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Abstract
The estimation from available data of parameters governing epidemics is a major chal-
lenge. In addition to usual issues (data often incomplete and noisy), epidemics of the
same nature may be observed in several places or over different periods. The resulting
possible inter-epidemic variability is rarely explicitly considered. Here, we propose
to tackle multiple epidemics through a unique model incorporating a stochastic rep-
resentation for each epidemic and to jointly estimate its parameters from noisy and
partial observations. By building on a previous work for prevalence data, a Gaussian
state-spacemodel is extended to amodel withmixed effects on the parameters describ-
ing simultaneously several epidemics and their observation process. An appropriate
inference method is developed, by coupling the SAEM algorithm with Kalman-type
filtering. Moreover, we consider here incidence data, which requires to develop a new
version of the filtering algorithm. Its performances are investigated on SIR simulated
epidemics for prevalence and incidence data. Our method outperforms an inference
method separately processing each dataset. An application to SEIR influenza out-
breaks in France over several years using incidence data is also carried out. Parameter
estimations highlight a non-negligible variability between influenza seasons, both in
transmission and case reporting. The main contribution of our study is to rigorously
and explicitly account for the inter-epidemic variability between multiple outbreaks,
both from the viewpoint of modeling and inference with a parsimonious statistical
model.
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1 Introduction

Estimation from available data of model parameters describing epidemic dynamics
is a major challenge in epidemiology, especially contributing to better understand
the mechanisms underlying these dynamics and to provide reliable predictions. Epi-
demics can be recurrent over time and/or occur simultaneously in different regions.
For example, influenza outbreaks in France are seasonal and can unfold in several
distinct regions with different intensities at the same time. This translates into a non-
negligible variability between epidemic phenomena. In practice, this inter-epidemic
variability is often omitted, by not explicitly considering specific components for each
entity (population, period). Instead, each data series is analysed separately and this
variability is estimated empirically. Integrating in a uniquemodel these sources of vari-
ability allows to study simultaneously the observed data sets corresponding to each
spatial (e.g. region) or temporal entity (e.g. season). This approach should improve
the statistical power and accuracy of the estimation of epidemic parameters as well as
refine knowledge about underlying inter-epidemic variability.

An appropriate framework is represented by the mixed-effects models, which allow
to describe the variability between subjects belonging to a same population from
repeated data (see e.g. Pinheiro and Bates 2000; Lavielle 2014). These models are
largely used in pharmacokinetics with intra-population dynamics usually modeled by
ordinary differential equations (ODE) and, in order to describe the differences between
individuals, random effects on the parameters ruling these dynamics (see e.g. Collin
et al. 2020). This framework was later extended to models defined by stochastic dif-
ferential equations incorporating mixed effects in the parameters of these diffusion
processes (Donnet and Samson 2008, 2013; Delattre and Lavielle 2013; Delattre et al.
2018). To our knowledge, the framework of mixed-effects models has rarely been
used to analyse epidemic data, except in a very few studies. Among these, in Prague
et al. (2020), the dynamics of the first epidemic wave of COVID-19 in France were
analysed using an ODE system incorporating random parameters to take into account
the variability of the dynamics between regions. Using a different approach to tackle
data from multiple epidemics, Bretó et al. (2020) proposed models that incorporate
unit-specific parameters and shared parameters and studied a likelihood-based infer-
ence method using particle filtering techniques for non-linear and partially observed
models. Indeed, various ways can be investigated to describe multiple epidemics.
They differ according to the purpose. Modeling dependence between regional epi-
demics within the same country or between successive epidemic waves requires other
models. The mixed-effect approach proposed here is a first step in the analysis of the
variability present across epidemics. It presents the advantage over other models that
it allows to avoid the well-known “curse of dimensionality” because of its parsimony
in the model parameters.

In addition to the specific problem of variability reflected in multiple data sets,
observations of epidemic dynamics are often incomplete in various ways: only certain
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health states are observed (e.g. infected individuals), data are temporally discretized or
aggregated, and subject to observation errors (e.g. under-reporting, diagnosis errors).
Because of this incompleteness together with the non-linear structure of the epi-
demic models, the computation of the maximum likelihood estimator (MLE) is often
not explicit. In hidden or latent variable models which are appropriate representa-
tions of incompletely observed epidemic dynamics, estimation techniques based on
Expectation-Maximization (EM) algorithm can be implemented in order to compute
the MLE (see e.g. Dempster et al. 1977). However, the E-step of the EM algorithm
requires that, for each parameter value θ , the conditional expectation of the complete
log-likelihood given the observed data,Q(θ), can be computed. In mixed-effects mod-
els, there is generally no closed form expression forQ(θ). In such cases, this quantity
can be approximated using a Monte-Carlo procedure (MCEM,Wei and Tanner 1990),
which is computationally very demanding. A more efficient alternative is the SAEM
algorithm (Delyon et al. 1999), often used in the framework of mixed-effects models
(Kuhn and Lavielle 2005), which combines at each iteration the simulation of unob-
served data under the conditional distribution given the observations and a stochastic
approximation procedure of Q(θ) [(see also Delattre and Lavielle (2013), Donnet
and Samson (2014) for the study and implementation of the SAEM algorithm for
mixed-effects diffusion models].

Data from epidemic dynamics are mostly noisy prevalence data (i.e. the number of
cases of disease in the population at a given time or over a given period of time) or
noisy incidence data (i.e. the number of newly detected cases of the disease at a given
time or over a given period of time). In this paper, our concern is to consider both types
of data and, focusing on the inference for multiple epidemic dynamics, we intend to
meet two objectives. The first objective is to propose a finer modeling of multiple
epidemics through a unique mixed-effects model, incorporating a stochastic represen-
tation of each epidemic. The second objective is to develop an appropriate method for
jointly estimating model parameters from noisy and partial observations, able to esti-
mate rigorously and explicitly the inter-epidemic variability. Thus, the main expected
contribution is to provide accurate estimates of common and epidemic-specific param-
eters and to provide elements for the interpretation of the mechanisms underlying the
variability between epidemics of the same nature occurring in different locations or
over distinct time periods. For this purpose, we extend the Gaussian state-space model
introduced in Narci et al. (2021) for prevalence data of single epidemics to a model
with mixed effects on the parameters describing simultaneously several epidemics and
their observations. Then, following (Delattre and Lavielle 2013) and building on the
Kalman filtering-based inference method proposed in Narci et al. (2021), we propose
to couple the SAEM algorithm with Kalman-like filtering to estimate model parame-
ters. Afterwards, in order to handle incidence data, we propose a new version of the
filtering algorithm that is coupled with SAEM to estimate the parameters. The per-
formances of the estimation method are investigated on simulations mimicking noisy
prevalence data, and second noisy incidence data for SI R epidemics. The method is
then applied to the case of influenza epidemics in France over several years: the under-
lying dynamics is described by a SE I R model and data consist of noisy incidence
data from 1990 to 2017.

123



40 Page 4 of 39 R. Narci et al.

The paper is organized as follows. In Sect. 2 we describe the epidemic model for
a single epidemic, specified for both prevalence and incidence data, and its extension
to account for several epidemics through a two-level representation using the frame-
work of mixed-effects models. Section 3 contains the maximum likelihood estimation
method and convergence results of the SAEM algorithm. In Sect. 4, the performances
of our inference method are assessed on simulated noisy prevalence data generated
by SIR epidemic dynamics sampled at discrete time points. Section 5 is dedicated to
the application case, the influenza outbreaks in France from 1990 to 2017. Section 6
contains a discussion and concluding remarks.

2 Amixed-effects approach for a state-space epidemic model for
multiple epidemics

First, we sum up the approach developed in Narci et al. (2021) in the case of single
epidemics for prevalence data and extend it to incidence data (Sect. 2.1). By extending
this approach, we propose a model for simultaneously considering several epidemics,
in the framework of mixed-effects models (Sect. 2.2).

2.1 The basics of themodeling framework for the case of a single epidemic

The epidemic model Consider an epidemic in a closed population of size N with
homogeneous mixing, whose dynamics are represented by a stochastic compartmental
model with d + 1 compartments corresponding to the different health states of the
infectious process within the population. These dynamics are described by a density-
dependent Markov jump process Z(t) with state space {0, . . . , N }d and transition
rates depending on a multidimensional parameter ζ . Assuming thatZ(0)/N → x0 �=
(0, . . . , 0)′, the normalized process Z(t)/N representing the respective proportions
of population in each health state converges, as N → ∞, to a classical and well-
characterized ODE:

∂x

∂t
(ζ, t) = b(η, x(ζ, t)); x(0) = x0, (1)

where η = (ζ, x0) and b(η, ·) is explicit and easy to derive from the Q-matrix of
process Z(t) (see Guy et al. 2015; Narci et al. 2021).

Two stochastic approximations ofZ(t)/N are available: a d-dimensional diffusion
process Z(tk) with drift coefficient b(η, ·) and diffusion matrix 1

N �(η, ·) (which is
also easily deducible from the jump functions of the density-dependent jump process,
see e.g. Narci et al. 2021), and a time-dependent Gaussian process GN (t) with small
variance coefficient (see e.g. Britton and Pardoux 2020), having for expression

GN (t) = x(η, t) + 1√
N
g(η, t), (2)
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where g(η, t) is a centered Gaussian process with explicit covariance matrix. There is
a link between these two processes: letW (t) be a Brownian motion inR

d , then g(η, t)
is the centered Gaussian process

g(η, t) =
∫ t

0
�(η, t, u)σ (η, x(η, u))dW (u), where σ(η, x)σ (η, x)′ = �(η, x),

and �(η, t, s) is the d × d resolvent matrix associated to (1)

�(η, t, s) = exp

(∫ t

s
∇xb(η, x(η, u)) du

)
, (3)

with ∇xb(η, x) denoting the matrix (
∂bi
∂x j

(η, x))1≤i, j≤d . In the sequel, we rely on the
Gaussian process (2) to represent epidemic dynamics.

