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Abstract

The sequencing depth necessary for documenting differential gene expression using RNA-Seq has been little
explored outside of model systems. In particular, the depth required to analyze large-scale patterns of differential
transcription factor expression is not known. The goal of the present study is to explore the effectiveness of shallow
(relatively low read depth) RNA-Seq. We focus on two tissues in the honey bee: the sting gland and the digestive
tract. The sting gland is an experimentally well-understood tissue that we use to benchmark the utility of this
approach. We use the digestive tract to test the results obtained with the sting gland, and to conduct RNA-Seq
between tissue types. Using a list of experimentally verified genes conferring tissue-specific functions in the sting
gland, we show that relatively little read depth is necessary to identify them. We argue that this result should be
broadly applicable, since genes important for tissue-specific functions often have robust expression patterns, and
because we obtained similar results in our analysis of the digestive tract. Furthermore, we demonstrate that the
differential expression of transcription factors, which are transcribed at low levels compared to other genes, can
nevertheless often be determined using shallow RNA-Seq. Overall, we find over 150 differentially expressed
transcription factors in our tissues at a read depth of only 12 million. This work shows the utility of low-depth
sequencing for identifying genes important for tissue-specific functions. It also verifies the often-held belief that
transcription factors show low levels of expression, while demonstrating that, in spite of this, they are frequently
amenable to shallow RNA-Seq. Our findings should be of benefit to researchers using RNA-Seq in many different
biological systems.
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Introduction

Next-generation sequencing has greatly expanded our
capacity to address fundamental questions in genomics [1-4].
RNA-Seq has allowed for great resolution in quantifying
differentially expressed genes, in new gene discovery, and in
documenting patterns of alternative splicing [5-10]. Protocols
also allow for exploring patterns of microRNA expression and
for locating the binding sites of transcription factors [11-14].
Along with increases in sequencing hardware, a multitude of
different software packages are currently available for
analyzing next-generation data sets [15-18]. While much work
remains to be done in the analysis domain, progress has been
made and important analyses are being conducted on many
biological topics [19-23].

In spite of the progress of the past several years, there are
still basic questions relevant to the use of RNA-Seq that remain
unanswered for most organisms. Work on the sequencing
depth necessary for identifying differentially expressed genes,
for example, has been conducted primarily with mammals, and
it is not clear that equal depth is necessary for organisms with
simpler transcriptomes [18,24,25]. Second, quantifying the read
depth necessary for RNA-Seq might depend on whether the
focal genes show high or low levels of expression. In particular,
transcription factors (TFs) are thought to be expressed at
relatively low rates, but few studies have documented how low
these rates are, and what sequencing depth is necessary to
document differential expression in these genes [26-28].

An approach to the problem of sequencing depth that has
not been used, but could be productive, is to use well-
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established bodies of experimental work on particular tissues to
benchmark how many reads are necessary to identify key
genes. The sting gland of the honey bee is such a tissue and is
partly the focus of the present study. Honey bee venom,
because it can cause serious allergic reactions, has been the
subject of intense experimental work [29-31]. All of the major
venom components of honey bee venom are known, as are
many of the allergens present in venom. Further, it is known
that the filling of the venom gland shows a developmental
signature, as the oldest bees in a nest, the foragers, have
mature venom sacs, and are likely to sting, while younger
bees, nurses, have incompletely filled venom sacs and are
unlikely to sting. Previous work has shown that venoms are
transcribed at higher rates in young bees, but the resulting
proteins do not reach high concentration in the venom sac until
later in life [32,33]. At maturity, low levels of expression for
venoms continue [34], but at reduced rates relative to when the
venom sac is filling. Hence, many of the functional venom
genes show differential expression between developmental life
history phases (nurses and foragers). Venoms, and genes
associated with them, are also likely differentially expressed
between tissues, as these genes are specialized and not
thought to be used elsewhere in the body.

The concept of shallow RNA-Seq is that important biological
insights can be made with sequencing depths well below that
necessary for achieving saturation with respect to the total
number of genes found to be expressed, or differentially
expressed [35]. One might assume that advances in
sequencing technology, which make it possible to obtain
hundreds of millions of reads from a single sequencing lane,
would obviate the need for shallow RNA-Seq. However, there
has been a concomitant increase in the number of samples
which can be multiplexed on a lane. Twenty-four barcodes can
be obtained from Illumina Truseq RNA kits, and a recently
developed protocol provides 96 [36]. Shallow RNA-Seq allows
the option of increasing the number of assayed samples
without elevating the cost. Given that the major weakness of
current RNA-Seq studies is low number of biological replicates,
determining the optimal number of reads per sample is of vital
importance.

