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E3 ubiquitin ligases are the ultimate enzymes involved in the transfer of ubiquitin to
substrate proteins, a process that determines the fate of the modified protein. Numerous
diseases are caused by defects in the ubiquitin-proteasome machinery, including when
the activity of a given E3 ligase is hampered. Thus, inactivation of E3 ligases and the
resulting effects at molecular or cellular level have been the focus of many studies during
the last few years. For this purpose, site-specific mutation of key residues involved in
either protein interaction, substrate recognition or ubiquitin transfer have been reported
to successfully inactivate E3 ligases. Nevertheless, it is not always trivial to predict which
mutation(s) will block the catalytic activity of a ligase. Here we review over 250 site-
specific inactivating mutations that have been carried out in 120 human E3 ubiquitin
ligases. We foresee that the information gathered here will be helpful for the design of
future experimental strategies.
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UBIQUITINATION, THE UBIQUITIN CODE AND E3 LIGASES

Ubiquitin is a 76-amino-acid protein, highly conserved among organisms (Zuin et al., 2014),
used–through the ubiquitin-proteasome system- to regulate many cellular processes. Proteins are
covalently modified on their Lys residues with ubiquitin via amide isopeptide linkages (Laney and
Hochstrasser, 1999). Frequently, ubiquitinated proteins are targeted for degradation through the
proteasomal system on an ATP hydrolysis-dependent manner (Hershko and Ciechanover, 1998;
Komander and Rape, 2012). But protein ubiquitination participates in a plethora of additional
cellular responses including regulation of gene expression, cell signalling, cell cycle, DNA repair
and apoptosis (Pickart, 2001; Gilberto and Peter, 2017).

The ubiquitination reaction requires the coordinated action of three types of enzymes termed
E1, E2, and E3. First, ubiquitin is activated with ATP in a process carried out by an activating E1
enzyme. Once ubiquitin is activated, it is transferred to the Cys on the active site of a conjugating
E2 enzyme. Finally, ubiquitin is generally linked to a Lys of the target protein through an isopeptide
bond, formed between the C-terminal carboxyl group of ubiquitin and the ε-amino group of the
Lys. Substrate specificity in ubiquitination is attributed to E3 ligases, who are able to interact with
both the ubiquitin-charged E2 and the substrates to be modified (Metzger et al., 2014). Like most
post-translational modifications (PTMs), ubiquitination is reversible and deubiquitinating enzymes
(DUBs) are responsible for hydrolysing the isopeptide bond between ubiquitin and substrate
proteins or between ubiquitin molecules.
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Proteins can be modified by ubiquitin in a wide range of
manners. For instance, in addition to Lys, ubiquitin can be
conjugated via a peptide bond to the N-terminal amino group of
the substrates (Ciechanover and Ben-Saadon, 2004), as well as to
Cys or Ser/Thr residues by thio- or oxy-ester bonds, respectively
(Wang et al., 2012). Substrates can be mono-ubiquitinated,
meaning modified in a single residue by only one ubiquitin.
Multi-mono-ubiquitination occurs when several residues of a
given protein are simultaneously modified with one ubiquitin
each. Poly-ubiquitination occurs when the C-terminus of another
ubiquitin associates to one of the seven Lys (Lys6, Lys11, Lys27,
Lys29, Lys33, Lys48, and Lys63) or the N-terminal Met (Met1)
on the previously added ubiquitin molecules. Consequently, a
ubiquitin chain is formed on the target protein. Depending on
how ubiquitin residues are bound together, different ubiquitin
chain architectures can be formed: (i) homogenous, if the Lys
used throughout the chain is the same (e.g., Lys48-linked chains),
(ii) heterogeneous, if they alternate (e.g., Lys48-Lys11-linked
chains) and (iii) branched, if multiple Lys of the same ubiquitin
are modified at the same time. Altogether, ubiquitin can generate
a huge amount of different types of modifications on any given
protein (Komander and Rape, 2012). Consequently, ubiquitin-
mediated cellular responses will depend not only on the specific
residues of the substrate that are modified but also on the
topology of the ubiquitin chains that are formed.

Eukaryotic cells express hundreds of ubiquitin E3 ligases,
which can operate in different cellular contexts, respond to
numerous cellular signals, and process diverse protein substrates
(Zheng and Shabek, 2017). Ubiquitin E3 ligases have been
classically classified in two different groups, based on conserved
structural domains and the mechanism by which ubiquitin is
transferred: RING (really interesting new gene)-type E3s and
HECT (homologous to the E6AP carboxyl terminus)-type E3s.
Whereas RING E3 ligases directly transfer the ubiquitin from the
E2-ubiquitin complex to the substrate (Figure 1A), HECT-type
E3s transfer ubiquitin to their own catalytic Cys before linking
it to the substrate (Figure 1B; Deshaies and Joazeiro, 2009).
Additionally, a third group of E3s, that combines features from
both RING- and HECT-type E3 families, has been established: the
RING between RING (RBR) family (Figure 1C). RBR and RING
E3s share RING binding domains, but RBR family members have
the ability to generate a thioester intermediate with ubiquitin, as
HECT-type E3s do (Morreale and Walden, 2016).