Remark 1 This large population framework is valid only in case of a major outbreak. It
does not properly describe the beginning and the end of the epidemic outbreak (for this
supercritical and subcritical, respectively, branching processes are more appropriate).
We expect that this middle part of the epidemic is sufficiently well described by the
approximating model to allow parameters estimation. The value t0 = 0 does not
represent the starting point of the epidemic but the time where the epidemic reaches
O(N ). Indeed, we just need a time t0 and a value x(t0) = x0 to derive the ODE or
the Gaussian process. Moreover, in the inference method developed in the sequel, the
value x0 is unknown and estimated, and for multiple epidemics, a random effect is
present for modeling the (xu,0, u ∈ U ) of the U epidemics.

The epidemic is observed at discrete times t0 = 0 < t1, . . . , < tn = T , where n is
the number of observations. Let us assume that the observation times tk are regularly
spaced, that is tk = k	 with 	 the time step (but the following can be easily adapted
to irregularly spaced observation times). Setting Xk := GN (tk) and X0 = x0, the
model can be written under the auto-regressive AR(1) form

Xk = Fk(η) + Ak−1(η)Xk−1 + Vk, with Vk ∼ Nd (0, Tk(η,	)) and k ≥ 1. (4)

All the quantities in (4) have explicit expressions with respect to the parameters.
Indeed, using (1) and (3), we have

Ak−1(η) = A(η, tk−1) = �(η, tk, tk−1), (5)

Fk(η) = F(η, tk) = x(η, tk) − �(η, tk, tk−1)x(η, tk−1), (6)

Tk(η,	) = 1

N

∫ tk

tk−1

�(η, tk, s)�(η, x(η, s)) �t (η, tk, s)ds. (7)

Example: SIR model As an illustrative example, we use the simple SIR epidemic
model described in Fig. 1, but other models can be considered (see e.g. the SEIR
model, used in Sect. 5).
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Fig. 1 SIR compartmental model with three blocks corresponding respectively to susceptible (S), infectious
(I) and recovered (R) individuals. Transitions of individuals from one health state to another are governed
by the transmission rate λ and the recovery rate γ , respectively

In the SIR model, d = 2 and Z(t) = (S(t), I (t))′. The parameters involved in the
transition rates are λ and γ and the initial proportions of susceptible and infectious
individuals are x0 = (s0, i0)′. Denoting η = (λ, γ, s0, i0)′, the ODE satisfied by
x(η, t) = (s(η, t), i(η, t))′ is

{
∂s
∂t (η, t) = −λs(η, t)i(η, t); s(η, 0) = s0,
∂i
∂t (η, t) = λs(η, t)i(η, t) − γ i(η, t); i(η, 0) = i0.

(8)

When there is no ambiguity, we denote by s and i the solution of (8). Then, the
functions b(η, ·), �(η, ·) and σ(η, ·) are

b(η, s, i) =
( −λsi

λsi − γ i

)
; �(η, s, i) =

(
λsi −λsi

−λsi λsi + γ i

)
, σ (η, s, i) =

( √
λsi 0

−√
λsi

√
γ i

)
.

We refer the reader to Appendix 1 for the computation of b(η, ·),�(η, ·) and σ(η, ·)
in theSEIRmodel.Another parameterization, involving the basic reproduction number
R0 = λ

γ
and the infectious period d = 1

γ
, is more often used for SIR models. Hence,

we set η = (R0, d, s0, i0)′.
Observation model for prevalence data Following (Narci et al. 2021), we assume

that observations are made at times tk = k	, k = 1, . . . , n, and that some health
states are not observed. The dynamics is described by the d-dimensional AR(1)
model detailed in (4). Some coordinates are not observed and various sources of
noise systematically affect the observed coordinates (measurement errors, obser-
vation noises, under-reporting, etc.). This is taken into account by introducing an
additional parameter μ, governing both the levels of noise and the amount of infor-
mation which is available from the q ≤ d observed coordinates, and an operator
B(μ) : R

d → R
q . Moreover, we assume that, conditionally on the random variables

(B(μ)Xk, k = 1, . . . , n), these noises are independent but not identically distributed.
We approximate their distributions by q-dimensional Gaussian distributions with
covariance matrix Pk(η, μ) depending on η and μ. This yields that the observations
(Yk) satisfy

Yk = B(μ)Xk + Wk, with Wk ∼ Nq(0, Pk(η, μ)). (9)
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Let us define a global parameter describing both the epidemic process and the obser-
vational process,

φ = (η, μ). (10)

Finally, joining (4), (9) and (10) yields the formulation (for both epidemic dynamics
and observation process) required to implement Kalman filtering methods in order to
estimate the epidemic parameters:

{
Xk = Fk(η) + Ak−1(η)Xk−1 + Vk, with Vk ∼ Nd (0, Tk(η,	)) , k ≥ 1,

Yk = B(μ)Xk + Wk, with Wk ∼ Nq (0, Pk(φ)) .

(11)

Example: SIR model (continued) The available observations could be noisy propor-
tions of the number of infectious individuals at discrete times tk . Denoting by p the
reporting rate, one could define the operator B(μ) = B(p) = (0 p) and the covari-
ance error as Pk(φ) = 1

N p(1 − p)i(η, tk) with i(η, t) satisfying (8). The expression
of Pk(φ) mimics the variance that would arise from assuming the observations to be
obtained as binomial draws of the infectious individuals.

Observation model for incidence data For this purpose, we have extended the
framework developed in Narci et al. (2021). For some compartmental models, the
observations (incidence) at times tk can be written as the increments of a single or
more coordinates, that is B̃(μ)(Xk−1 − Xk) where, as above, B̃(μ) : R

d → R
q is a

given operator and μ are emission parameters. Let us write the epidemic model in this
framework. For k = 1, . . . , n, let

	k X = Xk − Xk−1.

From (11), the following holds, denoting by Id the d × d identity matrix,

	k X = Fk(η) + (Ak−1(η) − Id)Xk−1 + Vk . (12)

As Xk−1 = ∑k−1
l=1 	l X + x0, (12) becomes:

	k X = Gk(η) + (Ak−1(η) − Id)
k−1∑
l=1

	l X + Vk, with (13)

Gk(η) = x(η, tk) − x0 − �(η, tk, tk−1)(x(η, tk−1) − x0). (14)

Tomodel the errors that affect the data collected (Yk), we assume that, conditionally
on (	k X , k = 1, . . . , n), the observations are independent and proceed to the same
approximation for their distributions

Yk = B̃(μ)	k X + W̃k; with W̃k ∼ Nq(0, P̃k(φ)). (15)
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Consequently, using (13), (14) and (15), the epidemic model for incidence data is
adapted as follows:

{
	k X = Gk(η) + (Ak−1(η) − Id)

∑k−1
l=1 	l X + Vk,

Yk = B̃(μ)	k X + W̃k .
(16)

Contrary to (4), (	k X , k = 1, . . . , n) is not Markovian since it depends on all the
past observations. Therefore, it does not possess the required properties of classical
Kalman filtering methods. We prove in Appendix 2 that we can propose an iterative
procedure and define a new filter to compute recursively the conditional distributions
describing the updating and prediction steps together with the marginal distributions
of the observations from the model (16).

Example: SIRmodel (continued) Here, 	k X =
(

	k S
N ,

	k I
N

)′
and the number of new

infectious individuals at times tk is given by
∫ tk
tk−1

λS(t) I (t)N dt = −	k S. Observing

a proportion p of the new infectious individuals would lead to the operator B̃(μ) =
B(p) = (−p 0). Mimicking binomial draws, the covariance error could be chosen
as P̃k(φ) = 1

N p(1 − p)(s(η, tk−1) − s(η, tk)) where s(η, t) satisfies (8).

2.2 Modeling framework for multiple epidemics

Consider now the situation where a same outbreak occurs in many regions or at dif-
ferent periods simultaneously. We use the index 1 ≤ u ≤ U to describe the quantities
for each unit (e.g. region or period), where U is the total number of units. Following
Sect. 2.1, for unit u, the epidemic dynamics are represented by the d-dimensional
process (Xu(t))t≥0 corresponding to d + 1 infectious states (or compartments) with
state space E = [0, 1]d . It is assumed that (Xu(t))t≥0 is observed at discrete times
tk = k	 on [0, Tu], Tu = nu	, where 	 is a fixed time step and nu is the number of
observations, and that Yu,k are the observations at times tk . Each of these dynamics
has its own epidemic and observation parameters, denoted φu .

To account for intra- and inter-epidemic variability, a two level representation is
considered, in the framework of mixed-effects models. First, using the discrete-time
Gaussian state-space for prevalence (11) or for incidence data (16), the intra-epidemic
variability is described. Second, the inter-epidemic variability is characterized by spec-
ifying a set of random parameters for each epidemic.

1. Intra-epidemic variability Let us define Xu,k := Xu(tk), Xu,0 = xu,0 and
	k Xu := Xu(tk) − Xu(tk−1). Using (10), conditionally to φu = ϕ, the epidemic
observations for unit u are described as in Sect. 2.1.

For prevalence data, 1 ≤ k ≤ nu ,

{
Xu,k = Fk(ϕ) + Ak−1(ϕ)Xu,k−1 + Vu,k, with Vu,k ∼ Nd (0, Tk(ϕ,	)) ,

Yu,k = B(ϕ)Xu,k + Wu,k, with Wu,k ∼ Nq(0, Pk(ϕ)),

(17)
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[see (5), (6) and (7) for the expressions of Fk(·), Ak−1(·), Tk(·) and (9) for B(·) and
Pk(·)].

