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Abstract
Introduction Signal validation in pharmacovigilance is the process of evaluating data to decide whether evidence is sufficient 
to justify further assessment of a detected signal. During the signal validation process, safety experts in our organization 
are required to review signals of disproportionate reporting (SDRs) and classify them into one of six predefined categories.
Objective This experiment explored the extent to which predictive machine learning (ML) models can support the decision 
making of safety experts by accurately identifying the most appropriate predefined signal validation category.
Methods We extracted cumulative data for six medicinal products, consisting of historic SDR validations and Individual Case 
Safety Reports, from the company’s safety database for training and testing of the ML model. We implemented a decision 
tree-based supervised multiclass classifier model termed Gradient Boosted Trees followed by a SHapley Additive exPlana-
tions (SHAP) analysis to mitigate the “black box” effect of the ensemble model by identifying the key predicting features 
in the model. Following a retrospective analysis, a prospective experiment was conducted to test the model accuracy and 
user acceptance in a real-life setting.
Results The prediction accuracy of our ML model ranged from 83 to 86% over 3 months for the six medicinal products. The 
applicability of the model was confirmed by the company’s safety experts. Additionally, the systematic predictions provided 
valuable information to the safety experts and assisted them in reviewing the SDRs efficiently and consistently.
Conclusions This experiment demonstrated that it is possible to train a multiclass classification model to accurately predict 
signal validation categories for SDRs. More importantly, the transparency of the predictions provided by the SHAP analysis 
led to high acceptance by the safety experts.
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Key Points 

This experiment demonstrated that signal validation in 
pharmacovigilance can be supported by a machine learn-
ing (ML)-based prevalidation step to improve process 
efficiency and consistency. Medical review by safety 
experts remains an essential part of the signal valida-
tion process, but this can be performed faster and more 
consistently when augmented by ML predictions.

Model explainability plays a major role in gaining trust 
and acceptance of ML outputs in pharmacovigilance. 
SHapley Additive exPlanations (SHAP) analysis was 
used to improve model explainability.

1 Introduction

The goal of signal detection in pharmacovigilance is to detect 
the existence of new potentially causal associations, or new 
aspects of known associations, between medicinal products 
and events [1]. In the quantitative signal detection process, 
the use of disproportionality methods is a proven and widely 
used approach to identify signals from spontaneous adverse 
event reporting databases [2], which are termed signals of dis-
proportionate reporting (SDRs). Filters are applied based on 
predetermined thresholds, trend flags, and further re-signaling 
criteria to greatly reduce the number of resulting SDRs. The 
remaining identified SDRs are reviewed and validated. Sig-
nal validation is the process of evaluating the data supporting 
the detected signals to verify whether evidence is sufficient to 
justify further analysis [3]. Safety experts evaluate relevant 
information and classify the validated signal into predefined 
categories. The signal validation process is complex and labor 
intensive and may show variability in its decisions because of 
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the nature of this activity, which involves medical judgment 
that can vary between reviewers and over time.

There is reinforced interest and focus in research for the 
use of machine learning (ML) and artificial intelligence in a 
growing number of pharmacovigilance processes [4], includ-
ing decision support and automation in the processing and 
reporting of Individual Case Safety Reports (ICSRs) [5–7], 
identification of adverse events or other medical concepts 
from spontaneous reports or social media supported by natural 
language processing [8–10], and adverse event prediction for 
personalized medicine [11]. Efforts are also increasing within 
pharmacovigilance research to support the signal detection 
process using ML approaches [12–14].

In this experiment, we explored the extent to which ML can 
support safety experts during the signal validation process. On 
the subject of decision support for signal prioritization, which 
is closely related to signal validation, we found previous work 
performed using a multiattribute decision analysis [15].

Our main objective was to test whether ML can reliably 
predict signal validation classifications and support the deci-
sions of safety experts but not replace the medical review step. 
If successful, the efficiency and consistency of the currently 
manual signal validation process could be improved. In addi-
tion, we aimed to provide transparency around the ML outputs 
to achieve a high user acceptance for the ML-based approach.

2  Methods

2.1  Setup of the Experiment

Our experiment was guided by the following flow of 
activities.

1. We wanted to know whether an ML model could pre-
dict SDR validations and how accurate such predictions 
might be.

2. We used the data that SDRs are based on, i.e., ICSRs 
from the company’s safety database, and the SDRs and 
their validations contained in the company’s signal 
detection data mart.

3. In the first step (phase I), we used data retrospectively, 
transformed the data into features for ML, trained dif-
ferent models, tried some variations, compared the per-
formances, and selected the most promising model.

4. In a second step (phase II), we applied the most prom-
ising model prospectively to new data, presented the 
predictions to safety experts, asked them whether the 
predictions and their presentation were helpful, and cal-
culated the accuracy.

