “traces of amino acids”
and are fully consumed by bacteria over early exponential phase. This is obviously wrong. First, P and
especially YE contain a wide array of individual compounds apart from amino acids that should
have been transported and metabolized via pathways distinct from those accounted for in the iME375
model. Second, concentrations of YE and P were too high to be considered as ‘traces’, specifically
10 g/L each in the first experimental set versus 8.0 g/L of glucose [18] and 0.6 g/L of YP versus 3.15 g/L
of lactate in the second set [19]. Finally, as was shown with E. coli and other microorganisms [13–15],
in the presence of YE and P, the microbial metabolic network undergoes dramatic reconfiguration,
making the FBA solutions for complex and minimal media completely different. In order to apply
GEMs for auxotrophic cells that are not able to grow on minimal media, the initial conditions are
formulated as a vector qs = [q1, q2, . . . qn] for consumption rates of n individual compounds coming
from complex media [20–24]. The model iME375 does not include such vectors; therefore, only one
set of experimental data [5] can be left for further discussion. To prove a hopeless irrelevance of the
complex media data, we calculated the apparent cell yield on glucose Y (green curve) and µ (blue curve)
from the redrawn residual glucose and cell biomass (Figure 2, top). As expected, the apparent Y was
absurdly high because of the non-accounted consumption of YE and P. Even by the end of the growth
phase, Y remains 0.24 g/g, which is still too high for anaerobic growth, indicating that glucose is not
the only C source.
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Figure 2. Experimental validation of FBA. Top: M. elsdenii growth on complex medium [18]. Bottom: 
the minimal medium with lactate [5]. Curves were calculated from Equation (3). 

Figure 2. Experimental validation of FBA. Top: M. elsdenii growth on complex medium [18]. Bottom:
the minimal medium with lactate [5]. Curves were calculated from Equation (3).

3. Errors in Identification of Growth Parameters. Finally, the validation of iME375 by using the
minimal medium data also remains inconclusive. Figure 2 (bottom) shows data points redrawn from
the original publication [5] with our curve calculated from the simple exponential model. We assume
that µ is constant and the maintenance m = 0; then, the biomass (x) and residual lactate (s) follow two
differential equations:

dx
dt = µx

ds
dt = −

µx
Y

(2)

After integration under initial conditions x = x0, s = s0 at t = 0, we have two equations to be fitted
to the experimental data:

x = x0eµt

s = s0 −
x0
Y 0

(
eµt
− 1
) (3)
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Non-linear regression with Microsoft Solver gives the following best-fit parameters: qs = −32 mmol/h/g
cells, µ = 0.29 h−1, Y = 0.08 g/g. The qs value is in agreement with [1] but our µ estimate turned out to
be ≈5 times higher: 0.29 vs. 0.06 h−1! Then, curiously enough, the authors find (see Figure 3 in [1])
much higher µ-values reaching 0.6 h−1! A probable reason for failure of the iME375 to reproduce a
correct µ value was the too high COBRA parameter NGAM (non-growth associated maintenance)
3.5 mmol ATP/h/g borrowed from the chemostat study [25].

The FBA model is used for better understanding of bacterial metabolism and optimization.
Sadly, none of the points A through D in our introductory sections were touched. Basically, it was
possible to clarify point C about control of the mixed fermentation, but paper [1] misses this data and
discussion, focusing only on hexanoic acid. Point B (unusual anaerobic respiration) also has been
left without an explicit presentation of corresponding fluxes. Instead, the major attention was paid
to a fragment of the whole metabolic network representing the diverged branched pathway called
the bifurcated hexanoic acid synthetic pathways. To get a mechanistic insight into how the splitting of
the C flow is regulated, the authors applied the flux ratio analysis. They run iME375 with maximizing
hexanoic acid production as an objective function under a fixed glucose uptake rate 5 mmol/h/g and
constraining microbial growth rate at a series of values. The result was (see Figure 3 in [1]) that
the canonic pathway via acetyl-CoA (route A, red color code) was inversely related to the growth
rate, while a more exotic reversed TCA cycle route B (blue) stayed nearly the same at all tested µ.
In the second computational experiment, the split ratio between routes A and B was forcibly varied
at each µ, and it did not affect the simulated hexanoate production very much. It gave the ground
for the principal conclusion of this study that the highest hexanoic acid production is achieved with
“the balanced fractional contribution” of two pathways. The meaning of the word balanced remains
unclear, but the undertaken in silico approach eventually led to the pessimistic conclusion that genetic
manipulations (knockdown/overexpression) of the enzymes pfo and pyc next to the branching point are
likely not able to improve the productivity of the strain.