Our goal in this study is to show that shallow RNA-Seq can
be used to find certain classes of functionally important genes.
Our experimental approach is to first demonstrate that the
sequencing depth we use is below saturation level. We then
determine whether shallow RNA-Seq is capable of identifying
as differentially expressed the genes in the sting gland
conferring tissue specific functions. Having shown that these
key functional genes can be identified with shallow RNA-Seq,
we turn to the question of whether such genes would be
recognizable as particularly important, were they not already
experimentally characterized. We do this in two ways: first, we
explore the expression patterns of the key genes to show that
they stand out relative to other differentially expressed genes
(DEGs), and second, we explore whether the identification of
genes important for the tissue specific functions of the digestive
tract are amenable to the same approach. Following this work
on genes conferring tissue specificity, we explore whether
shallow RNA-Seq can also be used to identify differentially

expressed transcription factors. Transcription factors are
expressed at lower rates and strongly differ in function relative
to the focal genes from the previous analyses. Determining
whether the same shallow RNA-Seq approach has utility for the
study of these genes is therefore a good test of how broadly
applicable our results are likely to be. We show that the study
of TFs is also possible with shallow RNA-Seq.

Materials and Methods

Colonies and collection of bees
Honey bee colonies were kept using standard beekeeping

practices at the Laidlaw Honey Bee Research Facility on the
UC Davis Campus. Bees (nurses and foragers) were collected
from 2 full-size hives. Nurses were collected by opening the
nest and identifying individuals with their heads and thoraxes
inside of brood cells for at least 3 seconds [37,38]. A further
confirmation of nurse bee developmental status was made at
the time of dissection by cutting into the head capsule. Nurses
have Hypopharyngeal glands that are much more highly
developed than those of foragers and are different in color
[39,40]. Glandular material spills out readily when nurse head
capsules are opened, while this does not occur in foragers.
Nurses without large HP glands were discarded, as were
foragers without small HP glands. Pollen foragers were used
for all analyses. All bees were stored at -80°C until time of
dissection.

Dissections, Extractions, and Sequencing
We used two biological replicates in this study. For a

particular replicate, a pool of bees from the same colony was
used. Different replicates were composed of pools of bees from
different colonies. Tissues were pooled because some of the
structures were small, and would not provide sufficient RNA
alone. Pooling was also done to control for variance between
bees, since RNA-Seq studies cannot use large sample sizes
due to cost. Total RNA was extracted using Trizol according to
the manufacturer’s instructions. For each library (8 total) RNA
from 30 individuals was pooled. For the sting gland, each bee
was individually removed from the freezer and allowed to thaw
in a glass dissection dish full of 50% ethanol. As soon as the
abdomen was thawed, the stinger was grasped with forceps
and gently pulled from the abdomen. The honey bee stinger,
gland, and venom reservoir are all designed to easily detach
from the body of the bee when it stings, making this dissection
simple. Each individual stinger (and associated gland) was
then washed in fresh 50% EtOH and homogenized in Trizol
before repeating the procedure with the next bee. For the
digestive tract, a similar procedure was used except that the
abdomen was cut from the rest of the body before the digestive
tract was dissected out, rinsed in 50% ETOH, and
homogenized in Trizol. Since the digestive tract was much
larger than the sting gland, 10 1.5 ml tubes were used for
extraction (3 digestive tracts per tube). After all 30 extractions
were complete, all the homogenized material was placed in
one 50 ml centrifuge tube and vortexed. One ml of
homogenized tissue in Trizol was then pipetted into a fresh 1.5
ml tube for RNA extraction. Total RNA was quality checked
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with the Agilent Bioanalyzer 2100. Libraries were generated
according to the Illumina TruSeq v2 kit instructions. Libraries
were sequenced on an Illumina HiSeq 2500 machine. 100 bp
paired-end sequencing was performed. The raw data from this
study has been submitted to the NCBI SRA archive
(SRP020361).