5. Finally, we reviewed what we learned and decided to 
share it in this publication.

2.2  Data Sources and Data Selection

2.2.1  Individual Case Safety Reports and Signals 
of Disproportionate Reporting (SDRs)

We used two data sources for our experiment: (1) the safety 
database containing ICSRs (“cases”) and (2) the signal 
detection data mart containing SDRs and their validations. 
In the quantitative signal detection process, ICSRs, each 
containing one or multiple product–event combinations 
(PECs), are transferred from the safety database into the 
signal detection data mart and get aggregated by PEC, i.e., 
by counting the number of ICSRs for each PEC. The propor-
tional reporting ratio (PRR) is run each month as a dispro-
portionality method to identify which of the PECs meet the 
criteria and thresholds for an SDR. SDR criteria are defined 
for first-time SDRs with number of cases (N) ≥ 3 and PRR 
≥ 2 and chi-squared (with Yates correction) ≥ 4 [16] and for 
re-signals in addition with a frequency increase ≥ 50% com-
pared with the frequency at the latest prior validation [17].

The same two data sources were used in phase I and 
II of our experiment, with only the data selection criteria 
differing.

• Phase I (retrospective experiment conducted in Septem-
ber 2020)

For three medicinal products:

o Cumulative case data up to 31 August 2020.
p SDR data and their validations originating from monthly 

signal runs performed from August 2014 to September 
2020, with a stratified split of 70% training and 30% test 
data.

q The phase I dataset contained 582,132 PEC records from 
ICSRs and 2105 SDRs and their validations from the 
signal detection data mart.

r Phase II (prospective experiment conducted in February, 
March, and April 2021)

For six medicinal products (including the three from 
phase I):

o Cumulative case data up to 31 January 2021, 28 Febru-
ary 2021, and 31 March 2021, respectively.

p SDR data and their validations originating from monthly 
signal runs performed from August 2014 to January 
2021, plus SDRs for the subsequent month of the experi-
ment—February, March, and April 2021—used for val-
idation predictions. Note: SDR validations performed 
by safety experts for February and March 2021 were 
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included into the dataset for model retraining in March 
and April 2021, respectively.

q The latest phase II dataset contained 2.3 million PEC 
records and 6,606 SDRs and their validations.

The three products selected for phase I were two drugs 
and one biological product. They represent the late stage of 
the product life cycle and were chosen for the experiment 
because of their large dataset of historic ICSRs and SDRs. 
This helped to ensure the availability of a considerable 
amount of data for training the model. Phase II expanded 
the selection by an additional three drugs, which diversified 
the products across six different therapeutic areas and drug 
classes, from both the pharmaceuticals and the consumer 
health divisions.

2.2.2  SDR Validations

In our organization, SDRs are validated by safety experts 
as signal or no signal using one of five no signal classifica-
tions: listed/expected adverse drug reaction (ADR), no ADR, 
recently investigated, medical judgment, or confounding by 
indication. The five no signal classifications thus include 
the rationale for the no signal validation decision. These six 
predefined categories are specific to the authors' organiza-
tion; other organizations may classify SDRs differently. The 
safety experts choose the signal validation category based on 
product knowledge and the evaluation of supporting infor-
mation, including ICSR review.

Figure 1 shows the distribution of SDR validation classes 
observed in the data extracted for phase I and II. The vast 
majority of the SDRs were validated as no signal, with medi-
cal judgment being the most frequent category selected by 
the safety experts.

There is existing guidance as to which information shall 
be considered during signal validation, prioritization, 
and further assessment for decision making [3, 15, 18]. 
The guidance refers to previous awareness of the signal, 
strength of evidence about the causal relationship between 
the medicinal product and the event, and the clinical rel-
evance of the ADR [3]. Regulatory guidance, as well as 
interviews with our company’s safety experts, helped to 
determine the selection of attributes for the data extraction 
and feature creation to inform the signal validation pro-
cess. Both case data and SDR data were extracted on the 
level of medicinal product name and event Medical Dic-
tionary for Regulatory Activities  (MedDRA®) preferred 
term (PT), as this is the data aggregation level used in the 
signal detection and validation process (Table 1).

2.3  Phase I: Set Up the Machine Learning Pipeline 
and Select a Promising Model

For the retrospective experiment (phase I), we considered 
ICSRs and historic SDRs and their validations from the past 
6 years for three medicinal products. The data were used to 
train and test different ML models.

