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Abstract

A huge amount of imaging data is becoming available worldwide and an incredible range of possible
improvements can be provided by artificial intelligence algorithms in clinical care for diagnosis and decision
support. In this context, it has become essential to properly manage and handle these medical images and to
define which metadata have to be considered, in order for the images to provide their full potential. Metadata are
additional data associated with the images, which provide a complete description of the image acquisition,
curation, analysis, and of the relevant clinical variables associated with the images. Currently, several data models
are available to describe one or more subcategories of metadata, but a unique, common, and standard data model
capable of fully representing the heterogeneity of medical metadata has not been yet developed. This paper
reports the state of the art on metadata models for medical imaging, the current limitations and further
developments, and describes the strategy adopted by the Horizon 2020 “AI for Health Imaging” projects, which are
all dedicated to the creation of imaging biobanks.
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Key points

� Metadata are essential for the correct use and
interpretation of medical images.

� An appropriate and possibly standardised data
model is necessary to represent these data and their
correlations.

� We report the state of the art of metadata models
and the position of Horizon 2020 “AI for Health
Imaging” projects.

Background
Metadata, as the word suggests, are data about the data,
i.e., additional information about the data themselves.
For medical imaging, these include data generated from
an imaging modality, exam prescription codes, descrip-
tion data based on an order, and annotations indicating
the content and/or anatomy of a particular image [1].
Other essential metadata are imaging biomarkers and
clinical variables, i.e., complementary non-imaging data
related to the patient’s medical history that are necessary
for a correct diagnosis and decision.
In order to efficiently use the medical data, it is crucial

to properly combine the actual imaging data with their
associated metadata [2]. For this, the appropriate models
need to be available to enable homogeneous data access
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and analysis. Another aspect worth mentioning is that,
depending on the specific imaging biobank and its focus,
the metadata to be collected may vary, as it will be
shown later on in this paper. Up to date, several models
exist that allow to describe and sometimes standardise
one or more subdomains of medical imaging metadata.
What is still missing is the definition of a unified,
complete, and standardised model that is able to fully
represent this new type of metadata.
To this purpose, this paper provides an overview on

the metadata for medical imaging, on the currently avail-
able dedicated models and their problems and limita-
tions, and presents the modeling strategy adopted by the
Horizon 2020 Artificial Intelligence In Health Imaging
(AI4HI) Network, comprising the PRIMAGE [3, 4],
EuCanImage [5], CHAIMELEON [6, 7], INCISIVE [8],
and ProCancer-I [9] Horizon 2020 projects.

State-of-the-art of metadata models for medical imaging
In this section, we describe in detail what are the rele-
vant metadata for an imaging biobank, and we report on
the current approaches available to establish common
metadata models for medical imaging. In the field of da-
tabases, a data model is an abstract scheme that orga-
nises the data, their properties, and how they are related
to one another. As it will be shown, for medical images
currently there are several available models, which are

able to represent a subset of the metadata contained in
an imaging biobank with different levels of accuracy.
What is missing so far is a unification and a
standardisation of these models, i.e., one common and
comprehensive model able to fully describe the content
on an imaging biobank and properly link the different
domains (e.g., images, clinical variables, radiomics).

Metadata in imaging biobanks

Imaging data and clinical data The core of metadata
in medical imaging is represented by the Digital Imaging
and Communications in Medicine (DICOM) standard
that defines the acquisition, the exchange, and the pro-
cessing of images and associated metadata in the med-
ical domain. The DICOM file includes metadata that
describe the patient's demographic, the modality and ac-
quisition parameters, and other imaging-related parame-
ters. An example is shown in Fig. 1, presenting a
DICOM magnetic resonance (MR) image of the prostate
and the relevant DICOM metadata describing patient
demographics, acquisition, and image-related
parameters.
Other imaging metadata might also include radiology re-
ports, which can be in a free-text format or a structured
format (structured reporting). A radiology report is gen-
erated by the human interpretation of images associated