For incidence data,

{
	k Xu = Gk(ϕ) + (Ak−1(ϕ) − Id)

∑k−1
l=1 	l Xu + Vu,k,

Yu,k = B̃(ϕ)	k Xu + W̃u,k with W̃u,k ∼ Nq(0, P̃k(ϕ)),
(18)

[see (14) for the expression of Gk(·) and (15) for B̃(·) and P̃k(·)].
2. Inter-epidemic variability
We assume that the epidemic-specific parameters (φu, 1 ≤ u ≤ U ) are independent

and identically distributed (i.i.d.) randomvariableswith distribution defined as follows,

{
φu = h(β, ξu),

ξu ∼ Nc(0, �),
(19)

where c = dim (φu) and h(β, x) : R
c × R

c → R
c. The vector h(β, x) =

(h1(β, x), . . . , hc(β, x))′ contains known link functions (a classical way to obtain
parameterizations easier to handle), β ∈ R

c is a vector of fixed effects and ξ1, . . . , ξU
are random effects modeled by U i.i.d centered random variables. The fixed and ran-
dom effects respectively describe the average general trend shared by all epidemics
and the differences between epidemics. Note that it is sometimes possible to propose
a more refined description of the inter-epidemic variability by including unit-specific
covariates in (19). This is not considered here, without loss of generality.

Remark 2 As far as inference is concerned, there is a compromise to look for between
a parsimonious description of the variability between the U epidemics and a more
detailed one. The set-up ofmixed-effects SDEorGaussian processes allows to describe
simultaneously the stochasticity within and between epidemics. In this framework,
epidemics are seen as independent and the presence of structural dependencies between
the (Xu) for regional epidemics or the (ϕu) for different periods cannot be described in
this set-up. This would be conceivable but at the cost of many additional parameters.

Example: SIR model (continued) Let s0,u = Su(0)
Nu

and i0,u = Iu(0)
Nu

where Nu is
the population size in unit u. The random parameter is φu = (R0,u, du, pu, s0,u, i0,u)′
and has to fulfill the constraints

R0,u > 1; du > 0; 0 < pu < 1; 0 < s0,u, i0,u < 1, s0,u + i0,u ≤ 1.

To meet these constraints, one could introduce the following function h(β, x) : R
5 ×

R
5 → R

5:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

h1(β, ξu) = exp
[
β1 + ξ1,u

] + 1,

h2(β, ξu) = exp
[
β2 + ξ2,u

]
,

h3(β, ξu) = 1
1+exp[−(β3+ξ3,u)] ,

h4(β, ξu) = 1
1+exp[−(β4+ξ4,u)]+exp[−(β5+ξ5,u)] ,

h5(β, ξu) = exp[−(β4+ξ4,u)]
1+exp[−(β4+ξ4,u)]+exp[−(β5+ξ5,u)] ,

(20)

where ξu ∼i .i .d. N5(0, �) and φu = h(β, ξu).
In this example, we supposed that all the parameters have both fixed and random

effects, but it is also possible to consider a combination of random-effect parameters
and purely fixed-effect parameters (see Sect. 4.1 for instance).

3 Parametric inference

To estimate the model parameters θ = (β, �), with β and � defined in (19), contain-
ing the parameters modeling the intra- and inter-epidemic variability, we develop an
algorithm in the spirit of Delattre and Lavielle (2013) allowing to derive the maximum
likelihood estimator (MLE).

3.1 Maximum likelihood estimation

The model introduced in Sect. 2.2 can be seen as a latent variable model with y =
(yu,k, 1 ≤ u ≤ U , 0 ≤ k ≤ nu) the observed data and � = (φu, 1 ≤ u ≤ U ) the
latent variables. Denote respectively by p(y; θ ), p(�; θ) and p(y|�; θ) the probability
density of the observed data, of the random effects and of the observed data given
the unobserved ones. By independence of the U epidemics, the likelihood of the
observations yu = (yu,1, . . . , yu,nu ) is given by:

p(y; θ) =
U∏
u=1

p(yu; θ).

Computing the distribution p(yu; θ) of the observations for any epidemic u requires
the integration of the conditional density of the data given the unknown random effects
φu with respect to the density of the random parameters:

p(yu; θ) =
∫

p(yu |φu; θ)p(φu; θ) dφu . (21)

Due to the non-linear structure of the proposed model, the integral in (21) is not
explicit. Moreover, the computation of p(yu |φu; θ) is not straightforward due to the
presence of latent states in the model. Therefore, the inference algorithm needs to
account for these specific features.
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Let us first deal with the integrationwith respect to the unobserved randomvariables
φu . In latent variablemodels, the use of theEMalgorithm (Dempster et al. 1977) allows
to compute iteratively the MLE. Iteration k of the EM algorithm combines two steps:
(1) the computation of the conditional expectation of the complete log-likelihood given
the observed data and the current parameter estimate θk , denoted Q(θ |θk) (E-step);
(2) the update of the parameter estimates by maximization of Q(θ |θk) (M-step). In
our case, the E-step cannot be performed because Q(θ |θk) does not have a simple
analytic expression. We rather implement a Stochastic Approximation-EM (SAEM,
Delyon et al. 1999) which combines at each iteration the simulation of unobserved
data under the conditional distribution given the observations (S-step) and a stochastic
approximation of Q(θ |θk) (SA-step).
(a) General description of the SAEM algorithmGiven some initial value θ0, iteration

m of the SAEM algorithm consists in the three following steps:

(S-step) Simulate a realization of the random parameters �m under the condi-
tional distribution given the observations for a current parameter θm−1 denoted
p(·|y; θm−1).
(SA-step) Update Qm(θ) according to

Qm(θ) = Qm−1(θ) + αm(log p(y,�m; θ) − Qm−1(θ)),

where (αm)m≥1 is a sequence of positive step-sizes s.t.
∑∞

m=1 αm = ∞ and∑∞
m=1 α2

m < ∞.
(M-step) Update the parameter estimate by maximizing Qm(θ)

θm = arg maxθ Qm(θ).

In our case, an exact sampling under p(·|y; θm−1) in the S-step is not feasible. In
such intractable cases, MCMC algorithms such as Metropolis-Hastings algorithm can
be used (Kuhn and Lavielle 2004).

(b) Computation of the S-step by combining the Metropolis-Hastings algorithm with
Kalman filtering techniques

In the sequel, we combine the S-step of the SAEM algorithm with a MCMC pro-
cedure.

For a given parameter value θ , a single iteration of the Metropolis–Hastings algo-
rithm consists in:

(1) Generate a candidate �(c) ∼ q(·|�m−1, y; θ) for a given proposal distribution q
(2) Take

�m =
{

�m−1 with probability 1 − ρ(�m−1,�
(c)),

�(c) with probability ρ(�m−1,�
(c)),
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where

ρ(�m−1,�
(c)) = min

[
1,

p(y|�(c); θ) p(�(c); θ) q(�m−1|�(c), y; θ)

p(y|�m−1; θ) p(�m−1; θ) q(�(c)|�m−1, y; θ)

]
.

(22)

To compute the rate of acceptation of the Metropolis-Hastings algorithm in (22),
we need to calculate

p(yu |φu; θ) = p(yu,0|φu; θ)

nu∏
k=1

p(yu,k |yu,0, . . . , yu,k−1, φu; θ), 1 ≤ u ≤ U .

Let yu,k:0 := (yu,0, . . . , yu,k), k ≥ 1. In both models (17) and (18), the conditional
densities p(yu,k |yu,k−1:0, φu; θ) areGaussian densities. Inmodel (17) involving preva-
lence data, their means and variances can be exactly computed with Kalman filtering
techniques (see Narci et al. 2021). In model (18), the Kalman filter can not be used in
its standard form. We therefore develop an alternative filtering algorithm.

From now on, we omit the dependence in u and � for sake of simplicity.
Prevalence data
Let us consider model (11) and recall the successive steps of the filtering developed

in Narci et al. (2021). Assume that X0 ∼ Nd(x0, T0) and set X̂0 = x0, �̂0 = T0.
Then, the Kalman filter consists in recursively computing for k ≥ 1:

1. Prediction: L(Xk+1|Yk, . . . ,Y1) = Nd(X̂k+1, �̂k+1)

X̂k+1 = Fk+1 + Ak Xk

�̂k+1 = AkT k A
′
k + Tk+1

2. Updating: L(Xk |Yk, . . . ,Y1) = Nd(Xk, T k)

Xk = X̂k + �̂k B
′(B�̂k B

′ + Pk)
−1(Yk − B X̂k)

Tk = �̂k − �̂k B
′(B�̂k B

′ + Pk)
−1B�̂k

3. Marginal: L(Yk+1|Yk, . . . ,Y1) = N (M̂k+1, �̂k+1)

M̂k+1 = B X̂k+1

�̂k+1 = B�̂k+1B
′ + Pk+1

Incidence data Let us consider model (16). Assume that L(	1X) = Nd(G1, T1)
and L(Y1|	1X) = Nq(B̃	1X , P̃1). Let 	̂1X = G1 = x(t1) − x0 and �̂1 = T1.
Then, at iterations k ≥ 1, the filtering steps are:
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1. Prediction: L(	k+1X |Yk, . . . ,Y1) = Nd(	̂k+1X , �̂k+1)

	̂k+1X = Gk+1 + (Ak − Id)

(
k∑

l=1

	l X

)

�̂k+1 = (Ak − Id)

(
k∑

l=1

T l

)
(Ak − Id)

′ + Tk+1

2. Updating: L(	k X |Yk, . . . ,Y1) = Nd(	k X , T k)

	k X = 	̂k X + �̂k B̃
′(B̃�̂k B̃

′ + P̃k)
−1(Yk − B̃	̂k X)

T k = �̂k − �̂k B̃
′(B̃�̂k B̃

′ + P̃k)
−1 B̃�̂k

3. Marginal: L(Yk+1|Yk, . . . ,Y1) = N (M̂k+1, �̂k+1)

M̂k+1 = B̃	̂k+1X

�̂k+1 = B̃�̂k+1 B̃
′ + P̃k+1

The equations are deduced in Appendix 2, the difficult point lying in the prediction
step, i.e. the derivation of the conditional distribution L(	k+1X |Yk, . . . ,Y1).