Typically, one E3 ligase is able to modify several substrates, as
well as to bind different E2s. The same protein can, therefore, be
ubiquitinated by different E2/E3 combinations, which will lead to
different ubiquitination patterns (Metzger et al., 2014). Substrate
recognition by HECT-type E3 ligases depends on protein-protein
interactions that are mediated by specific motifs typically located
in the N-terminal of the HECT domain (Scheffner and Kumar,
2014). Substrate recognition by RING-type E3s is achieved either
through regions of the E3 other than the RING domain, in
the case of monomeric E3s, or through substrate recognition
elements in other domains, in the case of multi-subunit RING
E3s (Metzger et al., 2014). On the other hand, some studies have
reported that substrate proteins have a short linear sequence,
known as degron, important in the regulation of protein

degradation rates. Not all degron are ubiquitin-dependent, but
if they are, it appears that they facilitate the recognition of the
substrate protein by the E3 ligase. Degrons can be modified by
kinases and other enzymes. These modifications appear to be
crucial for timing the interaction between E3 and substrate, even
though they are not always necessary and many substrates of
HECT-type E3s and CRLs are able to recognise their substrates
in their native forms (Kanelis et al., 2001; Kamadurai et al., 2009;
Rotin and Kumar, 2009; Fukutomi et al., 2014; Muńoz-Escobar
et al., 2015). In order to increase the specificity toward their
substrates, many E3 ligases, such as TRIMs, are able to form
homo- and heterodimers and recognise multiple degrons located
in the same substrate (Li et al., 2014). Moreover, the effect is
summatory and a robust degron may have the same effect as two
weak degrons (Welcker et al., 2013).

The role mediated by E3 ligases is so crucial, that their
activity must be tightly controlled in order to ensure they solely
act when necessary. Oligomerisation is one of the mechanisms
that modulate the activity of HECT- and RING-type E3s. For
instance, structural studies suggest that the trimeric arrangement
of E6AP activates the ligase (Ronchi et al., 2014), whereas
homodimerisation of the HECT domain of HUWE1 results in
enzyme inactivity (Sander et al., 2017). RING-type E3s can act as
independent enzymes, but most of them tend to form homo- or
heterodimers, and even more complex multi-subunit assemblies
in order to mediate ubiquitination (Metzger et al., 2014). For
instance, RING E3 ligases cIAP, RNF4, BIRC7, IDOL, CHIP, and
Prp19 homodimerize, and RING domains of both units interact
with E2 proteins. By contrast, RING-type E3 ligases BRCA1-
BARD1, Mdm2-MdmX, and RING1B-Bmi1 form heterodimers.
While BRCA1 and Mdm2 have the ability to interact with E2
proteins, their partners do not. But they function as enhancers
of ligase activity and interact with substrates (Brzovic et al., 2001;
Joukov et al., 2001; Wang et al., 2004; Cao et al., 2005).

In this review we aim to provide a detailed description of
mutations in ubiquitin E3 ligases, with the outlook that such
detailed and structured catalog of mutants will provide a pattern
to be considered by future researchers when designing new
mutations on their E3 ligases.

MUTATIONS ON RING-TYPE E3 LIGASES

RING-type E3s are conserved from human to yeast. It is
estimated that the human genome encodes above 600
different RING-type E3s. The RING domain was first
characterised by Freemont et al. (1991). The canonical
sequence for this 40–60 amino acid long domain is Cys-X2-
Cys-X(9−39)-Cys-X(1−3)-His-X(2−3)-Cys-X2-Cys-X(4−48)-Cys-
X2-Cys. The conserved Cys residues (seven in total) and
the single His are disposed in a “cross-brace” topology to
coordinate two zinc ions and stabilise its structure (Figure 2;
Deshaies and Joazeiro, 2009).

Initially, the role of RING domains was uncertain, although
it was known they were involved in protein-protein interactions
as well as in a wide range of cellular processes (Deshaies and
Joazeiro, 2009). However, it was not until 1997 that the function
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FIGURE 1 | Mechanism of action of RING-, HECT- and RBR-type E3 ubiquitin ligases (A) Schematic representation of a RING-type ubiquitin E3 ligase. RING E3s
bind both the E2-ubiquitin and the substrate to be ubiquitinated, so bringing them together allows direct conjugation of ubiquitin (Ub) on the substrate by the E2.
A monomeric RING E3 ligase is shown for illustrative purposes. (B) Schematic representation of a HECT-type ubiquitin E3 ligase. Ubiquitin is transferred first to a
cysteine (C) of the HECT domain through a thioester bond and then to the substrate. (C) Schematic representation of an RBR-type ubiquitin E3 ligase. Two RING
domains are separated by an in-between-RING (IBR) domain. Ubiquitin is first transferred to a cysteine (C) of the second RING domain through a thioester bond and
then to the substrate.

