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A B S T R A C T

While humanity struggles to develop a vaccine against SARS-CoV-2, it is imperative that effective and affordable
therapeutic strategies be evolved. Since a majority of the SARS-CoV-2 deaths are due to acute respiratory distress
syndrome (ARDS), a strategy to mitigate the same could save countless lives. Since SARS-CoV-2 related ARDS
has a strong immunological component, many investigators are utilizing monoclonal antibodies against IL-6,
TNF-alpha and CCR5. However, targeting a single cytokine with an expensive monoclonal antibody could be a
less pragmatic approach. We propose the use of cyclophosphamide as an immunomodulator, given its proven
role in various settings including autoimmune diseases, and in the post-haploidentical stem cell transplant.
Cyclophosphamide could deplete cytotoxic and effector T cell populations while relatively sparing the regulatory
T cells (Tregs). Cyclophosphamide could tip the balance away from the overtly pro-inflammatory and could be a
less expensive and effective alternative to the currently investigated monoclonal antibodies.

The SARS-CoV-2 virus has as of today (15 May 2020) caused in
excess of 300,000 deaths world-wide. The virus has the certain ability
to cause further deaths globally and could later remain endemic to
cause future waves of deaths in different parts of the world. Given the
expected delay in the development of a reliable vaccine, there is need
for an emphasis upon developing strategies to mitigate the severity of
the illness among those affected.

Acute respiratory distress syndrome (ARDS) is the commonest cause
of death among patients infected with either of the three highly pa-
thogenic human coronaviruses (COVs) namely the SARS-COV-1, the
Middle East Respiratory Syndrome (MERS)- CoV, and the current SARS-
CoV-2. These coronaviruses have been documented to have trophism to
the lower respiratory tract which has an abundant expression of the
Angiotensin Converting Enzyme-2 (ACE2) receptor [1].

Early data regarding the current SARS-CoV-2 pandemic suggests
that 60% of patients admitted to the ICU required mechanical venti-
lation, and ARDS was diagnosed in about 40% of patients treated in the
ICU [2]. If ARDS could be prevented or mitigated, we can expect a
significant reduction in SARS-CoV-2 associated mortality.

Immunological basis of ARDS

A well-coordinated immune response could be important for effec-
tive viral clearance in the early phases of the SARS-CoV-2 infection.
However, a dysregulated, exuberant immune response in the later
phases of the SARS-CoV-2 infection could lead to hyper-inflammatory
acute lung injury and ARDS. During the previous SARS-CoV-1 epidemic,
immunopathological changes were documented to be involved in the
genesis and progression of ARDS [1].

Generally, after pulmonary infection, alveolar macrophages secrete
IL-6, IL-12, TNF-alpha, and interferons. Then, as a response, the tissue
resident cytotoxic T cells, Th1 cells and Th17 cells secrete further cy-
tokines in increased quantity and diversity. These increased levels of
cytokines not only increase the cytotoxic effects of T cells, but also act
as a chemoattractant towards circulating monocytes and neutrophils
[3].

The development of ARDS in response to infectious agents is rather
non-specific, though the severity could vary with the specific circum-
stance. Experiments with mice using Influenza-A viruses demonstrated
that very high viral doses induced extensive neutrophil extracellular
traps (NETs). These traps are a mechanism to trap and immobilize
pathogens. It is plausible that high viral burden could hence lead to
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more extensive ‘NETosis’, thus leading to collateral damage and ulti-
mately impairing gas exchange at the alveoli [4]. Given the high re-
plicative potential of SARS-CoV-2, it is plausible that very high viral
burden in the lung leads to a large inflammatory response, which could
be fatal.

There ideally exists a balance between the ‘pro-inflammatory’ and
the ‘anti-inflammatory’. Cells such as the Th1, Th17 and M1-polarized
macrophages are pro-inflammatory. At the opposite end of the spec-
trum, cells such as the regulatory T cells (Treg) and the M2-polarized
macrophages are anti-inflammatory and regenerative. In conditions
such as ARDS, it can be said that ‘the balance has shifted overtly in
favour of the pro-inflammatory’ [3,5]. Studies with patients infected
with the SARS-CoV-1 had indeed demonstrated increased pro-in-
flammatory cytokine levels among those who developed ARDS [6,7].

Of the various T-helper (Th) subsets, the Tregs are special in that
they are vital for maintaining self-tolerance. Tregs express
CD4 + CD25 + FoxP3 and produce the anti-inflammatory cytokine
namely IL-10. Evidence suggests that Tregs have an ability to down-
regulate TNF-alpha, IL-2 and IL-8. Thus, manipulation of T cell popu-
lations to enhance proportion of Tregs may possibly be a worthwhile
exercise in the mitigation of acute lung injury [8].