I believe that the presented results are not ready for any recommendation related to the practical
metabolic engineering and fully agree with the authors stating that “a comprehensive understanding
of the . . . in silico strain design is needed”. To explain the simulation results, we address the revised
version of the branching pathway (Figure 3). There are two competing pathways A (red) and B (blue)
extended to the point where they merge, producing the crotonyl-CoA that is finally converted to the end
product hexanoate. I also added the variable missed by the authors, it is the biomass, which is linked
globally to all intracellular metabolites. Indeed, the metabolites’ flow from pyruvate to hexanoate
is not isolated from the rest of the metabolic network, leading eventually to cellular reproduction;
all of the intermediates, although in different degrees, are diverted to biomass synthesis via selected
precursors identified in the half-empirical “biomass reaction”. Taking into account the withdrawal of
metabolites for biomass synthesis, we conclude that there are at least three rather than two processes
that compete with each other: route A, route B and biomass production with the sum of routes A
and B. However, how do we simulate the natural regulatory way for splitting three metabolic flows?
The conventional FBA way is to use the biomass formation as an objective function and then apply
linear programming to find such a fluxes pattern that maximizes µ. The tiny fragment of this pattern,
the fluxes immediately downstream of the branching points, will inform us about the partition of the A
and B routes, supporting the fastest growth.
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Figure 3. Schematic representation of the branched pathway as related to bacterial growth rate.
The orange frame stands for the cell wall separating the intracellular and extracellular variables.

To explore the true natural relationship between the growth rate and hexanoate production,
we should start from the question: what are experimental ways to modulate bacterial growth rate?
We have several experimental options: (i) running a series of batch cultivations with different C sources,
each providing a unique maximum specific growth rate, (ii) using non-lethal growth inhibitors at a
series of concentrations, and (iii) running chemostat culture at different dilution rates. The last approach
is the best if not the only reasonable option in combination with GEMs. Fortunately, even experimental
chemostat data are available for M. elsdenii [25]; we need only minor FBA modifications to set up
µ dependence on a limiting substrate concentration such as a Monod equation or more advanced
models. It can be done in the future, but presently, the approach used in [1] does not work: in real
life, growth deceleration (decrease of µ) is always accompanied by a corresponding decrease of qs

(see Equation (1)), while the authors dramatically changed µ at the constant glucose uptake rate. The C
balance for this particular situation looks as follows:

growth
µx

+
products formation

qpx
=

C source uptake
qsx

= constant. (4)

The sum of two terms for growth and products formation is kept constant; hence, growth restriction
should produce an equivalent increase of the product’s formation. It explains the intensification of route
A at a lower growth rate (see Figure 3b in [1]). The pattern for route B is less clear; formally, hexanoic
acid production via route B is not coupled with cell biosynthesis, but it can be just an artefactual
simulation result. Probably, an account of other fermentation products apart from hexanoic acid can
bring further clarification.

Concluding our review, the interpretive value of the iME375 seems not very high; the conclusions
generated by the flux ratio analysis seem to be not convincing and should not be recommended
for immediate practical implementations. The criticism should not be taken as discouragement.
Development of GEMs and their practical applications belong to a novel area where every new step is
not easy but highly valuable. The paper [1] definitely combines valuable result manifested as true
modeling benefits with a number of less productive in silico simulations that presently do not add too
much the microbiological knowledge. However, even ‘playing’ with a GEM model by applying it to an
unrealistic problem far away from biotechnological needs is not a wasting of time! It provides a useful
training exercise to learn one of the most powerful computational tools for the modern bioindustry.
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