of RING domains was elucidated by Bailly and co-workers
(Bailly et al., 1997). Moreover, in 1999, Joazeiro and co-workers
observed that the adapter protein c-Cbl bears two domains
that act coordinately to mediate ubiquitination and subsequent
degradation of substrates. Whereas the SH2 domain of c-Cbl
served to recognize specific substrates, the RING domain was
necessary to recruit and activate an ubiquitin-conjugating E2
(Joazeiro et al., 1999). After that, a similar role was conferred
to a number of RING domain-containing proteins (Lorick et al.,
1999). At present, it is accepted that the RING domain present
in all RING E3s associates and activates E2-Ub conjugates
promoting the direct transfer of ubiquitin from the E2 to the
target protein (Figure 1A).

The interaction between the RING domain of E3 ligases
and E2s was first elucidated with the crystal structure of
Cbl’s RING domain bound to UbcH7 E2 (Zheng et al.,
2000). The combination of many structural studies allowed the
characterization of the four residues of each protein that play
a crucial role in the interaction, those are shown in green in
Figure 2. Located between Cys residues C1 and C2 of the RING
domain, a hydrophobic residue (Ile, Leu or Val) interacts with
two Pro residues from the E2. Those two prolines are localised in
one of the two loops that compose the accessible surface of the
E2 enzyme. Additionally, another hydrophobic residue (typically
Trp, His or Leu) from the E3 interacts with a Phe and a Pro
present on the second loop of the E2. Simultaneously, this Pro
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FIGURE 2 | The zinc coordinating residues in RING domains. Schematic
representation of the cross-brace” topology of RING domains. The RING
domain contains seven conserved cysteines and one histidine (yellow) which
are involved in the coordination of two atoms of zinc. The third cysteine
mediates the ubiquitin transfer in the second RING domain in RBR E3
ubiquitin ligases (contour labelled in orange). Four conserved residues (green)
guide the interaction with the E2 conjugating enzyme. Mutation of the last
residue of the domain (dark blue), which is normally a positively charged
arginine or lysine, compromises the stability of the adjacent cysteine, affecting
the coordination of the zinc atom.

interacts with a Pro of the E3 located between Cys residues C6
and C7. Which in turn, is also connected to an Ala localised in
the same loop of the E2. Finally, this same Ala of the E2 also
interacts with a hydrophobic amino acid (typically Val, Phe or
Ile) located straight after the Pro between C6 and C7 of the E3
(Deshaies and Joazeiro, 2009).

More recently, structural studies focused on RING-type
E3:E2-Ub complexes have revealed the mechanism by
which this class of ubiquitin ligases facilitates Ub transfer
to substrate proteins. The E2-Ub complex has a flexible
topology with multiple inter-domain configurations that
are altered upon E3 binding (Pruneda et al., 2011). More
precisely, binding of RING E3 reduces the dynamics of E2-
Ub and stabilizes in an ensemble of closed conformations.
This modification facilitates the reactivity for substrate Lys
that can perform the corresponding nucleophilic attack
(Pruneda et al., 2012; Soss et al., 2013). Studies carried
out on dimeric E3s such as RNF4 or BIRC7 also support
the same mechanism by showing that a positively charged
residue (Arg or Lys) conserved in many RING E3s just
straight after the last zinc-coordinating Cys supports the non-
covalent interaction with the E2-Ub complex (Dou et al., 2012;
Plechanovov et al., 2012).

As mentioned above, although some RING-type E3s act
independently, they have the tendency to form homo- and
heterodimers. Most RING-type E3s dimerise through their RING
domain, such as RNF4 homodimers or MDM2/MDMX and
BRAC1/BARD1 heterodimers (Brzovic et al., 2001; Linke et al.,
2008; Liew et al., 2010). Nevertheless, there are exceptions.
For instance, MARCH9 E3 ligase can form active dimers with
RING-less variants (Hoer et al., 2007), whereas viral RING-type
E3s MIR1 and MIR2 are believed to homodimerise via their
transmembrane domain (Lehner et al., 2005). The tripartite motif

(TRIM) family members in metazoans contain an additional
domain termed B-box. Like the above mentioned RING domain,
the B-box domain is a zinc-binding domain. However, whereas
the RING domain is essential for E2 binding and E3 ligase
activity, it has recently been shown that the B-box domain is
involved in chain assembly rate modulation (Lazzari et al., 2019).
Similarly, the U-box domain is also related to the RING domain,
but unlike the B-box, it can interact with E2s. Additionally, the
U-box domain has no coordinating zinc, so in order to ensure the
stability of the structure, zinc-binding residues present in RING
are replaced by charged and polar residues (Aravind and Koonin,
2000; Vander Kooi et al., 2006).