3.2 Convergence of the SAEM-MCMC algorithm

Generic assumptions guaranteeing the convergence of the SAEM-MCMC algorithm
were stated in Kuhn and Lavielle (2004). These assumptions mainly concern the
regularity of the model [see assumptions (M1–M5)] and the properties of the MCMC
procedure used in step S (SAEM3’). Under these assumptions, and providing that the
step sizes (αm) are such that

∑∞
m=1 αm = ∞ and

∑∞
m=1 α2

m < ∞, then the sequence
(θm) obtained through the iterations of the SAEM-MCMCalgorithm converges almost
surely toward a stationary point of the observed likelihood.

Let us remark that by specifying the inter-epidemic variability through themodeling
framework of Sect. 2.2, our approach for multiple epidemics fulfills the exponentiality
condition stated in (M1) provided that all the components of φu are random. Hence
the algorithm proposed above converges almost surely toward a stationary point of the
observed likelihood under the standard regularity conditions stated in (M2-M5) and
assumption (SAEM3’).

There is no theoretical guarantee that the algorithm converges to a global maximum
of the likelihood. It is a classical problem in statistics which concerns the majority
of algorithms developed to optimize non convex functions. In practice, to prevent
convergence of the algorithm to a local maximum of the likelihood, it is possible to
consider different starting values for the parameters and to finally choose the set of
estimated values associated with the highest likelihood value among the ones obtained
with these different starting points. Nevertheless, depending on the complexity of
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the model and the number of observations to process, the computation time of the
algorithm for a given set of starting values can be important. Therefore, the strategy
adopted in the paper is to use a simulated annealing version of SAEM in order to have
more flexibility in the first iterations and thus to escape more easily from potential
local maxima of the likelihood at the beginning of the algorithm [cf. Appendix 3,
5th item and pages 249–252 in Lavielle (2014)]. This does not completely prevent
from converging to a local optimum but we can reasonably hope to reach the global
optimum by considering fewer different initializations than with a standard version of
the algorithm. In practice, the a priori knowledge of specialists in the field of study, in
this case epidemiologists, can help to initialize the algorithm close to the optimum.

4 Assessment of parameter estimators performances on simulated
data

First, the performances of our inference method are assessed on simulated stochastic
SIR dynamics. Second, the estimation results are compared with those obtained by an
empirical two-step approach.

For a given population of size N and given parameter values, we use the Gille-
spie algorithm (Gillespie 1977) to simulate a two-dimensional Markov jump process
Z(t) = (S(t), I (t))′. Then, choosing a sampling interval 	 and a reporting rate p,
we consider prevalence data (O(tk), k = 1, . . . , n) simulated as binomial trials from
a single coordinate of the system I (tk). We refer the reader to Appendix 5 for an
assessment of the performances of our inference method on simulated incidence data.

4.1 Simulation setting

ModelRecall that the epidemic-specificparameters areφu = (
R0,u, du, pu, s0,u, i0,u

)′.
In the sequel, for all u ∈ {1, . . . ,U }, we assume that R0,u > 1 and 0 < pu < 1 are
random parameters. We also set s0,u + i0,u = 1 (which means that the initial number
of recovered individuals is zero), with 0 < i0,u < 1 being a random parameter. More-
over, we consider that the infectious period du = d > 0 is a fixed parameter since
the duration of the infectious period can reasonably be assumed constant between
different epidemics. It is important to note that the case study is outside the scope of
the exponential model since a fixed parameter has been included. We refer the reader
to Appendix 3 for implementation details.

Four fixed effects β ∈ R
4 and three random effects ξu = (ξ1,u, ξ3,u, ξ4,u)

′ ∼
N3(0, �) are considered. Therefore, using (19) and (20), we assume the following
model for the fixed and random parameters:

φu = (
R0,u, du, pu, i0,u

)′ = h(β, ξu), with (23)

h1(β, ξu) = exp
[
β1 + ξ1,u

] + 1,

h2(β, ξu) = exp [β2] ,
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hi (β, ξu) = 1

1 + exp
[−(βi + ξi,u)

] , i = 3, 4.

In other words, random effects on (R0, p, i0) and fixed effect on d are considered.
Moreover, these random effects come from a priori independent sources, so that there
is no reason to consider correlations between ξ1,u , ξ3,u and ξ4,u , and we can assume
in this set-up a diagonal form for the covariance matrix � = diag �i , i ∈ {1, 3, 4}.

Parameter values
We consider two settings (denoted respectively (i) and (ii) below) corresponding

to two levels of inter-epidemic variability (resp. high and moderate). The fixed effects
values β are chosen such that the intrinsic stochasticity of the epidemic dynamics is
significant (a second set of fixed effects values leading to a lower intrinsic stochasticity
is also considered; see Appendix 4 for details).

– Setting (i): β = (−0.81, 0.92, 1.45,−2.20)′ and � = diag(0.472, 1.502, 0.752)
corresponding to E

(
R0,u

) = 1.5, CVR0,u = 17%; d = 2.5; E (pu) ≈ 0.74,
CVpu ≈ 31%; E

(
i0,u

) ≈ 0.12, CVi0,u ≈ 66%;
– Setting (ii): β = (−0.72, 0.92, 1.45,−2.20)′ and � = diag(0.252, 0.902, 0.502)
corresponding to E

(
R0,u

) = 1.5, CVR0,u = 8%; d = 2.5; E (pu) ≈ 0.78,
CVpu ≈ 18%; E

(
i0,u

) ≈ 0.11, CVi0 ≈ 45%;

where CVφ stands for the coefficient of variation of a random variable φ. Let us note
that the link between φu and (β, ξu) for p and i0 does not have an explicit expression.

Data simulation The population size is fixed to Nu = N = 10,000. For each
U ∈ {20, 50, 100}, J = 100 data sets, each composed of U SIR epidemic tra-

jectories, are simulated. Independent samplings of
(
φu, j = (

R0,u, du, pu, i0,u
)′
j

)
,

u = 1, . . .U , j = 1, . . . , J , are first drawn according to model (23). Then,
conditionally to each parameter set φu, j , a bidimensionnal Markov jump process
Zu, j (t) = (Su, j (t), Iu, j (t))′ is simulated. Normalizing Zu, j (t) with respect to Nu

and extracting the values of the normalized process at regular time points tk = k	,

k = 1, . . . , nu, j , gives the Xu,k, j =
(
Su,k, j
Nu

,
Iu,k, j
Nu

)′
’s. A fixed discretization time step

is used, i.e. the same value of 	 is used to simulate all the epidemic data. For each
epidemic, Tu, j is defined as the first time point at which the number of infected individ-
uals becomes zero. Two values of 	 are considered (	 ∈ {0.425, 2}) corresponding
to an average number of time-point observations n j = 1

U

∑U
u=1 nu, j ∈ {20, 100}.

Only trajectories that did not exhibit early extinction were considered for inference.
The theoretical proportion of these trajectories is given by 1 − (1/R0)

I0 (Anders-
son and Britton 2000). Then, given the simulated Xu,k, j ’s and parameters φu, j ’s, the
observations Yu,k, j are generated from binomial distributions B(Iu,k, j , pu, j ).

4.2 Point estimates and standard deviations for inferred parameters

Tables 1 and 2 show the estimates of the expectation and standard deviation of the
mixed effects φu , computed from the estimations of β and � using functions h defined
in (23), for settings (i) and (ii). For each parameter, the reported values are the mean of
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the J = 100 parameter estimates φu, j , j ∈ {1, . . . , J }, and their standard deviations
in brackets.

Remark 3 Via the link functions h, the random parameters �u can be expressed as a
function of the fixed effects β and the random effects ξu . When the link has a suitable
form (for example, a log link function), it is possible to explicitly obtain the mean and
variance of the �u’s. When it is not the case (for example, with a logit link function),
we can compute the empirical mean and variance based on simulations of the �u’s.
For more complex link functions (such as the logit link function), this is no longer true
and the empirical mean and variance are computed via simulations of the �u’s. This
is the method used here.

The results show that all the point estimates are close to the true values (relatively
small bias), whatever the inter-epidemic variability setting, even for small values of n̄
andU . When the number of epidemicsU increases, the standard error of the estimates
decreases, but it does not seem to have a real impact on the estimation bias. Besides,
observations of higher frequency of the epidemics (large n̄) lead to lower bias and
standard deviations. It is particularlymarked concerning both expectation and standard
deviations of the random parameters R0,u and pu . Irrespective to the level of inter-
epidemic variability, the estimations are quite satisfactory. While standard deviations
of R0,u are slightly over-estimated, even for large U and n, this trend in bias does not
affect the standard deviations of pu and i0,u .

For a given data set, Fig. 2 displays convergence graphs of the SAEM algorithm
for each estimates of model parameters in setting (i) with U = 100 and n̄ = 100.
Although the model does not belong to the curved exponential family, convergence of
model parameters towards their true value is obtained for all parameters.