Quality Control
Standard quality control steps (using FastQC and fastx-

toolkit) were taken to remove low quality reads and base calls.
First, all low quality reads were removed (reads with greater
than 33% Ns or average quality < 25 phred score). Then each
read was assessed with a sliding window from the right end
such that the average quality score at that end was > 25.
Finally, reads were searched for Illumina adapter
contamination using the Cutadapt program [41]. All libraries
had overall mapping rates to the honey bee genome greater
than 80%.

RNA-Seq analyses
To generate data sets of different sequencing depth, reads

were sampled from much larger libraries at random. Hence, for
the 1 million read analyses, one million reads from each
replicate were randomly sampled from a much larger
sequencing run. Reads were aligned to the most recent public
release of the honey bee genome (4.0). Analyses were
conducted with two software packages: DESeq, and NOISeq
[16,18]. In each case, Tophat v2.0.4 was used for alignment
with bowtie 2.0 [15]. We used the HT-Seq package for
determination of reads mapped to each gene. For NOISeq, we
ran the analyses with both RPKM and upper quartile
normalization procedures, and used p = 0.8 as our cutoff for
statistical significance (the developers’ recommended value).
For DESeq we used an adjusted p value of < 0.05 as the
criterion for differential expression.

Quantitative real-time PCR
Real-time PCR validation was carried out on a Biorad CFX96

RT-PCR detection system, following established protocols, for
10 genes found to differ between nurses and foragers in the
RNAseq digestive tract analysis. Primers are listed in Table S1.
Calibration curves were generated to determine the efficiency
of the reaction at each temperature. RNA extracted from three
biological replicates (each from a separate colony) of nurse
and forager digestive tracts was used. The dissections followed
the same protocol that was utilized for the RNA-seq samples,
but the source material was from different colonies. Reverse
transcription was carried out separately on three technical
replicates of each biological replicate, using the Biorad iScript
reverse transcription supermix. Each technical replicate was
then used in the qPCR assays. The results were analyzed
using the Bio-rad CFX Manager 3.0 software and the R
programming language. The honeybee homolog of ribosomal
protein 49 (RP49) was used as a reference gene. This gene
was previously validated for qPCR normalization in honeybees
[42].

Results and Discussion

Total numbers of differentially expressed genes
Figures 1 and 2 show the number of differentially expressed

genes in each of the two tissues with increasing sequencing
depth. Figure 1 compares the same tissues between nurses
and foragers (sting gland in nurse versus sting gland in forager
and digestive tract in nurse versus digestive tract in forager)
and Figure 2 compares tissue types within life history phases
(sting gland in nurse versus digestive tract in nurse and sting
gland in forager versus digestive tract in forager). Shown are
the number of DEGs at 1, 3, 6, and 12 million reads per
replicate (2 biological replicates in each group). For both
methods, the number of DEGs increased with increasing
sequencing depth (expression levels and p values are
presented for each differentially expressed gene for each
software package in Table S2). For NOISeq this was true with
both the RPKM and Upper quartile (UQ) normalizing methods
[5,43]. While the number of DEGs was lower for the
developmental phase comparisons (nurses versus foragers)
relative to the tissue comparisons (sting gland versus digestive
tracts), this increasing trend was evident for both. Overall,
these data suggest that the sequencing depth here is shallow
with respect to the identification of DEGs.

Figure 1.  Number of differentially expressed genes found
with increasing sequencing depth in comparisons of (A)
the sting gland between nurses and foragers, and (B) the
whole digestive tract between nurses and foragers.  Two
different normalization techniques were used in the NOISeq
package: upper quartile normalization (UQ), and RPKM.
doi: 10.1371/journal.pone.0084160.g001
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Figure 3 elaborates on the results of Figures 1 and 2. Here
we show that as sequencing depth increases, the magnitude of
the differences between DEGs decreases [18]. Differences are
measured as the fold difference (M) and the raw difference (D)
using the NOISeq data set and following the methods of
Tarazona et al [18]. Essentially, M is the absolute value of the
log base 2 of the fold difference between expression in the two
contexts, while D is the raw difference in expression. The
results are consistent both for comparisons of the same tissue
between developmental phases (low overall differential
expression context) and the comparisons between tissues in
the same developmental phase (high overall differential
expression context). This finding is important because it
suggests that genes with the most robust patterns of differential
expression are those found at the lowest sequencing depths. If
this is generally true, then it implies that shallow RNA-Seq may
be sufficient for the study of such genes.