Inactivating RING-Type E3s by Mutating
the Zinc-Coordinating Residues
Since the coordination of the two atoms of zinc by the RING
domain is crucial for E3 ligase activity, mutants that abolish such
coordination have often been used to create ligase-dead versions
of those E3 enzymes. Mutation of any of the conserved Cys and
His involved in zinc binding should compromise the E3 activity,
and so have all been, individually or jointly, mutated for that
purpose (Figure 3). The mutated residue of choice to prevent
E3 ligase activity appears the first conserved Cys (C1) of the
RING domain, followed by the His (H), C2, C3, and C4. To
our knowledge, C7 is the only key residue on the domain that
has not been individually mutated for this purpose. However, it
has been shown that simultaneous mutations on either C1+C7
or C6+C7 abolish the ligase activity of AMFR and some TRIM
family members, respectively (Wang et al., 2014; Liu et al.,
2017a; Lee et al., 2018a). As shown in Figure 3, many E3 ligases
have been inactivated by simultaneous mutations on C1+C2.
Less frequently, additional double mutations and even the triple
C1+C2+C3 mutant have been efficiently applied to block the
activity of distinct RING-type E3 ligases (Figure 3).

Zinc-coordinating Cys and His residues have been
preferentially mutated into Ala in order to abolish the ubiquitin
ligase activity of E3s (Figure 3). Nevertheless, in some cases, this
type of substitution might be insufficient. In a recent research
focused on studying TRIM27-dependent ubiquitination of UPS7,
it was shown that a quadruple TRIM27 mutant, in which four
zinc-coordinating residues of the RING domain (Cys16, Cys19,
Cys31 and Cys33) were mutated into alanine, was still capable
of ubiquitinating USP7. By contrast, the TRIM27 mutant, in
which four zinc-binding residues of the B-box (Cys96, Cys99,
His107, and Asp110) were simultaneously substituted by Ala,
was incapable of ubiquitinating USP7 (not illustrated in Figure 3;
Zaman et al., 2013). Moreover, it should be taken into account
that in some cases a dominant negative effect may be acquired
by the mutated E3 ligase. For example, CBL Cys381Ala mutant
is not capable of ubiquitinating EGFR and thus, the subsequent
desensitization of the receptor is abolished. However, CBL
Cys381Ala mutant is still capable of interacting with EGFR,
and consequently, competes with wild type CBL compromising
CBL-mediated EGFR ubiquitination (Waterman et al., 1999).
Similarly, the plant E3 ubiquitin ligase SINA1 mutant on the
C2 of the RING domain Cys47Ser mutant retains dimerisation
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FIGURE 3 | Mutations that alter zinc coordinating residues in RING domains. Wheel diagram showing the reported mutations in RING domains, classified first
whether a unique (single) or various (multiple) residues were mutated simultaneously. Most of the inactive E3 enzymes have been obtained by mutating key residues
into alanine (yellow). Lack of activity can also be acquired by mutations into serine (orange). Mutations into other residues have been also employed (white). Zinc
coordinating residues of the first (pink) and the second (light pink) RING domains in RBR-type E3 ubiquitin ligases (pink) have also be modified in order to achieve
inactivation. References to all the mutations shown in this figure are provided in Supplementary Table S1.

and substrate binding ability but lacks ubiquitination activity
(den Herder et al., 2012).

Despite less frequently, in a number of investigations, the
Cys involved in zinc coordination have also been efficiently
mutated into serine. Indeed, this type of point mutation that
results on E3 ligase inactivation has served to uncover, among

others, the role of MDM2, RNF8, and SIAH1 RING E3s in
cell cycle regulation, DNA damage response and Wnt signalling,
respectively (Ji et al., 2017; Tian et al., 2017; Tripathi and Smith,
2017). Additionally, although there are fewer examples, it has
been demonstrated that mutating the His into Glu, Tyr or Arg
is sufficient to inactivate the ligase activity of MKRN1, RNF2, and
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RNF43 E3s, respectively (Xia et al., 2014; Loregger et al., 2015;
Lee et al., 2018b; Figure 3). Similarly, it has been shown that
mutating C2 of RAD18 and CBL into Phe and Arg, respectively,
as well as substituting C3 of CNOT4 into Arg or C6 of RAG1
into Tyr has an inhibitory effect (Albert et al., 2002; Jones
and Gellert, 2003; Williams et al., 2011; Javadi et al., 2013). It
should be noted, however, that in search of structure-function
relationships, the safest approach is to mutate into the smaller Ala
residue (Fersht et al., 1999). Introducing larger residues might -
in addition to preventing the coordination of the zinc- result in
further distortions on the overall fold of the protein.