4.3 Comparison with an empirical two-step approach

The inference proposed method (referred to as SAEM-KM) is compared to an empir-
ical two-step approach not taking into account explicitly mixed effects in the model.
For that purpose, let us consider the method presented in Narci et al. (2021) (referred
to as KM) performed in two steps: first, we compute the estimates φ̂u independently
on each of theU trajectories. Second, the empirical mean and variance of the φ̂u’s are
computed. We refer the reader to Appendix 3 for practical considerations on imple-
mentation of the KM method.

Let us consider n̄ = 50 and U ∈ {20, 100}. Figure 3 displays the distribution of
the bias of the parameter estimates φu, j , j ∈ {1, . . . , J }, J = 100, obtained with
SAEM-KM and KM for simulation settings (i) and (ii).

We notice a clear advantage to consider the mixed-effects structure. Overall, the
results show that SAEM-KM outperforms KM. This is more pronounced for stan-
dard deviation estimates in the large inter-epidemic variability setting (i) than in the
moderate inter-epidemic variability setting (ii). Concerning the expectation estimates,
their dispersion around the median is lower for KM than for SAEM-KM, especially
in setting (ii), but the bias of KM estimates is also higher. When the inter-epidemic
variability is high (setting (i)), the performances of the two inference methods are sub-
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Fig. 2 Convergence graphs of the SAEM algorithm for estimates of β = (β1, β2, β3, β4) and diag(�) =
(�1, �3, �4). Setting (i) with U = 100 and n̄ = 100. Parameter values at each iteration of the SAEM
algorithm (plain blue line) and true values of model parameters (dotted red line) (color figure online)

stantially different. In particular, KM sometimes fails to provide plausible estimates
(especially for parameter R0).

We also tested other values for n̄ and N (not shown here), e.g. n̄ = 20 (lower
amount of information) and N = 2000 (higher intrinsic variability of epidemics). In
such cases, KM also failed to provide satisfying estimations whereas themixed-effects
approach was much more robust.

5 Case study: influenza outbreaks in France

Data The SAEM-KM method is evaluated on a real data set of influenza outbreaks in
France provided by the Réseau Sentinelles (url: www.sentiweb.fr). We use the daily
number of influenza-like illness (ILI) cases between 1990 and 2017, considered as a
good proxy of the number of new infectious individuals. The daily incidence rate was
expressed per 100,000 inhabitants. To select epidemic periods, we chose the arbitrary
threshold of weekly incidence of 160 cases per 100,000 inhabitants (Cauchemez et al.
2008), leading to 28 epidemic dynamics. Two epidemics have been discarded due to
their bimodality (1991–1992 and 1998). Therefore, U = 26 epidemic dynamics are
considered for inference.

Compartmental model Let us consider the SEIR model (see Fig. 4). An individual is
considered exposed (E) when infected but not infectious. Denote η = (λ, ε, γ, x0),
with x0 = (s0, e0, i0, r0), the parameters involved in the transition rates, where ε is
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Fig. 3 Boxplots (25th, 50th and 75th percentiles) of the bias of the estimates of each model parameter,
with n̄ = 50, obtained with SAEM-KM (blue boxes) and KM (red boxes). Two levels: U = 20 and
U = 100 epidemics. Dark colours: high inter-epidemic variability [setting (i)]. Light colours: moderate
inter-epidemic variability [setting (ii)]. The symbol represents the estimated mean bias. For sake of clarity,
we removed extreme values from the graphical representation. This concerns only the parameter R0 and
the KM method: 37 values for E(R0,u) (35 in setting (i), 2 in setting (ii)) and 50 values for sd(R0,u) (47 in
setting (i), 3 in setting (ii)) (color figure online)

the transition rate from E to I . ODEs of the SEIR model are as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ds
dt (η, t) = −λs(η, t)i(η, t),
de
dt (η, t) = λs(η, t)i(η, t) − εe(η, t),
di
dt (η, t) = εe(η, t) − γ i(η, t),
dr
dt (η, t) = γ i(η, t),

x0 = (s0, e0, i0, r0).

(24)

Another parametrization exhibits the basic reproduction number R0 = λ
γ
, the incu-

bation period dE = 1
ε
and the infectious period dI = 1

γ
. Thus, the epidemic parameters

areη = (R0, dE , dI , s0, e0, i0)′. Let us describe the two-layermodel used in the sequel.
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Fig. 4 SEIR compartmental model with four blocks corresponding respectively to susceptible (S), exposed
(E), infectious (I) and recovered (R) individuals. Transitions of individuals from one health state to another
are governed by the transmission rate λ, the incubation rate ε and the recovery rate γ

Intra-epidemic variability For each epidemic u, let Xu =
(

Su
Nu

, Eu
Nu

, Iu
Nu

)′
and

ηu = (
R0,u, dE,u, dI ,u, su,0, eu,0, iu,0

)
,

where the population size is fixed at Nu = N = 100,000. Denote by Incu(tk) the
number of newly infected individuals at time tk for epidemic u. We have

Incu(tk) =
∫ tk

tk−1

1

dE,u
Eu(t)dt = Su(tk−1) − Su(tk) + Eu(tk−1) − Eu(tk) = −(	k Su + 	k Eu).

Observations are modeled as incidence data observed with Gaussian noises. We draw
our inspiration from Bretó (2018) to account for over-dispersion in data. Therefore,
assuming a reporting rate pu for epidemic u, the mean and the variance of the observed
newly infected individuals are respectively defined as puIncu(tk) and puIncu(tk) +
τ 2u p

2
uIncu(tk)

2, where parameter τu is introduced to handle over-dispersion in the
data. Denote φu = (

ηu, pu, τ 2u
)
. Therefore, we use the model defined in (18) with

	k Xu =
(

	k Su
N ,

	k Eu
N ,

	k Iu
N

)′
, Vu,k ∼ Nd (0, Tk(φu,	)), W̃u,k ∼ Nq(0, P̃k(φu)),

Gk(·), Ak−1(·) and Tk(·) deriving from (26) in Appendix 1, B̃(φu) = (−pu − pu 0)
and

P̃k(φu) = 1

N
B̃(φu)	k xu + τ 2u

(
B̃(φu)	k xu

)2
,

where x(·, t) is the ODE solution of (24).

Inter-epidemic variability In this real data study, due to identifiability issues, we
have to perform inference by fixing parameters dE (incubation period), dI (infectious
period) and r0 (initial proportion of removed individuals). Let us first comment on
the two parameters dE , dI . Studies in the literature found discrepant values of these
durations (see Cori et al. 2012 for a review), varying from 0.64 (Fraser et al. 2009) to
3.0 (Pourbohloul et al. 2009) days for the incubation period and from 1.27 (Fraser et al.
2009) to 8.0 (Pourbohloul et al. 2009) days for the infectious period. For example,
Cori et al. (2012) estimated that dE = 1.6 and dI = 1.0 days on average using
excretion profiles from experimental infections. In two other papers, these durations
were fixed according to previous studies (e.g. Mills et al. 2004; Ferguson et al. 2005):
(dE , dI ) = (1.9, 4.1) days (Chowell et al. 2008); (dE , dI ) = (0.8, 1.8) days (Baguelin
et al. 2013). Performing a systematic review procedure from viral shedding and/or
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symptoms, Carrat et al. (2008) estimated dE to be between 1.7 and 2.0 on average.
Therefore in what follows, we consider the latent and infectious periods dE and dI
known and test three combinations of values: (dE , dI ) = (1.6, 1.0), (0.8, 1.8) and
(1.9, 4.1).

We consider that the basic reproduction number R0 and the reporting rate p are
random, reflecting the assumptions that the transmission rate of the pathogen varies
from season to season and the reporting could change over the years. Moreover, we
assume eu(0) = iu(0) random and unknown (i.e. the proportion of initial exposed
and infectious individuals is variable between epidemics). Cauchemez et al. (2008)
assumed that at the start of each influenza season, a fixed average of 27% of the
population is immune, that is r0,u = r0 = 0.27. To assess the robustness of the model
with respect to the r0 value, we test three values: r0 ∈ {0.1, 0.27, 0.5}. This leads
to s0,u = 1 − r0 − 2i0,u random and unknown. Finally, we assume that τ 2u = τ 2

is fixed and unknown. Thus, we have to study nine candidate models with: known
parameters (dE , dI ) ∈ {(0.8, 1.8), (1.6, 1.0), (1.9, 4.1)} and r0 ∈ {0.1, 0.27, 0.5};
fixed and unknown parameter τ 2 ; random and unknown parameters R0, i0 and p.

Therefore, using (19), we consider the following model for random parameters:

φu =
(
R0,u, pu, i0,u, τ

2
)′ = h(β, ξu), with (25)

h1(β, ξu) = exp
[
β1 + ξ1,u

] + 1,

h j (β, ξu) = 1

1 + exp
[−(β j + ξ j,u)

] , j = 2, 3,

h4(β, ξu) = exp [β4] ,

where fixed effects β ∈ R
4 and the random effects are ξu ∼i .i .d. N3(0, �) with � a

covariance matrix assumed to be diagonal.

Parameter estimates These nine candidate models correspond to different combi-
nations of values of ((dE , dI ), r0). They have exactly the same structure and the same
complexity in terms of number of parameters to be estimated. After the inference
is performed for each of these nine candidate models, we have to choose the best
candidate values. Using importance sampling techniques, we estimate the observed
log-likelihood of each model from the estimated parameters values initially obtained
with the SAEM algorithm. Table 3 provides the estimated log-likelihood values of
the nine models of interest. Irrespectively of the r0 value, we find that the model with
(dE , dI ) = (1.9, 4.1) outperforms the two other models in terms of log-likelihood
value. Moreover, for a given combination of values of (dE , dI ), the estimated log-
likelihood values are quite similar according to the three r0 tested values.