The result of Figure 3 was shown by Tarazona et al [18] for
DESeq and other statistical packages, but not for NOISeq.
Tarazona et al argued that NOISeq does not show this pattern
of decreasing M and D with increasing sequencing depth
because the package is not sensitive to increasing read depth
in general. The cause of the difference between our results and
theirs is probably due to the fact that we are conducting

Figure 2.  Number of differentially expressed genes found
with increasing sequencing depth in comparisons of the
sting gland and digestive tract.  Nurse sting gland is
compared to nurse digestive tract in part A, and forager sting
gland is compared to forager digestive tract in part B.
doi: 10.1371/journal.pone.0084160.g002

shallower RNA-Seq then they conducted. Their results are
likely for increasing sequencing depth beyond the depth we
focus on here. In Figure 3, it is clear that the effect is strongest
for low read depth and falls off. It would therefore likely not be
seen at higher sequencing depths (it might also not be
observed at the same sequencing depth used here, but with
more replicates).

Focal gene benchmarking
Table 1 shows the eleven focal honey bee genes we used to

benchmark how many reads are necessary to identify key
genes with tissue-specific functions. These genes are known
from experimental data to confer tissue-specific function to the
sting gland [29-31]. Most of these genes are venoms, as would
be expected, but some are allergens. Table 2 shows that even
at low sequencing depth, most of the genes are identified as
differentially expressed between the nurse and forager sting
gland libraries, using both software packages. With the NOISeq
package, all eleven are found using only 3 million reads per
replicate. This was true for both the life history comparisons
(nurses versus foragers) and the tissue comparisons (sting
gland versus digestive tract). The DESeq package did not
perform as well, missing a few key genes with low expression
levels. Table S3 shows the expression levels for all of these
genes at the full 12 million reads depth. In conclusion, it is

Figure 3.  Effect of increasing read depth on the strength
of the difference between DEGs measured as M (absolute
value of the fold difference in expression) and D (the raw
difference in expression).  
doi: 10.1371/journal.pone.0084160.g003
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possible to identify many genes conferring tissue specific
functions with shallow RNA-Seq using only two replicates. In
this case, we were able to identify all the most important genes
conferring the specialized function of this gland at very low
depth.

Are gland transcriptomes highly specialized?
A criticism of the broad significance of the results of the

previous section might be that venoms, and genes important
for glands in general, may show very high expression levels,
making them easier to identify than genes with functions in
other tissues. This would follow from the specialized nature of
glandular tissue. Table S3, however, shows that the
functionally important genes in the sting gland display a
diversity of expression levels. Some of them represent genes
with the highest levels of expression, while others have
average or low levels. This suggests that the functionally
important DEGs that we focus on are not easy to identify
merely because they are uniformly highly expressed. However,
a transcriptome level comparison of differential expression
between the two tissue types used in this study (sting gland
and digestive tract) does indicate that glandular tissue is
different with respect to the overall pattern of differential
expression. Figure 4 shows that the gland tissue contains
many more genes with both very high M (fold difference) and D
(raw difference) levels than does the digestive tract. This is true
for comparisons of the sting gland in nurses versus the sting
gland in foragers (part A), and for comparison of the digestive
tract in nurses versus the digestive tract in foragers (part B).
This result is consistent with the notion that glandular tissue is
specialized for producing some transcripts at very high levels.
Further, from Table S3 it is evident that the genes with high
expression levels, and high M and D values, are also the genes
that are easiest to identify with shallow RNA-Seq. In
conclusion, based on the sting gland analyses alone, shallow
RNA-Seq appears to be quite useful for exploring the
specialized functional basis of glandular tissue. However, it is
not clear that these results extend to non-glandular tissue.