Especially in the absence of the molecular structure, deciding
the residues that should be mutated might not always be
straightforward, but appropriate sequence alignments can
provide sufficient insight. For instance, TRIM37 has two adjacent
Cys residues (Cys36 and Cys37) that could correspond to
the C4 involved in zinc coordination (Supplementary Figure
S1). Therefore, to ensure the inactivation of the enzyme,
both Cys were simultaneously mutated (Kallijärvi et al., 2005;
Wang et al., 2017). Similarly, ZNRF4 has two His nearby
(His329 and His332) and in principle, either of them could
be involved in coordinating zinc atoms. Once again, both
His were mutated in order to obtain a catalytically inactive
form of the E3 (Bist et al., 2017). Based on metal-binding
studies, MDM2 His457 was initially confirmed to be the
conserved His involved in zinc-coordination (Lai et al., 1998).
Nevertheless, His452 is also essential, as demonstrated in auto-
ubiquitination assays of this E3 ligase, with both His residues
being necessary (Fang et al., 2000). It was later elucidated that
His452 actually takes the place of the conserved Cys C3 in
the zinc coordination, as illustrated in the sequence alignment
in Figure 4B.

Additionally, there are few E3s bearing RING domains in
which a non-conserved amino acid plays an indirect but pivotal
role in the coordination of the zinc atom, and therefore, can
be mutated in order to disrupt the activity of the ligase. For
example, Thr455, which was originally believed to be directly
involved in the zinc-coordination based on an incorrect primary
sequence alignment, has been reported to abolish -upon its
mutation- MDM2-dependent p53 ubiquitination (Boddy et al.,
1994; Fang et al., 2000).

Inactivating RING-Type E3s by Mutating
the E2-Interacting Residues
It has previously been described that RING E3s interact with
E2-Ub conjugates via their RING domain to directly transfer
the ubiquitin to the substrate protein. Therefore, disrupting
the interaction between E2s and RING-type E3s has also been
extensively used to block, or at least reduce ubiquitination
mediated by RING E3s. All three key hydrophobic residues on
E3s that mediate the interaction with E2s (shown in green in
Figure 2) have been recurrently mutated to compromise the
activity of the E3s. As shown in Figure 4A, numerous RING-
type E3 ligases have been successfully inactivated by mutating the
first Ile/Leu, the second Trp/Leu or the last Ile/Val into Ala. The
first Ile/Leu has been mutated in BRCA1, BMI-1, CHFR, CNOT4,

RING1, RNF2, RNF8 and TRIM3 (Albert et al., 2002; Eakin et al.,
2007; Alchanati et al., 2009; Kim et al., 2010; Mallette et al., 2012;
Raheja et al., 2014; Liu et al., 2018; Shen et al., 2018). The second
Trp/Leu was mutated abolishing ligase activity in BRAP, CBL,
MARCH8, MARCH9, MDM2, and TRIM7 (Joazeiro et al., 1999;
Chen et al., 2012; Hayes et al., 2012; Chakraborty et al., 2015;
Fan and Wang, 2017; Tan et al., 2019). Finally, the last Ile/Val
was successfully mutated in KIAP and TRIM3 (Dou et al., 2012;
Raheja et al., 2014). All these hydrophobic residues are conserved
as seen in Figure 4B. However, to our knowledge, no one has
mutated the E2-interacting Pro (located between C6 and C7) with
the aim to disrupt the association with the E2 enzyme. Given the
special properties of this cyclic amino acid, one certainly would
have to be weary of additional conformational effects that could
be caused by its mutation to Ala. Additionally, MDM2 mutant
variants Ile440Glu and Ile440Lys prevent MDM2-dependent
ubiquitination of p53, by disrupting the E2–ubiquitin binding
by the E3 ligase without altering its RING domain structure
(Nomura et al., 2017). This residue, however, is barely conserved
across the different RING domains.

However, other types of mutations have also been efficiently
applied to disrupt the interaction between E2s and E3s. For
instance, one of the few U-box-type E3s that has been mutated
is CHIP, also known as STUB1, which was inactivated by
substituting His260 into Glu (Seo et al., 2018). Likewise, the
U-box domain-containing UBE4B E3 can be inactivated by
mutating a Pro (Pro1140) that is conserved among U-box-type
E3 ligases (Pro269 in CHIP) into Ala (not included in Figure 4;
Okumura et al., 2004; Li et al., 2018).

Inactivating RING-Type E3s by
Disrupting Substrate Recognition, E3
Dimerization and Stability
Many RING-type E3 ligases possess a conserved positively
charged residue (Arg or Lys) in the last position of the RING
domain, which appears to be essential for the ubiquitination
activity of the E3. Nevertheless, it is still controversial whether
the effect of mutating this residue results from the impaired
interaction with E2s or from destabilization of the RING domain
(Figure 4A, included in stabilization) (Albert et al., 2002; Linke
et al., 2008; Lienlaf et al., 2011; Dou et al., 2012; Raheja et al., 2014;
Nomura et al., 2017). But this uncertainty is not surprising given
that mutations have been generated to substitute the positively
charged residue by a very diverse choice of residues (mostly
to Ala, but also to Glu, Pro and even Arg, as can be seen in
Figure 4A. Future studies should preferably limit the mutations
to substituting the positively charged residue by Ala.