Fig. 1  Overall distribution of validated signals of disproportionate reporting over various categories in the historic signal validation data 
extracted for phase I and II of the experiment. ADR adverse drug reaction
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2.3.1  Feature Engineering

The two feature sets used in our ML model were extracted 
from ICSR and SDR data. Most of the ICSR data were cate-
gorical in nature. They were converted into one-hot encoded 
representation [20] and then features were derived for each 
PEC by aggregating the ICSR data into a collection of fea-
tures representing percentages and totals (see Table 2 for an 

example). These ICSR features were then combined with the 
SDR data, using the PEC as linking key. This approach of 
feature engineering provided unique data profiles of SDRs 
consisting of “percentage” and “total” ICSR features and the 
corresponding SDR validation annotations by safety experts.

Additional features were introduced at the SDR level, 
which counted how many times SDRs for the same PEC 
were assigned to which of the six possible signal validation 

Table 1  Case data attributes extracted from the spontaneous reporting database, and signal of disproportionate reporting data attributes extracted 
from the signal detection data mart

DME designated medical event, ICH International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, 
PEC product–event combination, SDR signal of disproportionate reporting
a E2B(R3) data types and values were not explicitly retrieved and used as specified by the ICH. The E2B(R3) reference is only listed for the sake 
of clarity and attribute identification
b Attributes used for linking of the two datasets
c The signal detection periodicity is monthly. “Current period” refers to a 1-month look-back period into the previous month. “Prior period” 
refers to a look-back into the month when an SDR for the same PEC was validated the last time in the past
d Number of cases for this PEC divided by number of cases for the product
e Signal validation classification for the SDR done by safety expert in the past

Data source Attribute level Attributes ICH E2B(R3)  referencea [19]

Case data from 
safety database

Case attributes Report type
Country of incidence
Case medically confirmed

C.1.3
E.i.9
E.i.8

Patient attributes Age group
Gender
Ethnicity
Pregnancy

D.2.3
D.5
Not available
Not available

Product attributes Medicinal product name (suspect products)b

List of indications (1–3) as preferred terms
G.k.2.1.1b/ G.k.2.1.2b
G.k.7.r.2b

Event attributes Event preferred  termb

Event seriousness
Event outcome

E.i.2.1b
E.i.3.2
E.i.7

PEC attributes Time to onset of event
Dechallenge
Rechallenge
Event listedness
Reporter causality
Company causality

G.k.9.i.3.1
G.k.8 and E.i.7
G.k.9.i.4
Not available
G.k.9.i.2.r.1 and r.3
G.k.9.i.2.r.1 and r.3

SDR data from 
signal detection 
data mart

SDR attributes Medicinal product name (suspect product of interest)b

Event preferred  termb

Flags:
•DME flag (as per company-specific DME list)
•listed flag (as per company core data sheet)
•trend flag (indicating an increased period frequency)

Not available

Case counts Case counts for this PEC:
Each of them (a) cumulative, (b) for the current period,c 

and (c) for the prior  periodc:
•Total number of cases (all report types)
•Number of cases with report type spontaneous or litera-

ture
•Number of cases with report type study or published 

report from study
•Number of serious cases
•Number of fatal cases
•Case  frequencyd

Not available

SDR validation attributes SDR validation  outcomee Not available
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categories in the past. These count-based features were com-
puted for all SDRs for which prior signal validations existed 
in the database and used as a look-back mechanism on past 
annotations of the safety experts while predicting the signal 
validation category. For the SDRs with no prior validations 
except the most recent one, these count-based features were 
filled with zeros.

2.3.2  Model Competition

In phase I, accuracy, weighted average F1 score (weighted 
by class frequency), and macro-average F1 score (arithmetic 
mean of class-wise F1 scores) [21] were used to decide upon 
the best-performing ML classification model and to compare 
models A and B (Sect. 2.3.3). All metrics were calculated 
using the Python Scikit-learn package [22].

To understand the behavior and performance of various 
types of ML models for our specific use case of signal vali-
dation classification, a classifier performance analysis was 
conducted where various ML models were trained and tested 
and the winner model was chosen based on the most stable 
and highest results in the model performance metrics. To 
ensure the stability of the results, a 3-fold cross validation 
and a feature ablation test were implemented. This ensured 
that the ML classifier neither overfit to a certain group of 
SDRs nor was dependent on only a certain subset of features. 
In this analysis, Random Forest, Linear Support Vector Clas-
sifier, Logistic Regression [23, 24] and eXtreme Gradient 
Boosting implementation of Gradient boosted trees ensem-
ble model (XGBoost) [25] were compared. Additionally, the 
Synthetic Minority Oversampling Technique (SMOTE) [26] 
was tested to address the class imbalance in the historic SDR 
data (Fig. 1).

The XGBoost model was the most stable and highest 
performing amongst all models tested for our use case with 
respect to performance scores. Therefore, we decided to use 
XGBoost for the classification task in the scope of our work.

Ultimately, the XGBoost model was trained with 100 
boosting rounds using a learning rate of 0.1, a maximum tree 
depth of three layers, and L1 and L2 regularization terms 
equal to 0 and 1, respectively. The model was optimized 
using the multiclass classification error rate, which was 
calculated as the ratio of the number of wrongly classified 
SDRs to the total SDRs.