Remark 4 Model comparison is usually performed by using information criteria like
BIC which are defined by adding a penalty term, depending on the total number of
model parameters, to −2× the log-likelihood. The best model according to these
criteria is the model that leads to the smallest criterion value. We could have used BIC
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Table 3 Estimated values of the
observed log-likelihood of the
model obtained by testing nine
combinations of values of
((dE , dI ), r0)

(dE , dI ) r0 Estimated log-likelihood

(0.8,1.8) 0.1 9011.752

0.27 8827.870

0.5 8499.452

(1.6,1.0) 0.1 9147.108

0.27 8961.991

0.5 8643.562

(1.9,4.1) 0.1 10270.000

0.27 10216.260

0.5 9905.436

to compare the nine candidatemodels, but as they have the same number of parameters,
the penalty is useless and the comparison is fully based on the −2× log-likelihood
term of the criterion. That is why we only show the estimated log-likelihood values
in Table 3. Instead of comparing values of −2× log-likelihood, we directly compare
log-likelihood values, so higher values are better.

Let us focus on themodelwith (dE , dI ) = (1.9, 4.1). Table 4 presents the estimation
results of the model parameters obtained by testing the three values of r0: 0.1, 0.27
and 0.5.

The average estimated value of R0 is quite contrasted according to the r0 value:
between 1.81 and 3.28 from r0 = 0.1 to r0 = 0.5. By comparison, in Cauchemez
et al. (2008), R0 is estimated to be 1.7 during school term, and 1.4 in holidays, using a
population structured into households and schools. Chowell et al. (2008) estimated a
different reproduction number R̃ = (1− r0)R0 = 1.3, measuring the transmissibility
at the beginning of an epidemic in a partially immune population, from mortality
data. In our case, the average value of R̃ is estimated to 1.63, 1.63 and 1.64 when
r0 = 0.1, 0.27 and 0.5 respectively. Therefore, given the nature of the observations
(new infected individuals) and the considered model, this appears to be difficult to
correctly identify R0 together with r0. Indeed, the fraction of immunized individuals
at the beginning of each seasonal influenza epidemic is an important parameter for
the epidemic dynamics, but its value is not well known. This has implications for the
stability of the estimation of the other parameters. Interestingly, the average reporting
rate is estimated particularly low (around 10% irrespective of the r0 value). Moreover,
we observe that R0 together with p and i0 seem to be variable from season to season,
with moderate coefficient of variation CV(R0,u) close to 15% and high coefficients of
variation CV(pu) and CV(i0,u) around 50% and 70% respectively.

It is possible to performamaximumaposteriori (MAP) estimation of the parameters
φu corresponding to each period, by computing φ̂u = argmaxφu

p(φu |Yu; θ̂ ) where θ̂

is the parameter estimate obtained with the SAEM algorithm. We refer the reader to
Appendix 6 for a graphical representation of the time-series behaviour of R0,u and pu ,
which could be interesting from an epidemiological point of view.

The post-predictive check is shown in Fig. 5. The difference between the average
simulated curves obtained with estimated parameter values is negligible according
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Fig. 5 Post-predictive check. Observations (number of ILI as proxy for new infectious for each of the U
epidemics) (blue). Simulated trajectories obtained for r0 = 0.1 (red), r0 = 0.27 (magenta) and r0 = 0.5
(green) in three steps: (i) generation of 1000 φ̂u values based on estimated values of parameters; (ii) given
φ̂u , simulation of 1000 epidemics according to the model (18); (iii) computation of average trajectory (solid
line) and 5th and 95th percentiles (dotted lines) of the 1000 simulated epidemics. Population size fixed to
N = 100,000 (color figure online)

to the r0 value. Considering the values of R̃, very close in the three scenarios, the
proximity of the predicted trajectories is not surprising. Let us emphasize that the
majority of the observations are within the predicted envelope (5th and 95th per-
centiles). Moreover, the predicted average trajectory informs about generic trends
of influenza outbreaks: on average, the epidemic peak should be reached around 25
days after the beginning of the outbreak with an incidence of 90/100,000 inhabitants
approximately.

Remark 5 We observe on Fig. 5 that the two epidemics lasting longer, corresponding
to the seasons 1998–1999 and 2012–2013, tend to be above the 95% percentile near
the end, which could be explained by the fact that they grow very slowly the first
three weeks. Also, considering a different threshold defining the epidemic season
(here taken equal to 160 cases per 100,000 inhabitants) could change the data-points
considered for these two trajectories and hence their positioning with respect to the
average or confidence bound trajectories. Finally, the predicted envelope of the 5th
and 95th percentiles is ensured to contain, by construction, only 90% of observations.
Therefore, some observations can be found below the 5th percentile or above the 95th
percentile.

6 Discussion

In this paper, we propose a generic inference method taking into account simultane-
ously in a unique model multiple epidemic trajectories and providing estimations of
key parameters from incomplete and noisy epidemic data (prevalence or incidence).
The framework of the mixed-effects models was used to describe the inter-epidemic
variability, whereas the intra-epidemic variability was modeled by an autoregressive
Gaussian process. The Gaussian formulation of the epidemic model for prevalence
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data used in Narci et al. (2021) was extended to the case where incidence data were
considered. Then, the SAEM algorithm was coupled with Kalman-like filtering tech-
niques in order to estimate model parameters.

The performances of the estimators were investigated on simulated data of SIR
dynamics, under various scenarios, with respect to the parameter values of epidemic
and observation processes, the number of epidemics (U ), the average number of obser-
vations for each of theU epidemics (n̄) and the population size (N ). The results show
that all estimates are close to the true values (reasonable biases), whatever the inter-
epidemic variability setting, even for small values of n̄ and U . The performances, in
termof precision, are improvedwhen increasingU , whereas the bias and standard devi-
ations of the estimations decrease when increasing n̄. We also compared our method
with a two-step empirical approach that processes the different data sets separately
and combines the individual parameter estimates a posteriori to provide an estimate
of inter-epidemic variability (Narci et al. 2021). When the number of observations is
too low and/or the coefficient of variation of the random effects is high, SAEM-KM
clearly outperforms KM.

The proposed inference method was also evaluated on an influenza data set pro-
vided by the Réseau Sentinelles, consisting in the daily number of new infectious
individuals per 100,000 inhabitants between 1990 and 2017 in France, using a SEIR
compartmental model. Testing different combinations of values for (dE , dI ) and r0,
we find that (dE , dI ) = (1.9, 4.1) leads to the best fitting model. Then, irrespective
to the r0 value, we estimated an average value of R̃ = (1 − r0)R0 to be around 1.6.
Moreover, we highlighted a non-negligible variability from season to season that is
quantitatively assessed. This variability appears especially in the initial conditions (i0)
and the reporting rate (p), as a combined effect of observational uncertainties and dif-
ferences between seasons. Although to a lesser extent, R0 also appears to vary between
seasons, plausibly reflecting the variability in the transmission rate (λ). Obviously, the
estimations can strongly depend on the choice of the compartmental model, the nature
and frequency of the observations and the distribution of the random parameters. Our
contribution is to propose a finer estimation of the model parameters by taking into
account simultaneously all the influenza outbreaks in France for the inference proce-
dure. This leads to an explicit and rigorous estimation of the seasonal variability.

Other methods have been implemented to deal with multiple epidemic dynam-
ics. Bretó et al. (2020) proposed a likelihood-based inference methods for panel data
modeled by non-linear partially observed jump processes incorporating unit-specific
parameters and shared parameters. Nevertheless, the framework ofmixed-effectsmod-
els was not really investigated. Prague et al. (2020) used an ODE system with mixed
effects on the parameters to analyse the first epidemic wave of Covid-19 in various
regions in France by inferring key parameters from the daily incidence of infectious
ascertained and hospitalized infectious cases. To our knowledge, there are no published
studies aiming at the estimation of key parameters simultaneously from several out-
break time series using both a stochastic modeling of epidemic processes and random
effects on model parameters.

Themain advantage of ourmethod is to propose a direct access to the inter-epidemic
variability between multiple outbreaks. Taking into account simultaneously several
epidemics in a unique model leads to an improvement of statistical inference com-
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paredwith empiricalmethodswhich consider independently epidemic trajectories. For
example, we can mention two experimental settings: (1) the number of epidemics is
highbut the number of observations per epidemic is low; (2) the number of observations
per epidemic is high but the number of epidemics is low. In such cases, mixed-effects
approaches can provide more satisfying estimation results. This benefit more than
compensates for the careful calibration of the tuning parameters of the SAEM algo-
rithm.

This paper focuses of independent epidemics. Even in this apparently simple case, a
non negligible number of technical and methodological difficulties arise. Given these
difficulties and as this setting is rarely suitable in practice, there is a compromise
to find for inference, between a parsimonious description of the U epidemics and a
more detailed one. The set-up of mixed-effects SDE allows to describe simultaneously
the within and between epidemic stochasticity. This study can be considered as the
first investigation step of the multiple epidemics data set, that does not prevent a
second investigation step with amore accurate description including for instance some
shared parameters, unit specific parameters, a dependence structure, etc. Extensions
of this work would imply modifications of the model but also important modifications
of the algorithm, the latter being necessarily specific to the way the dependence is
accounted for. A first strategy could be to incorporate a given dependence structure
between the Xu’s directly in the time series equations by specifying the Xu,k’s about
this way: Xu,k = gη(X1,k−1, X2,k−1, . . . , XU ,k−1, Vk), where gη(·) is known up to
parameter η. This mechanically increases the number of parameters in η, which may
lead to high computation times when U is large. A second strategy should be to
introduce a correlation between the φu’s by defining the epidemic-specific parameters

as � =

⎛
⎜⎜⎜⎝

φ1
φ2
...