As shown in Figure 4A, a number of other single point
mutations, as well as multiple point mutations, have been
generated along different positions of the RING domain to
compromise protein stability and hence, E3 ligase activity,
but no clear pattern can be predicted based on the studies
reported so far. For example, the Tyr37Ala mutant in BRCA1
lack ligase activity, being therefore incapable of reversing
γ-radiation hypersensitivity of BRCA1-null human breast cancer
cells (Ruffner et al., 2001). In the case of the RAD18 ligase,
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FIGURE 4 | Mutations on RING- and RBR-type E3s that affect E2-interaction, domain stabilisation, protein dimerization or substrate recognition. (A) In RING-type
E3 ubiquitin ligases, inactivation can be obtained by abolishing the interaction with E2 ubiquitin-conjugating enzymes (green). This has mostly been achieved by
mutating the conserved 1st (I/L) and 2nd (W/I/L) hydrophobic residues indicated in Figure 2. Other mutations affecting the stabilisation of key residues of the domain
(blue), dimerization or the interaction with a specific substrate also abolish the ligase activity (purple). For the stabilisation affecting mutations, those have been
classified whether a unique (single) or various (multiple) residues were mutated simultaneously. References to all the mutations shown in this figure are provided in
Supplementary Table S1. (B) Alignment of the RING domains of the RING-type E3 ligases involved in E2-interacting and stabilisation mutations within the RING
domain. Conserved amino acids are highlighted in yellow and orange, respectively, for the Zn-coordinating Cys and His residues, and in green for the E2-interacting
residues. The conserved positively charged residues at the end of the RING domain are highlighted in blue. Mutated E2-interacting residues are shown in bold and
underlined. Mutated residues involved in stabilisation are shown in bold. Mutated residues involved in dimerisation are underlined and shadowed.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 February 2020 | Volume 8 | Article 39

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00039 January 31, 2020 Time: 17:13 # 8

Garcia-Barcena et al. Inactivating Mutations on Ubiquitin E3 Ligases

the Ile50Ala/Arg51Ala inactive mutant allowed to study the
formation of ternary complexes with RAD6A (Masuda et al.,
2012); these two residues were selected due to being highly
conserved among species.

RING-type E3s that act as dimers can also be inactivated by
preventing their dimerization process. For instance, mutation of
Val461Glu and Val263Arg within the RING domain diminishes
oligomerisation and activity of XIAP and KIAP ligases,
respectively (Poyurovsky et al., 2007; Dou et al., 2012; Nakatani
et al., 2013). In other cases, however, the dimerization
affecting residues are immediately after the RING domain
(Supplementary Figure S2), as revealed for example by the
mutation Phe490Gln in MDM2 (Poyurovsky et al., 2007).
Another approach consists of inactivating oligomeric E3 ligases
without affecting the oligomerisation process itself. For example,
RNF4 Val134Ala and Ile153Ala mutants can form dimers but
are catalytically incapacitated (Liew et al., 2010; Dou et al.,
2012). Similarly, other E3 ligase mutants have been shown to
act in a dominant negative due to their homo-dimeric nature.
For example, mutant Fbw7 has a dominant-negative effect when
dimerising with wild-type Fbw7, being able to effectively bind
their substrate MYC but not to ubiquitinate and degrade it
(Welcker et al., 2013).

Several experiments have also been carried out mutating
specific residues on E3 ligases that are critical for the interaction
with a given substrate, such as Leu146Gln mutation on the B-box
containing E3 MID1 that cannot associate, nor ubiquitinate its
substrate PP2A alpha-2 (Du et al., 2013; Figure 4).

MUTATIONS ON HECT TYPE E3 LIGASES

The human HECT-type E3 family consists of 28 members
that are divided into three different groups depending on
their N-terminal domain architecture: (i) the NEDD4 subfamily,
characterized by containing a C2 domain, a HECT domain and
two to four WW domains, which bind to the PY motifs of target
proteins (Staub et al., 1996; Kanelis et al., 2001); (ii) the HERC
subfamily, which integrates at least one regulator chromosome
condensation 1 (RCC1)-like domain (RLDs) and a reduced
HECT domain; and (iii) the other HECT subfamily, that embrace
HECT-type E3s not fitting the above mentioned two subfamilies.

Despite those differences, all HECT-type E3s share a ∼350
amino acid long HECT domain, that was first described in human
papilloma virus E6 associated protein (E6AP) (Huibregtse et al.,
1995). In the HECT domain, a conserved Cys forms thioester-
linked-intermediate complexes with ubiquitin (Figure 1B),
before being transferred and attached to the substrate through
a transthiolation reaction. This conserved Cys is located in
the C-terminal region of the HECT domain, while the E2
interacting site is localised in the N-terminal site (Figure 1B;
Rotin and Kumar, 2009).

Inactivating HECT-Type E3s
Given that an active site Cys is required for the formation of
a thioester intermediate with ubiquitin, a typical approach is
to mutate this specific Cys to generate ligase dead versions

of HECT E3 ligases. As shown in Figure 5A, the majority
of HECT-type E3 ligases have been inactivated by replacing
this catalytic Cys by Ala. This approach has served to unveil,
among others, the involvement of HERC3 in immune response
(Hochrainer et al., 2015), the role of NEDD4L in EnaC receptor
recycling (Zhou et al., 2007), and the contribution of SMURF1 to
Axin degradation (Fei et al., 2013).