Available evidence suggests that an increased Th17:Treg ratio is
known to be pro-inflammatory and conducive to the development of
ARDS [8]. In fact, the Th17/Treg ratio has been seen as a prognostic
marker for ARDS in terms of mortality prediction [9].

Worthy of mention, the occasional manifestation of hemophagocy-
tosis in patients infected with SARS-CoV-2 serves as a testament to
excessive macrophage activation, which can in turn be attributed to
excessive proliferation and activation of T-Cells [10].

Immune modulation as an option against ARDS

It is encouraging that IL-6 antagonists such as tocilizumab are being
rightly investigated in SARS-CoV-2 related ARDS [11]. It is furthermore
encouraging that groups are contemplating TNF-alpha antagonists such
as infliximab and etanercept in the setting [12].

Drugs such as tocilizumab, and other targeted monoclonal anti-
bodies could do well in targeting the particular cytokine which they are
designed to. However, ARDS is a hyperinflammatory condition invol-
ving multiple pro-inflammatory cytokines, and thus we postulate that
targeting one single cytokine could be a weak approach. The use of
cyclophosphamide would strike at the root of the hyper-inflammatory
condition by rapidly depleting effector T cells.

Cyclophosphamide has been more renowned for its role as an al-
kylating agent in various cancer specific chemotherapeutic regimens. It
has also been well documented to have other roles as an im-
munomodulator in various auto-immune disorders with a reasonable
toxicity profile [13].

Cyclophoshamide had revolutionized the scene of haplo-identical
allogenic stem cell transplants (HaploSCT). HaploSCT essentially in-
volves transplants from a donor who is ‘not fully matched’ to the re-
cipient. The use of post-transplant cyclophosphamide (PTCY) has led to
a dramatic reduction in likelihood of graft versus host disease (GVHD)
and graft rejections. This is because PTCY works to eliminate rapidly
proliferating alloreactive T-cells (in both directions) while preserving
the slowly dividing regulatory-T cells (T-regs) and memory T cells. This
not only leads to lesser likelihood of GVHD and graft rejection, but also
leads to better immune tolerance and immune reconstitution [14–16].

Cyclophosphamide has a rich history of being used as an effective
rescue therapy when other drugs failed in severe rheumatological dis-
orders, which too have an immunological pathogenesis. This use has
somewhat declined in the previous decade owing to the development of
targeted monoclonal antibodies against specific cytokines [13].

If being considered as a preventive/mitigative strategy against
ARDS in SARS-CoV-2, we need to ponder upon the ideal dose and the
ideal timing of cyclophosphamide delivery.

The dose of cyclophosphamide used in various conditions is vastly
different. Certain protocols for PTCY use doses as high as 50 mg/kg.
However, we could possibly utilize lower doses given that we are
aiming at a reduction of cytotoxic T cells rather than a total elimination.
As an example, when cyclophosphamide is utilized as an im-
munomodulator in multiple sclerosis, the applied dose is many mag-
nitudes less [17]. So, a 10–20 mg/kg dose of cyclophosphamide could
be able to demonstrate proof of concept.

Regarding the ideal timing of cyclophosphamide, it would be ad-
visable to wait to start till when ARDS is deemed inevitable. That would
be at the onset of acute lung injury, with the patient yet to proceed to
fully established ARDS.

Regarding the questionable safety of using an alkylating agent in the
setting, we justify the same that ARDS is otherwise potentially lethal
[13]. Furthermore, a one-off dose would be employed rather than
multiple doses as would be in the case with malignancies. The use of
broad spectrum antibiotics akin to the stem-cell transplant setting
would be advisable so as to prevent bacterial and fungal opportunistic
infections.

An interesting case report describes a young patient who was
treated with a regimen including cyclophosphamide for glomerulone-
phritis. The patient later was found to have ground glass opacities on
computed tomography imaging and subsequently tested positive for
SARS-CoV-2. It could be possible that the use of cyclophosphamide
could have prevented the particular patient from manifesting severe
pulmonary symptoms [18].

If at all a strategy using cyclophosphamide is found effective in
mitigating/preventing SARS-CoV-2 associated ARDS, it is plausible that
it could be put into immediate global use. Unlike monoclonal anti-
bodies the cost of cyclophosphamide is very much affordable. In addi-
tion, cyclophosphamide production can quickly be ramped up using
existing pharmaceutical infrastructure, while manufacturing mono-
clonal antibodies on a large scale in a short time span could be pro-
blematic.
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