2.3.3  Model Variations: New vs. Recurring SDRs

To explore model variations, the data were split as shown in 
Fig. 2 and then fed into two instances of XGBoost, model 
A and model B. The first split was to separate out data for 
SDRs that had at least one preexisting validation from the 
SDRs that had no preexisting validation. This split allowed 
us to understand the behavior of the ML model in these two 
different groups of SDRs. The data for SDRs that had at least 
one preexisting validation were fed into model A, and the 
data for SDRs with no preexisting validation were fed into 
model B. The second split of the data was for the purpose of 
evaluating the ML models. The models were trained on 70% 
of the data and tested using the remaining 30% of the data 
by comparing the model predictions with the actual SDR 
validations completed by safety experts. This second split 
provided unbiased representative samples for model training 
and testing by first stratifying the data by SDR validation 
classes, randomly shuffling the data in each stratum, and 
then drawing training and test datasets.

Table 2  Example of how features were engineered from the Individual Case Safety Report data for the Rechallenge attribute by creating two fea-
tures (total and percent) for each available Rechallenge value (yes, no, unknown).

ICSR Individual Case Safety Report

ICSR data

Case number Product Event Rechallenge

1 3 2 Yes
2 3 2 Yes
3 3 2 No
4 3 2 No
5 3 2 Unknown

Resulting model features

Product Event Rechallenge Yes 
total

Rechallenge Yes 
percent

Rechallenge No total Rechallenge No 
percent

Rechallenge 
Unknown total

Rechallenge 
Unknown 
percent

3 2 2 40% 2 40% 1 20%
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2.4  Phase II: Test the Model and Its Acceptance 
in a Real‑Life Setting

Based on the promising results achieved in phase I of the 
experiment, the model was further tested in phase II in a 
3-month prospective experiment. The experiment was 
expanded to include six products and ran in parallel with 
our organization’s real-life monthly signal detection and 
validation process. It leveraged the same type of ML model 
as in phase I, i.e., XGBoost. However, in phase II, the model 
was trained on the entire phase II training dataset, and no 
separation into model A and B was performed because it was 
desired to have one single ML model that generalized to the 
complete dataset without separation of two groups of SDRs.

During this phase, each month, safety experts received 
the SDR validation predictions produced by the model for 
the respective month, performed their signal validation, and 
evaluated the usefulness of the model predictions. After each 
month, the model was retrained including the new SDR vali-
dations added by the safety experts based on their expertise. 
This scheme demonstrated a human feedback loop into the 
model to retrain it with the latest SDR validations.

For phase II of the experiment, accuracy was defined as 
an exact match percentage, i.e., percentage of matches of 
predicted classes to the classes assigned by safety experts. 
This accuracy was measured overall, as well as broken down 
by medicinal product and month, by novelty of SDR (first-
time SDR vs. recurring SDR), and by signal validation class.

2.5  Model Explainability and Interpretability

To enable ML model interpretability, a SHapley Additive 
exPlanations (SHAP) analysis was implemented [27].

In phase I of the experiment, SHAP analysis was used 
to understand the “global” impact of input features on the 
overall model, which is further detailed in Sect. 3.

The SHAP framework also provides the capability to 
explore the “local” feature effects [28], which illustrates the 
impact of input features on individual predictions. This was 
used in phase II to present the three highest impact features 
for each model prediction to the safety experts.

The implications of model interpretability for use of ML 
in pharmacovigilance are further explained in Sect. 4.

3  Results

3.1  Phase I (Retrospective Experiment)

3.1.1  Model Performance

As described in Sect. 2.3.3, during phase I of the experi-
ment, data were split and results computed for two types of 
SDRs in our data: 26% of the SDRs had at least one prior 
validation, and these data were used for model A (Fig. 3a); 
74% of SDRs had no prior validation, and these data were 
used for model B (Fig. 3b).

In normalized confusion matrices (Fig. 3), better model 
performance is represented by higher numbers on the diago-
nal of the confusion matrix because entries on the diagonal 
represent correct classifications by the model. Off-diagonal 
entries show misclassifications. Fig. 3 shows that model A 
performed relatively better than model B overall despite 
the lower quantity of data for it. It can be seen in Fig. 3b 
that model B relatively misclassified more data from the 
no signal—no adr, no signal—recently investigated, and no 
signal—listed/expected adr categories into the false category 
of no signal—medical judgment because it had relatively 

Fig. 2  Overall scheme of the data and model for phase I of the experiment showing the two splits in the data to evaluate the behavior of the 
model in each of the two groups of signal of disproportionate reporting (SDR) data



589Supervised Machine Learning-Based Decision Support for Signal Validation Classification

less discriminatory power because of a lack of prior vali-
dations. However, Fig. 3a shows that model A performed 
relatively better overall by showing lower values in off-diag-
onal entries, suggesting better classifications produced by 
the model. These findings demonstrate that the presence of 
prior validation counts in the feature set contributed to more 
correct classifications by the model.