Digestive tract focal gene analysis
Given that the results of the glandular analysis are difficult to

extend to other tissue types without further data, we repeated
our basic approach with the digestive tract. The digestive tract
in honey bees is not as well understood as the sting gland.
However, the function of digestive tracts in general is
somewhat straightforward to predict, given the clear purpose of
this tissue. To explore the utility of shallow RNA-Seq for the
study of the digestive tract, we began by annotating with
Blast2GO all the DEGs found in the digestive tract [44]. We
focused on DEGs between the digestive tract in nurses versus
the sting gland in nurses, because this is the context with the
largest number of DEGs and hence the most difficult context
for identifying key DEGs. Our basic question is whether genes
found at low sequencing depth to be DEGs are strongly biased
towards being key genes conferring tissue-specific functions.
We therefore compared the GO categories of the top 50 DEGs
found using NOISeq with all the DEGs found (565 total).

Figure 5A shows the distribution of GO categories for all the
DEGs found to be up-regulated in the digestive tract relative to
the sting gland in nurses. There is a strong bias towards genes
with digestive functions, but many GO categories are
represented. Figure 5B shows the distribution of GO categories
for the top 50 genes most likely to be differentially expressed
(based on the NOISeq p values). Again, catabolic functions are
the dominant category. The large fraction of genes with binding
functions is also primarily within the context of digestion (Table
S4). Although there are a smaller total number of categories
relative to the GO analysis for all the DEGs, the fraction of
genes with catabolic functions is nearly the same. Hence, it is
not the case that only those genes with the highest probability
of being DEGs are strongly biased towards conferring tissue
specific functions. In contrast, all the DEGs are strongly biased
towards being genes with tissue-specific functions. It may,
however, be the case that the genes with the most robust

Table 1. Key tissue-specific genes in the sting gland.

Gene # Name
GB10355 melittin precursor
GB11552 venom serine protease 34 precursor Api m 7
GB12546 venom acid phosphatase Acph-1 precursor Api m 3
GB13285 mast cell degranulating peptide preproprotein
GB13351 phospholipase A2 precursor
GB13967 icarapin-like precursor
GB14496 venom dipeptidyl peptidase 4 precursor Api m 5
GB16587 C1q-like venom protein precursor
GB18161 apamin preproprotein
GB18543 hyaluronidase precursor
GB19783 allergen Api m 6 precursor
GB19804 secapin preproprotein

doi: 10.1371/journal.pone.0084160.t001

Table 2. Number of key sting gland genes (out of 11) found
with shallow RNA-Seq.

Sting Gland(Nurse vs. Forager) NOISeq (RPKM) NOISeq (UQ) DESeq
1 million reads 10 10 8
3 million reads 11 10 9
6 million reads 11 10 9
12 million reads 11 10 10
Sting vs. DT (Nurse) NOISeq (RPKM) NOISeq (UQ) DESeq
1 million reads 10 11 9
3 million reads 11 11 11
6 million reads 11 11 11
12 million reads 11 11 11
Sting vs. DT (Forager) NOISeq (RPKM) NOISeq (UQ) DESeq
1 million reads 10 10 7
3 million reads 10 10 9
6 million reads 10 10 9
12 million reads 10 10 9
Total Focal Genes 11   

doi: 10.1371/journal.pone.0084160.t002
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patterns are those digestive genes playing the largest
functional role, since these genes show the narrowest pattern
of GO categories specific to this tissue’s functional role.

To provide further insight into the digestive tract analysis, we
carried out qPCR on 10 genes (Figure S1) that were found to
be differentially expressed at the 12 million read sequencing
depth. For seven of these genes, the results for all 3 biological
replicates were in the same direction as the RNA-seq results.
The other three genes (GB14596, GB13450 and GB19617)
had relatively low expression levels (Table S2). We sought to
determine the relationship between the qPCR and RNAseq
results as sequencing depth varied (Table S5). We calculated
Spearman’s rank correlation coefficient for the fold change at
each sequencing depth and the average qPCR fold change
across biological replicates. This coefficient increases from
0.82 at the 1 million read depth to 0.84 at the 3 million read
depth, but does not increase further at higher depths.
Comparable results were seen when the Pearson product-
moment correlation coefficient was calculated (Table S5).
Since increasing the sequencing depth beyond 3 million reads,
for the genes assayed, has little effect on the statistical
relationship between the RNAseq and qPCR fold change, it
appears that relatively shallow sequencing may be sufficient to

Figure 4.  Relationship between fold difference (M) and
raw expression difference (D) for all expressed genes in
the sting gland in nurses versus the sting gland in
foragers (part A) and the digestive tract in nurses versus
the digestive tract in foragers (part B).  
doi: 10.1371/journal.pone.0084160.g004

capture the robust biological information that can be cross-
validated with a different platform using different replicates of
the same tissue types..