Less frequently, some ligase dead HECT-type E3s have been
generated by substitution of the active Cys into Ser (Figure 5A).
It has been reported that when the catalytic Cys of an E3 is
mutated into Ser, the residue is still capable of binding through
an oxyester bond with ubiquitin, but incapable to transfer it to
substrates, which might result in a dominant-negative effect. In
ubiquitination assays employing this type of ligase dead E3s, a
stable monoubiquitinated version of the E3 has been detected
(Lee et al., 2014). This approach has allowed, among other things
to discover many substrates of distinct HECT-type E3 ligases. For
instance, it was found that wild type version of HACE1 could
ubiquitinate and target for degradation the small GTPase Rac1,
but the Cys876Ser ligase dead version of the E3 ligase could not
(Torrino et al., 2011). Similarly, HERC2 C4762S and HUWE
C4341S mutants failed to ubiquitinate their substrates BRCA1
and N-Myc, respectively (Zhao et al., 2008; Wu et al., 2010).
The sequence alignment for all the HECT domain E3 ligases
illustrated in Figure 5A is shown around the catalytically active
Cys in Figure 5B.

MUTATIONS ON RBR TYPE E3 LIGASES

RING between RING family members contain two RING
domains (RING1 and RING2) that are separated by an in-
between-RING (IBR) zinc-binding domain. Morett and Bork
first characterised these domains in 1999 in a sequence profile-
based characterisation (Morett and Bork, 1999). In the process of
confirming reports that UbcH7 could also interact with RBR E3s,
they discovered that these RBR E3s act as RING/HECT hybrids.
The first RING domain serves as the E2 binding platform, while
the C3 of the second RING serves as the active site that mediates
ubiquitination similarly to HECT E3 ligases (Wenzel et al., 2011;
Figures 1C, 5C).

Inactivating RBR-Type E3s
As it happens with HECT-type E3, the mutation of the catalytic
Cys in the RING2 of RBR E3s results in the inactivation of these
enzymes. However, unlike in HECT-type E3 ligases, in RBR E3s
the active Cys has been mostly substituted by Ser, and less by Ala
(Figure 5A). For example, C983S substitution in MIB2 resulted
in ligase inactivation, and therefore, prevented ubiquitination of
its substrate TANK-binding kinase 1 (Ye et al., 2014). Similarly,
mutating the active Cys of ARIH2 (also called TRIAD1) into Ser
or Ala completely abolished autoubiquitination of the RBR-type
E3 ligase. Parkison disease has been shown to develop in patients
carrying a Cys431Phe mutation at the catalytic Cys of the RBR-
type E3 ligase PRKN; those mutants have also been characterized
in the lab (Sarraf et al., 2013), in addition to the more common
substitutions to Ser and Ala (Liu et al., 2017b; Xin et al., 2018).
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FIGURE 5 | Inactivation of HECT- and RBR-type E3 ligases by mutation of the catalytic cysteine. (A) Mutation of the catalytic cysteine into an alanine (light pink), a
serine (pink) or another residue (white) abolishes transference of ubiquitin onto the substrate. Inactivation of the catalytic cysteine of RBR-type E3 ubiquitin ligases is
obtained by mutation of the third conserved cysteine in the second RING domain. (m) indicates that this mutation has been done in the mice homolog of the protein.
References to all the mutations shown in this figure are provided in Supplementary Table S1. (B) Alignment of the HECT domains of the HECT-type E3 ligases. The
conserved catalytic cysteine is highlighted in pink. (C) Alignment of the RING2 domains of the RBR-type E3 ligases. Conserved zinc-coordinating cysteines and
histidine on the second RING domain of mutated RBR E3 ligases are highlighted in yellow and the mutated catalytic cysteine is highlighted in pink.
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In order to generate ligase dead versions of RBR-type E3s,
it has been also shown to be plausible to preserve the active
Cys, and instead mutate the zinc-coordinating residues in either
of the two RING domains, substituting by Ala one or several
of those key residues. For instance, ARIH1 and RNF144A have
been successfully inactivated by modifying their RING1 domain
(Figure 3, dark pink). Whereas mutating C4 of ARIH1 (Cys208)
was sufficient to inhibit the ligase, Cys20 and Cys23 (C1+C2)
were simultaneously modified to block the catalytic activity of
the RBR-type E3 RNF144A (Ho et al., 2014; von Stechow et al.,
2015). On the contrary, ARIH2 and RNF31 have been inactivated
by mutating their RING2 domain zinc-coordinating Cys residues
(Figure 3, light pink). Cells expressing an ARIH1 mutant in
which the C2 of the RING2 domain was mutated into Ala
(ARIH2 Cys300Ala mutant) was no longer able to ubiquitinate
NLRPL3 (Kawashima et al., 2017). Similarly, Smit and co-
workers generated various ligase dead versions of RNF31 by
mutating simultaneously Cys871 and C874 (C1+C2) or Cys890
and Cys892 (C4+C5) of the RING2 domain (Smit et al., 2012).