Table 3 shows the comparison of the performance in terms 
of the classification reports produced using model A and model 
B. It can be observed that model B achieved a better macro-
average F1 score than model A (0.58 vs. 0.53, respectively). 
However, when comparing accuracy, model A performed 
slightly better than model B (0.84 vs. 0.83, respectively).

Furthermore, when comparing the class-wise F1 scores, 
the model performance for the classes no signal—confound-
ing by indication and no signal—listed/expected adr ben-
efited from prior validation count features. This finding was 
supported by observations in phase II of the experiment: 
when safety experts assigned a validation category of no 
signal—confounding by indication or no signal—listed/
expected adr to an SDR, there was a high likelihood that 
their validation decision would stay the same for that SDR 
when it was re-signaled the next time by the signal detec-
tion system. Therefore, this knowledge of prior validation 
informing the future validation category led to a visible per-
formance benefit of model A (see Table 3).

For the class no signal—no adr, model A showed a lower 
F1 score because of lower recall when compared with model 
B. The lower recall was because prior validations for no 

signal—no adr contained both no signal—medical judgment 
and no signal—no adr, and—in this scenario—model A did 
not benefit from the prior validations.

There were very few SDRs with validation class signal 
in the training data and only one SDR of such a class in the 
test set of model A. For model B, there were no SDRs with 
validation class signal in train or test data.

Another noticeable difference between models A and B 
is that there were no SDRs with signal categorization of no 
signal—recently investigated in the model A test data.

3.1.2  Model Explainability: “Global” Feature Impact

This section presents the results of the SHAP analysis. A notable 
difference in the SHAP-based overall feature importance can be 
observed for model A (Fig. 4a) versus model B (Fig. 4b).

Figure 4a indicates that the feature N_PRIOR_no_sig-
nal—listed/expected adr, which contains the count of how 
many times in the past a given SDR was categorized as no 
signal—listed/expected adr, had the highest overall impact 
on the ML model, and the purple color shows that it was 
the most informative for the same corresponding class no 
signal—listed/expected adr, based on which this feature was 
created. Also, we see the same for the following similar three 
highest impact features: N_PRIOR_no_signal—medical 
judgment, N_PRIOR_no_signal – no adr, and N_PRIOR_
no_signal—confounding by indication. These were also 
highly informative about the respective classes, based on 
which these were calculated.

Fig. 3  Normalized confusion matrix for SDR validation classifi-
cations in phase I of the experiment. a Confusion matrix for model 
A: SDRs with at least one prior validation; 26% of SDRs belonged 
to this group. b Confusion matrix for model B: SDRs with no prior 
validation; 74% of SDRs belonged to this group. Values and color 
scale range from 0.00 (0% of true class) to 1.00 (100% of true class). 

Results are based on the 30% test datasets for model A and model 
B. ADR adverse drug reaction, predicted label signal validation pre-
diction by ML model, SDR signal of disproportionate reporting, true 
label signal validation outcome determined by safety expert, XGB 
eXtreme Gradient Boosting model
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Another interesting point to note here is that the feature COM-
PANY_CAUSALITY_unrelated_percent, which quantifies the per-
centage of unrelated event reports based on the company causal-
ity assessment for the PECs, was also informative to discriminate 
between the classes no signal—listed/expected adr and no signal—
confounding by indication. This finding was discussed with safety 
experts, and they were in agreement that the company’s causal-
ity assessment in the ICSR data also helps in deciding whether 
an SDR was no signal because of confounding by indication or 
because it was already listed and expected.

In model B, the feature COMPANY_CAUSALITY_
unrelated_percent had the highest impact on the model 

performance and was the most informative feature about 
the no signal—confounding by indication class (Fig. 4b). 
Additionally, the feature named LISTEDNESS_listed_per-
cent, which quantifies the percentage of listed events for the 
respective PEC, was the second most important feature for the 
model. The dominant purple color of this bar shows that it was 
the most informative feature for the no signal—listed/expected 
adr class in the data, which is expected because SDRs would 
be categorized into this class most likely if the majority of the 
underlying PECs are marked as listed in the respective ICSRs.