Transcription factor analyses
Transcription factors, and other regulatory genes, are

thought to show lower expression levels than other classes of
genes [26-28]. This is because the action of a regulatory
protein, to modify expression of other genes by interacting with
DNA and or proteins involved with transcription, may not
require as many copies of the protein as is necessary for an
enzyme or a protein destined for export. Given that our focal
gene analysis was with secreted proteins and enzymes, a
necessary counterpoint to this analysis is one that focuses on
genes, such as TFs, that show lower levels of expression.

A conservative list of honey bee TFs was generated by
running BLAST [45] with all Drosophila genes with the GO term
“sequence-specific DNA binding transcription factor activity”
against all honey bee genes in the official gene set. Bee genes
with a significant blast hit (e < 10-20 ) to one of the fly TFs were
kept for further analysis. Blast2GO was then used to annotate
these genes. Genes with a DNA binding functional domain in
the context of regulating transcription were identified. Overall
462 TFs were computationally identified in the honey bee

Figure 5.  Gene ontology analysis of differentially
expressed genes between nurse and forager digestive
tracts.  Top panel shows the distribution of GO functional
categories for all DEGs found (565 in total), while the bottom
panel shows the same for the genes with the 50 highest
probabilities of being differentially expressed (the 50 genes
with the most robust patterns of differential expression).
doi: 10.1371/journal.pone.0084160.g005
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official gene set (Table S6). While this is not a comprehensive
list of honey bee TFs, it is a broad list and should contain TFs
involved in most biological functions.

In total, 257 (55.6%) of the identified TFs (along with a small
number of other classes of regulatory genes) were found to be
expressed in at least one of the two tissues (Table S7). Figure
6 shows that the assumption that TFs are expressed at
relatively low rates is correct for both tissues. TF expression
rates are much lower than the average rate of expression for all
genes (Tables S7; S8). All comparisons show significantly
lower rates of expression for TFs, except for the comparison of
the nurse sting gland TFs against all the genes expressed in
the nurse sting gland. This result was caused by the
enormously high expression level of melittin in this tissue
causing a very high standard deviation. If this outlier is
removed, this test is also significant.

Figures 7 and 8 repeat for TFs alone the analyses on the
number of DEGs found with increasing sequencing depth. For
the comparisons between developmental phases, low, but
increasing numbers, of differentially expressed TFs were found
with increasing sequencing depth. For the comparisons of the
sting gland versus the digestive tract, larger numbers of TFs
were found to be differentially expressed with the same
increasing pattern. Figure 9 shows that the same basic pattern

Figure 6.  Mean expression levels for all genes and all
expressed transcription factors in the sting gland and
digestive tract of nurses and foragers.  Values are from the
12 million read depth NOISeq analysis.
doi: 10.1371/journal.pone.0084160.g006

of decreasing fold and expression difference in DEGs with
increasing sequencing depth also holds for TFs. This analysis
was limited to the sting gland comparison between nurses and
foragers, and the sting gland versus digestive tract
comparisons for both life history phases, because these data
sets had sufficient sample sizes (number of differentially
expressed TFs).

In total, 152 differentially expressed TFs were discovered
using shallow RNA-Seq in this study. Although our
bioinformatics pipeline for identifying TFs led to a small number
of some other classes of regulatory gene also being identified,
the overwhelming majority of genes in Table S7 are clearly
TFs. However, it is difficult to know how many false negatives
there are (TFs not in Table S7 that should be there). The
average expression level for TFs is ≈ 40-70 (RPKM) in this
study (Figure 6), and based on Figure 9, the average
expression difference at 12 million reads is 70-90 (RPKM).
Hence, it appears that only TFs with above average expression
levels were found to be differentially expressed in this study.
Further, given that the fold difference (M) does not fall much
with increasing read depth, it is possible that many more
transcription factors show differential expression (albeit with a
somewhat lower fold difference) between the tissues we
explored. However, it is also possible that differentially
expressed TFs are characterized by the largest M values, as
clear and strong differences between regulatory proteins may
be critical for the control of cell activity. If this is true, then we
may have found most of the TFs important for the regulatory
control of these two tissues in the adult honey bee. Future work
will have to address these issues.