Fig. 1 An example of a Digital Imaging and Communications in Medicine (DICOM) contrast-enhanced magnetic resonance image (T1-weighted
sequence) of the prostate and DICOM metadata about patient demographics, acquisition-related parameters and image-related parameters
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with clinical data and contains intrinsic information that
can be transformed into metadata. Many natural lan-
guage processing applications to extract quantitative in-
formation from free-text reports are already available
[10]. However, initiatives promoted by national and
international radiological scientific societies (e.g., the
Radiological Society of North America [11] and the
European Society of Radiology (ESR) [12]) are speeding
up the adoption of structured reports in clinical practice.
In fact, structured reports already have the appropriate
format and content for metadata extraction, and there-
fore represent an important source of metadata for
large-scale analysis of patient cohorts, for artificial
intelligence training and multiscale simulations, which
can be developed incorporating mechanistic biological
and physical processes at the scale of the protein, cell,
tissue, and organ. The models can generate predictions
such as tumour growth or shrinkage under specific che-
motherapeutic treatment, which can then be validated
against image-based data.

Imaging biomarkers
Imaging biomarkers can be considered as well as a subset
of metadata, objectively measured and evaluated as an in-
dicator of normal biological processes, pathogenic pro-
cesses, or biological responses to therapeutic interventions
[13]. Imaging biomarkers can be either quantitative (e.g.,
lesion diameter or volume, computed tomography-based
density, MR signal intensity, radiomics features, and any
other biomarker whose magnitude can be expressed as a
quantity value) or qualitative (e.g., pathological grading
systems that can be expressed as ordinal rather than con-
tinuous quantitative data, such as clinical TNM staging,
diagnostic categories defined according to “reporting and
data systems” such as BI-RADS, LI-RADS, PI-RADS, C-
RADS, etc.) [14, 15]. A number of international initiatives
have been launched to promote the development and clin-
ical implementation of image biomarkers. In 2007, the
Radiological Society of North America organised the
Quantitative Imaging Biomarkers Alliance®, with the aim
of promoting collaboration between researchers and in-
dustry players. Quantitative Imaging Biomarkers Alliance
initiatives include collaborating to identify needs, barriers
and solutions to the creation of quantitative biomarkers,
and accelerating the development of hardware and soft-
ware to obtain accurate and reproducible quantitative bio-
markers. In addition, the ESR has set up a subcommittee
called European Imaging Biomarkers Alliance (EIBALL),
aimed at coordinating all the ESR activities related to
image biomarkers. EIBALL recently provided recommen-
dations and examples of biomarkers validated and used in
clinical practice [16]. Finally, the Image Biomarker
Standardization Initiative (IBSI) is an independent inter-
national collaboration dedicated to standardising the

extraction of image biomarkers from images to perform
quantitative image analysis (radiomics) [17].

Link between metadata domains
As imaging biomarkers express biological phenomena,
they can be considered the imaging phenotypes of such
processes, and therefore it is reasonable to search for a
link/correlation between imaging and non-imaging meta-
data. The rationale of this link has distant origins in what
is defined as radiological-pathological correlation, where
the histopathological type of a tissue or a biological
process has a counterpart in the visual radiological semei-
otics of the radiologist. Anyway, this is a phenotype-
phenotype correlation. Modern imaging is evolving from
visual (subjective image-based) interpretation to quantita-
tive interpretation, based on quantitative imaging bio-
markers that express biological, pathological processes
and the response of pathology to treatment. In this trans-
formation, the quantitative biomarkers of the images be-
come metadata that can be correlated with the metadata
of other “omics” sciences, such as genomics, proteomics,
etc., and are therefore at the basis of the so-called
genotype-phenotype correlation [18]. As an extension to
this, such diverse metadata and associated data might be
key to informing computational simulation models, as is
the case of the PRIMAGE project (see below). Given the
importance of this link, in 2016 the ESR set up a specific
DICOM-Minimum Information About BIobank data
Sharing (DICOM-MIABIS) working group with the goal
of linking non-imaging to imaging data [19]. Of note, im-
aging biomarkers can be simple biomarkers, such as lesion
diameter, or more complicated biomarkers, such as the
grey level co-occurrence matrix (GLCM), which is one of
the most commonly used texture features in radiomics.
However, these biomarkers not only express biological
properties, but are also influenced by the technical set-
tings, such as scanning protocols, this being the main rea-
son underlying the necessity of data harmonisation.