φU

⎞
⎟⎟⎟⎠ ∼ Nc×U (0,�) with � a non block diagonal covariance matrix of

size c × U . Here again, the number of parameters to be estimated can be increased
significantly depending on the way the dependency is parametrized. In both cases, the
simulation step of the algorithm has to be modified because the random effects can
no longer be simulated independently. The modifications of the algorithm implied by
these two ways of modeling the dependence between epidemics require an important
additional work and are thus not considered in this paper.

In some practical cases in epidemiology, it might be difficult to determine whether
a parameter is fixed or random. Consequently, our approach could be associated with
model selection techniques to inform this choice, using a criterion based on the log-
likelihood of observations [see for instance Delattre et al. (2014) and Delattre and
Poursat (2020)]. This would allow to determine more precisely which parameters
reflect inter-individual variability and thus help to better understand the mechanisms
underlying this variability.Moreover,wepresented a case studyon influenzaoutbreaks,
where the variability between epidemics is seasonal, but our approach can be also
applied on epidemics spreading simultaneously in many regions. In this case, the
inter-epidemic variability is spatial and it would be interesting to evaluate trends from
one region to another.
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Appendix A: Key quantities involved in the SEIR epidemic model

In theSEIRmodel, epidemic parameters are the transition ratesλ, ε andγ and the initial
proportions of susceptible, exposed and infectious individuals s0 = S(0)

N , e0 = E(0)
N

and i0 = I (0)
N . When there is no ambiguity, we denote by s, e and i respectively the

solutions s(η, t), e(η, t) and i(η, t) of the system of ODEs defined in (24). Then, the
functions b(η, ·) and �(η, ·) are

b(η, s, e, i) =
⎛
⎝ −λsi

λsi − εe
εe − γ i

⎞
⎠ ; �(η, s, e, i) =

⎛
⎝ λsi −λsi 0

−λsi λsi + εe −εe
0 −εe εe + γ i

⎞
⎠ , (26)

and the Cholesky decomposition of �(η, ·) yields

σ(η, s, e, i) =
⎛
⎝

√
λsi 0 0

−√
λsi

√
εe 0

0 −√
εe

√
γ i

⎞
⎠ .

Appendix B: Details on the Kalman filter equations for incidence data
of epidemic dynamics

Consider the model (16). Assume that L(	1X) = Nd(G1, T1) and L(Y1|	1X) =
Nq(B	1X , P1). Let 	̂1X = G1 = x(t1)− x0 and �̂1 = T1. Then, at iteration k = 1,
the three steps of the Kalman filter are:

1. Prediction: L(	2X |Y1) = Nd(	̂2X , �̂2)

	̂2X = G2 + (A1 − Id)	1X

�̂2 = (A1 − Id)T 1(A1 − Id)
′ + T2

2. Updating: L(	1X |Y1) = Nd(	1X , T 1)

	1X = 	̂1X + �̂1 B̃
′(B̃�̂1 B̃

′ + P̃1)
−1(Y1 − B̃	̂1X)

T 1 = �̂1 − �̂1 B̃
′(B̃�̂1 B̃

′ + P̃1)
−1 B̃�̂1

3. Marginal: L(Y2|Y1) = N (M̂2, �̂2)

M̂2 = B̃	̂2X
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�̂2 = B̃�̂2 B̃
′ + P̃2

Now, starting from the distribution of L(	2X |Y1), the Kalman filter at iteration
k = 2 becomes:

1. Prediction: L(	3X |Y2,Y1) = Nd(	̂3X , �̂3)

	̂3X = G3 + (A2 − Id)(	1X + 	2X)

�̂3 = (A2 − Id)(T 1 + T 2)(A2 − Id)
′ + T3

2. Updating: L(	2X |Y2,Y1) = Nd(	2X , T 2)

	2X = 	̂2X + �̂2 B̃
′(B̃�̂2 B̃

′ + P̃2)
−1(Y2 − B̃	̂2X)

T 2 = �̂2 − �̂2 B̃
′(B̃�̂2 B̃

′ + P̃2)
−1 B̃�̂2

3. Marginal: L(Y3|Y2,Y1) = N (M̂3, �̂3)

M̂3 = B̃	̂3X

�̂3 = B̃�̂3 B̃
′ + P̃3

Proof We just have to prove that, conditionally on Y1, Y2, 	1X and 	2X are inde-
pendent. First, we have:

	3X = G3 + A2(	1X + 	2X) +U3.

Hence:

E(	3X |Y2, Y1) = G3 + A2(E(	1X |Y1) + E(	2X |Y2, Y1)) = G3 + A2(	1X + 	2X).

Let t1, t2 ∈ R
d . Then, we can compute the characteristic function of 	1X + 	2X

conditionally to Y2, Y1:

E
[
exp

(
i t ′1	1X + i t ′2	2X

) |Y2,Y1
]

= E
[
exp

(
i t ′1	1X

) |Y2,Y1
]
E
[
exp

(
i t ′2	2X |	1X

)
,Y2,Y1

]

= exp

(
t ′1	1X + 1

2
t ′1T 1

)
× exp

(
t ′2	2X + 1

2
t ′2T 2

)
.

Consequently, conditionally to Y1, Y2, 	1X and 	2X are independent and

Var(	1X + 	2X |Y2,Y1) = T 1 + T 2.


�
Then, the generalization to the case k ≥ 1 is direct, leading to the Kalman filter

described in Sect. 3 for incidence data.
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Appendix C: Practical considerations on implementation setting

Let us make some remarks on practical implementation.

– Two strategies for the choice of the step-size αm at a given iterationm of the SAEM
algorithm are combined, as recommended in Lavielle (2014): first, denoting by
M0 the number of burn-in iterations, we use αm = 1 if m ≤ M0 to quickly
converge to a neighborhood of the solution and then, αm = 1

(m−M0)
ν0 if m > M0

with 1
2 ≤ ν0 ≤ 1 to ensure almost sure convergence of the sequence (θm) to the

maximum likelihood estimate of θ .
– An extended algorithm for non-exponential models is proposed to include fixed
effects (see e.g. Debavelaere and Allassonnière 2021). Let κ be a fixed parameter
to be estimated. First, for m = 1, . . . , M0, we use the classical procedure of the
SAEM algorithm, that is a mean and a variance of the parameter is estimated
at each iteration as if it were a random parameter. Then, at each new iteration
m + 1, the current variance of the parameter, denoted ω

(m+1)
κ , is updated as:

ω
(m+1)
κ = K0 × ω

(m)
κ , with 0 < K0 < 1.

– Due to the small influence of the number of iterations in the Metropolis-Hastings
procedure (see e.g. Kuhn and Lavielle 2005), a single iteration is used. Fur-
thermore, if the proposal distribution is the marginal distribution p(�; θ̃ ), the
expression of the acceptance probability is simplified as follows:

ρ(�m−1,�
(c)) = min

[
1,

p(y|�(c); θ̃ )

p(y|�m−1; θ̃ )

]
.

– A stopping criterion for the SAEM algorithm is considered. Denote by θ
(m)
j the

j-th component of θ estimated at iteration m of the SAEM algorithm. Then, the
algorithm stops either when the criterion

max
j

( |θ(m)
j − θ

(m−1)
j |

|θ(m)
j |

)
< μ0

is satisfied several times consecutively or when a limit of Mmax iterations is
reached. The value of μ0 is chosen sufficiently small (e.g. of the order of 10−3 or
10−4).

– As the convergence of the SAEM algorithm can strongly depend on the initial
guess, a simulated annealing version of SAEM (Kirkpatrick 1984) is used to
escape from potential local maxima of the likelihood during the first iterations

and converge to a neighborhood of the global maximum. Let �̂
(
φ

( j)
m

)
the esti-

mated variance of the j-th component of�m at iterationm of the SAEMalgorithm.

Then, while m ≤ M0, �
( j)
m = max

[
τ0 �

( j)
m−1, �̂

(
φ

( j)
m

)]
with 0 < τ0 < 1. For

m > M0, the usual SAEM algorithm is used to estimate the variances at each
iteration (see e.g. Lavielle 2014).
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– For the initialization of the SAEM algorithm, the starting parameter values β0 of
the fixed effects β are uniformly drawn from a hypercube encompassing the likely
true values. The initial variances �0 are chosen sufficiently large (1 by default).

– When the sampling intervals between observations	 are large, the approximation
of the resolvent matrix proposed in Narci et al. (2021), Appendix 1, is used.

– Concerning the KM approach, we use the Nelder-Mead method implemented
in the optim function of the R software to maximize the approximated log-
likelihood given by the Kalman filter. This requires to provide some initial values
for the unknown parameters. As the optimization can be very sensitive to initial-
isation, 10 different starting values are considered and the maximum value for
the log-likelihood among them are chosen. The starting parameter values for the
maximization algorithm are uniformly drawn from a hypercube encompassing the
likely true values.

For simulation studies in Sect. 4.1, the tuning parameters values are chosen as:
M0 = 500, ν0 = 0.6, K0 = 0.87, μ0 = 0.001, Mmax = 1000 and τ0 = 0.98.
Concerning the investigation of influenza outbreaks in Sect. 5, we chose: M0 = 5000,
ν0 = 0.6, K0 = 0.87, μ0 = 0.0001 and τ0 = 0.98. The algorithm stops when the
criterion is checked 100 times successively.