Importantly, the feature importance order and correspond-
ing impacts on individual classes was different between the 

Table 3  Test set distribution and model performance metrics for model A and model B in phase I of the experiment

Results are based on the 30% test datasets for model A and model B
ADR adverse drug reaction, SDR signal of disproportionate reporting

SDR validation class Model A – 386 (26%) SDRs with one or more 
prior validations

Model B – 1519 (74%) SDRs without prior valida-
tion

Precision Recall F1 score Test records (73) Precision Recall F1 score Test records (525)

No signal—confounding by indication 0.80 1.00 0.89 10.96% 0.76 0.75 0.75 10.48%
No signal—listed/expected adr 0.75 0.92 0.83 17.81% 0.79 0.71 0.75 18.48%
No signal—medical judgment 0.90 0.84 0.87 61.64% 0.87 0.90 0.88 64.19%
No signal—no adr 0.75 0.50 0.60 8.22% 0.68 0.66 0.67 6.10%
No signal—recently investigated 0.00 0.00 0.00 0.00% 1.00 0.25 0.40 0.76%
Signal 0.00 0.00 0.00 1.37% 0.00 0.00 0.00 0.00%
Accuracy 0.84 0.83
Macro-average F1 score 0.53 0.54 0.53 0.68 0.54 0.58
Weighted-average F1 score 0.84 0.84 0.83 0.83 0.83 0.83

Fig. 4  Comparison of the overall feature importance for model A and 
model B in phase I of the experiment. a Plot for SDRs with one or 
more prior validations. b Plot for SDRs with no prior validations for 
the SDRs. The comparison between the two figures shows that the 
machine learning model benefits from the availability of prior valida-
tion features. When the model does not have prior validation infor-
mation, it leverages features computed from case data. The length 
of the bars depicts the magnitude of the impact of various features 

on informing the machine learning model. The color within the bars 
explains the specific class or classes for which the feature contrib-
uted to informing the model. However, this plot does not indicate the 
direction of impact, i.e., whether the impact of the feature is positive 
or negative. The figure was produced using SHAP TreeExplainer 
package [28]. Results are based on the 30% test datasets for model A 
and model B. ADR adverse drug reaction, SDR signal of dispropor-
tionate reporting
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two models. It can also be seen that model A considered 
the prior validation count features as the most informative 
for discriminating between the classes. On the other hand, 
model B utilized almost all available features that were com-
puted from ICSR data, in absence of prior validations.

3.2  Phase II (Prospective Experiment)

3.2.1  Presentation of Model Predictions: Confidence Scores 
and “Local” Feature Impact

Table 4 shows how the ML model predictions were pre-
sented to the safety experts in phase II of our experiment. To 
quantify the reliability of the model’s predictions, probabili-
ties for the predicted classes were calculated. The class with 
the highest probability was considered as the final prediction 
class and the corresponding probability was presented as the 
confidence score. To further assist with the interpretation 
of the results and to develop trust in the predictions of the 
model, all other class probabilities from the model were also 
presented to the safety experts in descending order. SHAP’s 
“local” explanations capability was also used to display the 
three highest impact features for each prediction.

3.2.2  Model Performance

Overall, 133 SDRs were classified during the prospective phase 
II experiment for the six medicinal products. The accuracy in 
phase II was stable over the 3 months (83–86%; see Table 5) and 
confirmed the accuracy level found in phase I of the experiment. 
Accuracy for recurring SDRs (90.0%) was better than for SDRs 
that signaled for the first time (72.1%; see Table 6), which again 
confirmed the previous findings of phase I. During the 3 months, 
no SDRs were classified as signal or no signal—recently inves-
tigated by the safety experts for the six products in scope. The 

majority of SDRs again fell into the no signal—medical judgment 
category (94 of 133 SDRs; see Table 7). This corresponds with 
the distribution of classes in the historic signal validation data. 
The prediction accuracy for the class no signal—medical judg-
ment was the highest (92.6%) of all classes.

3.2.3  User Acceptance

SHAP analysis was introduced during phase I of the experi-
ment based on the safety experts’ feedback. They wanted to 
understand how the model predicted the signal validations.

The SHAP analysis provided an explanation of the most 
important features that affected the decisions of the ML 
model. The safety experts accepted the decision-support tool 
because the SHAP information provided transparency of the 
model’s decision rationale.

In addition to the most important features, the presenta-
tion of the model’s confidence scores also contributed to 
higher user acceptance. We found that the SDR validations 
that matched between safety experts and the model had, 
in general, higher confidence scores in their predictions, 
whereas the “no matches” had widespread and generally 
lower confidence scores (data not shown).