Figure 7.  Number of differentially expressed
transcription factors found with increasing sequencing
depth in the developmental phase comparisons between
nurses and foragers.  
doi: 10.1371/journal.pone.0084160.g007
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In general, it is difficult to benchmark our TF results since
few TFs have been experimentally shown to be important in
adult honey bees. This is because little work has been
conducted on the topic. Krüppel homolog 1, however, has been
shown to be important and differentially expressed between
nurses and foragers [46]. This TF shows average expression
levels, for a TF, in our data set, and is found to be differentially
expressed in the sting gland and digestive tract between
nurses and foragers. It is also differentially expressed between
forager sting glands and digestive tracts, but not between
nurse sting glands and digestive tracts. We were therefore able
to recover existing work on Apis TF differential expression. In
conclusion, although deeper sequencing may be necessary to
exhaustively document differential expression of TFs, our work
suggests that shallow RNA-Seq may be useful for studying a
large number of TFs important for controlling gene expression
in adult insects.

Identifying key differentially expressed genes
A common problem in RNA-Seq, and microarray studies, is

that thousands of DEGs are found and it is not clear which
ones are good candidates for further analysis. In our study, at 1
million reads sequencing depth the majority of the focal venom
genes were found in the comparisons between developmental
states. Significantly, at this sequencing depth, only 200 genes
were identified as differentially expressed. Hence, with shallow
RNA-Seq, a frequent problem of microarrays and RNA-Seq,
huge numbers of candidate DEGs to choose from, may not
always be an issue. The number of DEGs to search through for

Figure 8.  Number of differentially expressed
transcription factors found with increasing sequencing
depth in the sting gland versus digestive tract
comparisons.  
doi: 10.1371/journal.pone.0084160.g008

key functional genes can be quite small if the analysis is done
with few reads (and few replicates). Further, as Table S3
shows, the focal genes in our analysis would have been high
candidates for key genes even without our experimental
knowledge. This is because these genes have high M and D
levels. If it turns out to be true in general that genes that confer
tissue specificity, and TFs, show such robust expression
patterns, then shallow RNA-Seq should prove highly valuable.

The experimental system, however, will also have a bearing
on the choice of sequencing depth. When species can be bred
in captivity with relative ease and tissue samples are plentiful
and readily available, as in the case of honeybees, the failure
of an experiment does not compromise an entire research
program. The researchers in this case might opt to for shallow
RNA-seq, conserving financial resources and allowing them to
multiplex libraries from more than one project on a single
sequencing lane, with the knowledge that additional samples
are available that could be sequenced at greater depth should
the need arise. On the other hand, in situations involving rare
or unique samples, such as forensic medicine, the use of
shallow RNA-seq would entail a certain risk. In such cases,
where the need to make maximum the use of limited material is
critical, deeper sequencing would be more prudent.

Applications to other systems
Although our work shows clearly that shallow RNA-Seq can

be of utility for studying patterns of gene expression in some

Figure 9.  Effect of increasing read depth on the strength
of the difference between differentially expressed
transcription factors.  
doi: 10.1371/journal.pone.0084160.g009
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invertebrate tissues, future work will have to determine its utility
for other systems. For simpler organisms, such as many single-
celled organisms, it may be the case that even shallower
sequencing may be sufficient for many applications. This is
because the genomes and transcriptomes of such organisms
are simpler than for organisms like the honey bee. For
vertebrate systems, in contrast, it may be the case that deeper
sequencing is necessary for many applications. This is
because vertebrates have more complex transcriptomes, which
may require greater sequencing depth. Greater sequencing
depth is also likely necessary for calling differentially expressed
alternatively spliced genes. The depth necessary for the study
of different classes of functional RNAs is also unresolved.

However, it is also possible that the depth explored here (up
to 12 million reads) may be sufficient for many vertebrate
applications. This is because calling differentially expressed
genes (based on the present study) appears to be more a
function of degree of difference between expression levels in
terms of ratios of expression rather than raw numerical
difference. This is supported by Table S7, which shows that for
the transcription factors studied in this work, expression levels
were low, but the ratio of expression between one treatment
and the other was high. In this context (and when variance
between biological replicates is low), current RNA-Seq
software packages are able to identify differentially expressed
genes. Hence, complexity of the transcriptome may not
interfere with calling differentially expressed genes at relatively
shallow depth as long as the ratio of expression for a given
gene between treatments is high (even if raw expression levels
are low due to the shallow depth). This is speculative, of
course, and future work on a variety of systems will be
necessary to resolve these issues.