CONCLUSION

Mutations on E3 ligases have been associated with a number of
diseases, including neurological disorders (George et al., 2018;
Osinalde et al., 2019). Thus, understanding their mechanism of
action, as well as identifying which substrates are regulated by
each E3 at different developmental stages and cell types, will
provide invaluable knowledge that might contribute to develop
therapeutic strategies to treat these diseases. Generation of E3
ligase dead mutants can certainly provide crucial information for
this purpose. While the use of gene silencing techniques might
be more appropriate to study the phenotypes derived from the
loss of function of E3 ligases, the overexpression of ligase death
versions can provide information about (i) the E2 enzymes they
work with, (ii) substrate recognition domains and (iii) existing
mechanism that regulate their activity. Additionally, a number of
biochemical experiments do benefit from comparing the ectopic
expression of wild type active E3 ligases with their mutated
inactive variants.

As evident from all the examples shown in this review, there
are multiple options to disrupt the activity of an E3 ligase.
As illustrated by the sequence alignment in Figure 4B, the
first necessary step is to identify which are the key residues
in our ligase of interest. This is an essential step to ensure
that any mutagenesis performed has a higher chance of success
in disrupting the E3 ligase activity. For example, not all
cysteine residues within a RING domain are involved in zinc
coordination, as can be seen in the sequence alignment of Mdm2
in Figure 4B. When this cysteine of the Mdm2 RING domain
was mutated (Kostic et al., 2006) the zinc coordination was
maintained and no disruption to the ubiquitination activity of
Mdm2 was detectable.

It is worth mentioning that mutating key residues involved
either in the coordination of the zinc ions, dimerisation, proteins
stabilization or E2 interaction might not always be sufficient
to abolish the catalytic activity of the E3 ligase. The resulting

mutation replacing the original residue that is substituted
can actually be determinant in order to have a functional
effect. For instance, mutating Phe495 of XIAP into either Ala,
Tyr or Trp completely prevents E3 ligase autoubiquitination.
However, XIAP Phe495Leu mutants appear to be functionally
wild-type like (Nakatani et al., 2013); but might not be that
surprising given the partial hydrophobic similarity between those
two amino acids.

As illustrated within this review, so far one of the most
frequent approaches for RING E3 ligases has been to mutate
the residues involved in the zinc coordination (Cys and His
residues, shaded in yellow and orange, respectively, in Figure 4B).
Eliminating the zinc coordination on the RING domain is well
known to severely disrupt the ubiquitination activity of those
E3 ligases. However, this breakdown of the global structural
integrity of the RING construct might lead to a severe effect in
the folding and expression levels of the E3 ligase (Chasapis et al.,
2010). Therefore, for certain experiments might be more effective
to generate less disruptive point mutations. For example, the
mutation of the hydrophobic residues (Ile, Leu, Trp, Val, shaded
in green in Figure 4B) that mediate the interaction with the E2
conjugating enzyme, as demonstrated for a number of RING
E3 ligases. To our knowledge this approach has not yet been
employed for the E2-interacting RING domain of RBR E3 ligases,
but it should indeed be an interesting experiment to perform.

Another approach that has been used as well is to eliminate by
mutagenesis the positive charge of the Lys or Arg residue located
straight after the last zinc-coordinating Cys of the RING domain.
It is yet unclear, however, whether the effect caused by this
mutation is on the interaction with E2s or from destabilization
of the RING domain.

Mutations on the active Cys of HECT- and RBR-type E3
ligases are very straight forward, as they generate, without
further effect to the structure and stability of the E3, ligase-
dead versions of these enzymes. Those are of good value to be
used as the best control in experiments overexpressing the wild
type ligase, for example, to identify substrates in an unbiased
manner. Additionally, if mutating the active site Cys to Ser, the
formation of an oxyester to ubiquitin can be used with the aim
to obtain a dominant-negative version of the ligase; the E3 will
recruit the E2 and the substrate but the ubiquitination reaction
cannot proceed since the ubiquitin cannot be released once it has
conjugated to the E3.

To investigate the regulation of a specific protein by a
particular HECT or RBR E3, however, it might be more suitable
to mutate the ligase at the substrate recognition motif. Moreover,
in some cases, as is the case of some RING E3s, the inactivation
of E3 enzymes is not achieved by a single point mutation,
even though such residue is defined as a key amino acid
involved in substrate recognition. Hence, in such situations,
several residues must be simultaneously mutated in order to
disrupt the E3 ligase function. The generation and usage of
E3 mutants have revealed unexpected and important lessons
about the complexity of this family of enzymes. Nevertheless,
a complete understanding of E3 ligases still requires more
research, in which the generation of novel E3 ligase mutants will
undoubtedly be decisive.
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