Appendix D: Estimation results for a second set of parameter values

D.1 Simulation settings

Weconsider a second set of parameter valueswhich induces a lower intrinsic variability
between epidemics. As for the first set of values, we consider two settings (denoted
respectively (i) and (ii)) corresponding to two levels of inter-epidemic variability (resp.
high and moderate):

– Setting (i): β = (0.58, 1.10, 1.45,−2.20)′ and � = diag(0.472, 1.52, 0.752)
corresponding to E

(
R0,1:U

) = 3, CVR0 = 33%; d = 3; E (p1:U ) ≈ 0.74,
CVp ≈ 31%; E

(
i0,1:U

) ≈ 0.12, CVi0 ≈ 66%.
– Setting (ii): β = (0.66, 1.10, 1.45,−2.2)′ and � = diag(0.252, 0.92, 0.52) corre-
sponding toE

(
R0,1:U

) = 3,CVR0 = 17%; d = 3;E (p1:U ) ≈ 0.78,CVp ≈ 18%;
E
(
i0,1:U

) ≈ 0.11, CVi0 ≈ 45%.

D.2 Point estimates and standard deviation for inferred parameters

Tables 5 and 6 show the estimates of the expectation and standard deviation of the
randomeffectsφu , computed from the estimations ofβ and� using functions h defined
in (23), for settings (i) and (ii). For each parameter, the reported values are the mean of
the J = 100 parameter estimates φu, j , j ∈ {1, . . . , J }, and their standard deviations
in brackets.

As for the first set of parameters values, all point estimates are closed to the true
values. The standard error of the estimates decreases when the number of epidemics
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Fig. 6 Convergence graphs of the SAEM algorithm for estimates of β = (β1, β2, β3, β4) and diag(�) =
(�1, �3, �4). Setting (i) with U = 100 and n̄ = 100. Parameter values at each iteration of the SAEM
algorithm (plain blue line) and true values of model parameters (dotted red line) (color figure online)

U and the number of observations n̄ increases, whereas the bias is only sensitive to n̄
(bias decreasing when n̄ increasing).

For a given data set, Fig. 6 displays convergence graphs for model parameters in
setting (i) with U = 100 and n̄ = 100.

We notice that all model parameters converge towards their true value.

Appendix E: Estimation results for incidence data

Let us assume that the observations are the numbers of new infectious individuals.
Thus, we consider the model for incidence data (18). In the SIR model, the number of
newly infected individuals at time tk is equal to

∫ tk

tk−1

λS(t)
I (t)

N
dt = S(tk−1) − S(tk) = −	K S.

When considering incidence data, we noticed that the infectious period d cannot be
correctly estimated together with R0, p and i0 because we do not have information
about the time spent in the compartment I . Consequently, from now on, we consider
the infectious period fixed and known. Three fixed effects β ∈ R

3 and three random
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effects ξu = (ξ1,u, ξ2,u, ξ3,u)
′ ∼ N3(0, �) are considered. Therefore, using (19) and

(20), we assume the following model for the random parameters:

φu = (
R0,u, pu, i0,u

)′ = h(β, ξu), with (27)

h1(β, ξu) = exp
[
β1 + ξ1,u

] + 1,

hi (β, ξu) = 1

1 + exp
[−(βi + ξi,u)

] , i = 2, 3.

We consider the two same sets of parameters values and the two same settings, cor-
responding to different levels of inter-epidemic variability (resp. high and moderate),
as before (cf. Sect. 4.1 and Appendix 4).

E.1 Data simulation

The population size is fixed to Nu = N = 10, 000. For each U ∈ {20, 50, 100},
J = 100 data sets, each composed of U SIR epidemic trajectories, are simulated.

Independent samplings of
(
φu, j = (

R0,u, pu, i0,u
)′
j

)
, u = 1, . . .U , j = 1, . . . , J , are

first drawn according to model (27). Then, conditionally to each parameter set φu, j , a
bidimensionnal Markov jump process Zu, j (t) = (Su, j (t), Iu, j (t))′ is simulated. Nor-
malizingZu, j (t)with respect to Nu and extracting the values of the normalized process

at regular time points tk = k	, k = 1, . . . , nu, j , gives the Xu,k, j =
(
Su,k, j
Nu

,
Iu,k, j
Nu

)′
’s.

One value of 	 is considered according to the set of parameters values corresponding
to an average number of time-point observations n j = 1

U

∑U
u=1 nu, j = 20. Given the

simulated Xu,k, j ’s and parameters φu, j ’s, the observations Yu,k, j are generated from
binomial distributions B(Su,k−1, j − Su,k, j , pu, j ).

E.2 Point estimates and standard deviation for inferred parameters

Tables 7 and 8 show the estimates of the expectation and standard deviation of the
randomeffectsφu , computed from the estimations ofβ and� using functions h defined
in (27), for settings (i) and (ii), and for different sets of parameters values. For each
parameter, the reported values are the mean of the J = 100 parameter estimates φu, j ,
j ∈ {1, . . . , J }, and their standard deviations in brackets.
Let us emphasize that the results are quite satisfying, especially given that the

average number of observations is rather small (n̄ = 20). Whatever the number of
epidemicsU and the inter-epidemic variability setting, the estimation bias is relatively
small for all the parameters. When the number of epidemicsU increases, the standard
error of the estimates decreases, whereas the bias does not seem to be affected.
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Table 7 Estimates for the first set of parameters values

Parameters E
(
R0,u

)
E (pu) E

(
i0,u

)
sd

(
R0,u

)
sd (pu) sd

(
i0,u

)
True values (setting (i)) 1.500 0.739 0.119 0.250 0.226 0.079

U = 20 1.516 0.725 0.120 0.349 0.180 0.079

(0.076) (0.045) (0.021) (0.169) (0.039) (0.023)

U = 50 1.508 0.730 0.120 0.365 0.185 0.081

(0.053) (0.029) (0.013) (0.097) (0.022) (0.012)

U = 100 1.517 0.731 0.120 0.373 0.184 0.081

(0.038) (0.024) (0.010) (0.059) (0.017) (0.009)

True values (setting (ii)) 1.500 0.777 0.109 0.125 0.143 0.049

U = 20 1.559 0.746 0.105 0.196 0.108 0.047

(0.052) (0.038) (0.012) (0.0.061) (0.0.027) (0.012)

U = 50 1.558 0.749 0.105 0.209 0.114 0.048

(0.042) (0.023) (0.008) (0.037) (0.016) (0.008)

U = 100 1.553 0.751 0.106 0.213 0.115 0.049

(0.037) (0.019) (0.006) (0.026) (0.013) (0.005)

For eachU and for each model parameter (defined in the first line of the table), point estimates and precision
are calculated as the mean of the J = 100 individual estimates and their standard deviations (in brackets)

Table 8 Estimates for the second set of parameters values

Parameters E
(
R0,u

)
E (pu) E

(
i0,u

)
sd

(
R0,u

)
sd (pu) sd

(
i0,u

)
True values (setting (i)) 3.000 0.739 0.119 1.000 0.226 0.079

U = 20 2.871 0.790 0.163 1.618 0.174 0.117

(0.315) (0.049) (0.034) (0.973) (0.037) (0.033)

U = 50 2.856 0.804 0.165 1.466 0.166 0.121

(0.169) (0.030) (0.019) (0.397) (0.025) (0.017)

U = 100 2.842 0.804 0.168 1.486 0.169 0.125

(0.131) (0.021) (0.017) (0.285) (0.019) (0.015)

True values (setting (ii)) 3.000 0.777 0.109 0.500 0.143 0.049

U = 20 2.862 0.819 0.137 0.651 0.110 0.073

(0.148) (0.032) (0.021) (0.198) (0.026) (0.019)

U = 50 2.869 0.812 0.137 0.693 0.117 0.074

(0.087) (0.019) (0.015) (0.113) (0.013) (0.013)

U = 100 2.868 0.817 0.138 0.707 0.117 0.076

(0.074) (0.017) (0.012) (0.083) (0.013) (0.008)

For eachU and for each model parameter (defined in the first line of the table), point estimates and precision
are calculated as the mean of the J = 100 individual estimates and their standard deviations (in brackets)
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Fig. 7 Time evolution of R0,u (first line) and pu (second line) between 1990 and 2017

Appendix F: Maximum a posteriori estimations of model parameters

Figure 7, obtained after performing a maximum a posteriori estimation of the model
parameters, shows that the R0 value is quite variable between 1990 and 1997 while it
seems more stable in the years 2000. Concerning the reporting rate value p, one could
expect that it increases over time, but this trend is not really noticeable in Fig. 7.

Appendix G: Repository on GitHub

We propose two folders (according to the type of data considered, i.e. prevalence or
incidence), each composed of three distinct programs in the R language, on theGitHub
website and available at the following link: https://github.com/rnarci/SAEM-Kalman.

– KalmanFunctions.R implements the SAEM-MCMC algorithm combined with
Kalman filtering techniques. This includes general functions implementing the
Kalman filter, given a specified compartmental model, with a fixed sampling inter-
val. These functions are easily generalizable to the casewhere the sampling interval
is variable.Moreover, this script includes a function computing the resolventmatrix
for large time intervals 	 between observations.

– ModelFunctions.R implements the SIR model and defines the key quantities
(described in the manuscript) necessary to apply the Kalman filter-based method.
More precisely, the functions corresponding to the following objects are imple-
mented: the ode system, the drift function, the gradient of the drift function, the
diffusion matrix, the projection operator linking the observations to the states of
the epidemic model and the variance of the observations.

– SIRexample.R simulates SIR Markovian jump processes for a set of parameter
values, using the GillespieSSA package. When considering prevalence data,
the observations are the numbers of infectious individuals and are obtained by:
O(tk) ∼ Binomial(I (tk), p), k = 1, . . . , n, at regularly-spaced time points. When
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considering incidence data, the observations are the numbers of new infectious
individuals and are obtained by: O(tk) ∼ Binomial(S(tk−1) − S(tk), p). The
random parameters are the transmission rate λ and the reporting rate p while the
recovery rate γ and the initial proportions of susceptible and infectious individuals
are fixed and known. Finally, an estimation of the fixed effects and variances of
the random parameters is proposed.
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