Utility of Shallow RNA-Seq
Functional genomics is a rapidly evolving field in which the

nature of the discipline can radically change over the course of
just a few years. This is nowhere clearer than with respect to
the question of sequencing depth. The earliest machines did
not allow for deep sequencing depth, or for the inclusion of
many biological replicates, because the number of reads
produced per run was low. With machines such as the HiSeq
2500, which produces hundreds of millions of reads per lane, it
is now possible to run many replicates and or experiments per
lane. In general, the current goal is not to generate as many
reads as possible for each replicate (which would be wasteful
in many contexts) but rather to correctly identify the number of
reads necessary for a particular application (how many reads
per replicate and how many replicates are necessary). In this
context, the utility of shallow RNA-Seq is clear. Shallow RNA-
Seq is not useful for exploratory studies (first studies of
systems). Rather, a first RNA-Seq study would do well to test
many read depths in order to find the level at which the number
of DEGs plateaus for a given class of genes. Once this number
is known (and it may be much lower than would have been
thought a priori) then future studies can be designed that take
this into account. Such studies would not waste sequencing
resources by generating orders of magnitude more reads than
are necessary. This will also allow for the running of more

biological replicates, since each can be at lower depth. In
general, for the genes studied here, shallow depth is sufficient
for ongoing studies of these systems. There are likely many
analogous biological systems and it is these systems for which
shallow RNA-Seq should be the favored approach.

Conclusions

Although RNA-Seq is quickly revolutionizing the study of
large scale patterns in gene expression, there is still much work
to be done to determine how best to use this technology in
model and non-model systems. In this study, we showed that
shallow RNA-Seq can be a powerful tool for analyzing
differential expression in genes important for conferring tissue-
specific functions. We also for the first time document large-
scale patterns of differential expression in transcription factors
in a social insect, showing that shallow RNA-Seq can be useful
for the study of these genes. This work should be of value to
researchers designing RNA-Seq studies in many different
disciplines, but further work, perhaps using a similar
methodology, is necessary. In partiucalr, studies that use
experimentally well characterized vertebrate systems to
benchmark how to best replicate those results with and RNA-
Seq approach (the experimental design used here) would be
useful.
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Figure S1.  Results of the real-time PCR analysis of 10
genes that show differential expression in the digestive
tract RNA-Seq analysis. Each colony is a different biological
replicate, and the error bars show the standard error of the
mean of the technical replicates.
(PDF)

Table S1.  Primers used in the qPCR analysis. CG10903
was used as the reference gene.
(DOCX)

Table S2.  Results of RNA-Seq analyses for Sting gland
and digestive tract using DESeq and NOISeq. Differentially
expressed genes, expression levels, and p values are included.
(XLSX)

Table S3.  Expression levels for sting gland genes. Results
are based on the NOISeq analysis focused on comparing the
sting gland between nurses and foragers (12 million reads in
two biological replicates). The M value is the absolute value of
M, while the ‘prob’ is the probability of being differentially
expressed (0.8 is the cutoff for statistical significance).
(PDF)

Table S4.  Annotations for the top 50 differentially
expressed genes (in terms of probability of being DEGs)
up-regulated in the digestive tract relative to the sting
gland.
(XLSX)
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Table S5.  Comparison of fold change (nurses/foragers) in
digestive tract tissue for 10 genes, using real-time
quantitative PCR (qPCR) and RNA-seq at different
sequencing depths.
(XLS)

Table S6.  Annotations for honey bee genes identified as
having a domain associated with DNA binding in the
context of gene regulation.
(XLSX)

Table S7.  Results of RNA-Seq analyses for transcription
factors in the sting gland and digestive tract using DESeq
and NOISeq. Differentially expressed genes, expression
levels, and p values are included.
(XLSX)

Table S8.  Comparison of gene expression levels in the
entire gene set versus transcription factor expression

levels, using t-tests. SG=sting gland, DT=digestive tract,
N=nurses, F=foragers.
(PDF)
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