4  Discussion

4.1  Model Performance: Strengths and Limitations 
of the Model

Our experiment to explore the predictive capabilities of ML 
for signal validation showed promising results. The results 
from the performance metrics (see Tables 3, 5, 6, 7) illus-
trate that an off-the-shelf XGBoost ML model can differ-
entiate between the various classes of no signal SDRs by 

Table 4  Example for a signal validation prediction for one SDR in month 2 of phase II of the experiment showing the information presented to 
safety experts

These additional columns were embedded in a signal validation report containing all SDR information from the signal detection system with one 
line per SDR
OUTCOME_not_recovered_not_resolved_percent: percentage of cases where the event outcome was “not recovered/resolved” from all cases 
with this PEC, PEC product–event combination, PROD_N_PERIOD: number of new cases for the product in latest signal detection period, SDR 
signal of disproportionate reporting, TREND_FLAG_new: trend flag “new” indicating that this PEC was identified as SDR the first time

Product Event Signal validation prediction Confidence score Top three highest impact features Probabilities for other signal valida-
tion classes

2 8 No signal—medical judgment 0.972 PROD_N_PERIOD,
TREND_FLAG_new,
OUTCOME_not_recovered_not_

resolved_percent

No signal—confounding by indica-
tion: 0.01

No signal—listed/expected adr: 0.01
No signal—no adr: 0.005
Signal: 0.002
No signal—recently investigated: 

0.001
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utilizing the company’s ICSR and SDR data and without 
further data annotation.

The no signal—medical judgment category conceptually 
contains multiple subcategories from the decision criteria 
point of view, making it the majority class in the data and 
ML model. This resulted in better performance for this class, 
presumably since it had more examples for training of the 
model.

An important strength of our model is that it leverages 
the prior validation features that provide information about 
how many times historically the SDRs have been assigned 
to which signal validation categories. This provides a look-
back mechanism to the model when making a prediction 
about a given SDR. For example, if a certain SDR has been 
categorized as no signal—listed/expected adr in the past, 
the model remembers this past validation of the SDR and 
provides consistency in the signal validation decision.

We hypothesized that an oversampling approach such 
as SMOTE should help the classifier improve its perfor-
mance using more data points for learning. Surprisingly, the 
SMOTE implementation experiment did not help the model 
in improving its performance and even slightly decreased 
the accuracy and macro F1 score of the classifier, and thus 
was not utilized in the final model. One reason for this slight 
performance degradation of the XGBoost model could be 
that SMOTE generalized the model too much and thereby 
missed learning the nuances within the original data of the 
minority classes.

Further testing is needed to confirm the generalizability 
of the model since the experiment covered a limited number 
of products only. An extended diverse set of products from 
different phases of the product life cycle is recommended to 
be used for further testing of model generalization.

A limitation in our experiment was the low, single digit, 
number of SDRs classified as signal in the data that were 
used for model training and testing. Given such scarce Ta
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Table 6  Accuracy of signal validation predictions by novelty of sig-
nal of disproportionate reporting in phase II of the experiment

ML machine learning, PEC product–event combination, SDR signal 
of disproportionate reporting
a Prediction by the ML model matched the signal validation outcome 
determined by safety expert
b SDR for a specific PEC that was identified for the first time by the 
signal detection system
c SDR for a specific PEC that had already been identified one or more 
times but meets predefined re-signaling criteria

Novelty of SDR Number of SDRs Accuracy

Matcha No match Total

New  SDRb 31 12 43 72.1%
Recurring  SDRc 81 9 90 90.0%
Total 112 21 133 84.2%
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“ground truth” to learn from, we expected a low perfor-
mance of the model to correctly classify SDRs as signal. In 
fact, in phase I, the test data only contained one signal, and 
this was misclassified by the model. In phase II, the test data 
contained not even one signal, so the model performance for 
the signal class could not be calculated. Because the signal 
versus no signal classification is essential in the signal vali-
dation process, we plan to address this limitation in future 
enhancements (see Sect. 4.4).

4.2  Explainability

Ensemble tree models such as Random Forests and Gra-
dient Boosted Trees are often go-to models as they can 
perform well in various domains [29, 30]. However, in 
addition to high accuracy, interpretability is also highly 
desirable. Especially in a domain such as pharmacovigi-
lance, which is highly regulated and impacts on patient 
safety and public health, one needs to understand how an 
ML model uses input features to make predictions. Signifi-
cant work can be found on explaining the overall impact 
of input features on ML models [31–33]. We used SHAP 
analysis [27] to enhance the explainability and transpar-
ency of the model. One successful example of using SHAP 
in healthcare is the application of the “Tree Explainer” 
from the SHAP framework for the explanation of predic-
tions of hypoxemia [34].

The benefits of using SHAP analysis in this experiment 
were twofold. First, it provided an understanding of what 
features in the data are the most impactful features for the 
overall multiclass classifier model. Second, it provided a 
mechanism to build trust in the user community of the 
model by surfacing the features that impacted a particular 
prediction of the classification model.

The additional information presented to the safety 
experts in phase II of our experiment, together with the 
predicted class, comprised three important elements: the 
confidence score for each prediction, the three highest 

impact features for each prediction, and the probabilities 
for all other signal validation classes (see Table 4). The 
strength of providing this additional information together 
with the predictions is that it removed the “black box” 
character of the ML model by sharing the model’s reasons 
for its decision making, which the safety experts could 
then review and consider. The SHAP analysis results pre-
sented to the safety experts significantly enhanced their 
understanding of the otherwise concealed decision criteria 
of the ML model and increased their confidence in the 
generated predictions.

The SHAP framework in the modeling process may 
reveal features that were considered less important by 
safety experts in the decision-making process. New 
insights can be brought to light by virtue of this data-
driven approach. These informative features might posi-
tively influence and streamline the signal validation 
process.

4.3  User Acceptance

Overall, the modeling experiment was well accepted by 
the safety experts. One interesting piece of feedback from 
the safety experts was that the predictions made them think 
vigilantly about the assessment of SDRs when the model’s 
categorization deviated from theirs.

The safety experts preferred using the model to sup-
port the validation process rather than letting it be totally 
autonomous. They also explained that additional product 
and disease knowledge is taken into consideration in their 
decision-making process, including mechanism of action 
of the drug and pharmacokinetic, toxicological, and epide-
miological information that is not always included in the 
structured fields of ICSRs or in the SDR data.

Providing the safety experts with model predictions 
before they made their own assessment entailed the risk 
of biasing their judgment. However, we learned that the 

Table 7  Accuracy of signal 
validation predictions by signal 
of disproportionate reporting 
validation class in phase II of 
the experiment

NA not applicable, SDR signal of disproportionate reporting
a Prediction by the machine learning model matched the signal validation outcome determined by safety 
experts

SDR validation class Number of SDRs Accuracy

Matcha No match Total

No signal—confounding by indication 9 2 11 81.8%
No signal—listed/expected adr 5 8 13 38.5%
No signal—medical judgment 87 7 94 92.6%
No signal—no adr 11 3 14 78.6%
No signal—recently investigated 0 1 1 0.0%
Signal 0 0 0 NA
Total 112 21 133 84.2%
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predictions worked like an independent second opinion that 
stimulated rather than biased the validation process.

In a concluding survey of the experiment, the involved 
safety experts confirmed the business value of the predic-
tions provided by the model towards an increased efficiency, 
consistency, and quality of the signal validation process. 
In summary, the safety experts valued the predictions and 
would like to utilize them within their signal management 
application.

4.4  Outlook

As a next step, we plan to implement enhancements col-
lected from the safety experts and project team. Examples of 
potential improvement ideas include engineering additional 
features from ICSR data and from reference data, such as 
MedDRA hierarchy levels or drug class information. An 
analysis of safety experts’ comments (prospective and ret-
rospective) when their signal validation category selection 
differed from the model’s prediction will help to identify 
areas for future model improvements.

Furthermore, we aim to add more products and diver-
sify them to include different phases of the product lifecy-
cle to further test the model’s ability to generalize. Prior to 
integrating the model into the signal management applica-
tion, we will gather further experience by running the ML 
pipeline in parallel with the productive signal management 
process and creating a dashboard for the safety experts that 
presents the signal validation predictions from our model.

To successfully classify SDRs as signal versus no signal, 
we will extend our training data to include more products 
and consider augmenting our ICSR and signal validation 
data with external data. The resulting binary classifier model 
trained on this extended and augmented data could then be 
combined and used in a two-step approach as a sequence of 
two models. Specifically, the first model will be designed 
for supporting the signal versus no signal decision, and a 
second one will perform the classification for the different 
no signal justifications.

Finally, we believe that the knowledge gained in this 
experiment with the quantitative signal detection process 
could also be leveraged for a different use case: the signal 
validation of safety observations identified in the ongoing 
monitoring process of ICSRs, which is a periodic manual 
medical case review and as such a major component of 
the qualitative signal detection process [1]. Based on the 
promising results from this research, it may be worth further 
exploring whether this process could also be supported by 
ML.

5  Conclusions

This experiment demonstrated that signal validation in phar-
macovigilance can be supported by an ML-based prevalida-
tion step to improve process efficiency and consistency. We 
were able to train a multiclass classification model to predict 
signal validation classifications for SDRs, which showed 
promising results in terms of accuracy. Medical review by 
safety experts will always remain an essential part of the sig-
nal validation process, but it can be performed faster and in a 
more consistent way if it is augmented with ML predictions.

For safety experts, model explainability plays a major role 
in building trust in and acceptance of ML models. Using 
SHAP analysis helped to improve the model explainability.

As the training and test data only contained a limited 
amount of SDRs that were validated as signals, the data 
were not appropriate for training the supervised ML model 
to specifically distinguish between signals and no signals 
with considerable accuracy. Therefore, an area for further 
research is to combine this approach with a binary classifier 
supporting a signal versus no signal differentiation during 
the signal validation process.
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