Currently available metadata models

DICOM extensions to the clinical domains
Many working groups have been established by the
DICOM Standard Committee to develop standards for a
particular modality, clinical domain, or technical area.
To date, the DICOM standard has set up 34 working
groups, which include the radiology modalities and other
non-radiological domains as imaging in dentistry,
dermatology, pathology. For example, the dermatology
working group aims to develop supplements to the
DICOM standard for dermoscopy, total body photog-
raphy, and reflectance confocal microscopy imaging
[20–22].
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Semantic DICOM
Another model that focuses on providing a metadata
model on top of the DICOM images is the Semantic
DICOM (SEDI) [23]. The objective of SEDI is “to support
the real-time translation of semantic queries into DICOM
queries” while targeting radiotherapy PACS. In this direc-
tion, data using the SEDI ontology are added to the
DICOM file as metadata. Those metadata can then be
stored and searched effectively using semantic web tech-
nologies. SEDI enables search through a structured query
language, such as the SPARQL Protocol and Resource De-
scription Framework (RDF) Query Language, over data
available in DICOM files. The ontology offers a rich set of
terms, but it has not been updated since 2015 [24].

MIABIS
The Minimum Information About BIobank data Sharing
(MIABIS) was initiated in 2012 [25], as a recommendation
about what information should be stored in biobanks to
facilitate the exchange of sample information and data.
The MIABIS Core version 2.0 was developed in 2016 [26]
and is currently used in several biobank registers and cata-
logs. In the MIABIS Core 2.0, three main entities are iden-
tified, namely “Biobank,” “Sample Collection,” and
“Study,” and a minimum number of attributes for each en-
tity is reported. In 2020, three new modules called “Sam-
ple,” “Sample donor,” and “Event” were added to the
MIABIS Core to describe samples and sample donors at
an individual level [27]. The “Event” module, in particular,
seems relevant also for imaging data, as it allows reporting
of events such as a disease diagnosis or death. What is
missing so far in MIABIS is the link/extension to DICOM
imaging data and associated metadata. To this aim, a
DICOM-MIABIS linking model has been proposed in a
recent paper, as an extension of the MIABIS core, mostly
with DICOM metadata [28]. The proposed conceptual
model is based on the three-module original MIABIS
Core 2.0, and suggests replacing the “Sample Collection”
module with a more general one called “Sample”. This
“Sample” module is linked on the one side to the rest of
the MIABIS Core for tissue metadata, and on the other
side to newly added modules, specific for images. These
modules not only report a minimal set of DICOM meta-
data, describing heterogeneous information across data-
sets, such as imaging protocols, modalities, sequences,
scanners, and labels, but also additional information re-
garding the image processing and analysis for radiomic
feature extraction.

Observational Medical Outcomes Partnership (OMOP)
Common Data Model (CDM)
The OMOP CDM allows for the systematic analysis of
different and heterogeneous observational databases. Its
approach is to transform data contained within the

source databases into a common format (data model)
with a common representation (terminologies, vocabu-
laries, coding schemes), and then perform systematic
analyses using standard methods based on the common
format [29]. Just recently, an Oncology Extension [30]
and a Radiology Extension [31] for the OMOP CDM
have been proposed. The work is still ongoing, but the
extensions will allow to represent and standardise con-
cepts and procedures that are specific to the fields of on-
cology and radiology.

HL7 FHIR and OHDSI OMOP alliance
Health Level Seven International (HL7) and Observa-
tional Health Data Sciences and Informatics (OHDSI)
have recently announced a collaboration to provide a
single Common Data Model for Sharing Information in
Clinical Care and Observational Research, which will ad-
dress the sharing and tracking of data in the healthcare
and research industries [32]. This will be done by align-
ing and integrating HL7 Fast Healthcare Interoperability
Resources (FHIR) and OHDSI’s OMOP CDM, allowing
clinicians as well as researchers to pull data from mul-
tiple sources and compile it in the same structure with-
out degradation of the information, benefiting from the
analytics and predictive modeling capabilities of OMOP
and the information retrieving from FHIR due to its
patient-level processes orientation. Extensive work has
been done on this issue prior to the agreement, generat-
ing projects with a certain maturity on which the first
designs of the collaboration could be based. One of the
most relevant examples of this work is the OMOP on
FHIR initiative [33]. OMOP on FHIR is an open-source
platform that provides bidirectional mapping processes
between OMOP CDM and FHIR. It also allows turning
any data analytics process into a service (“analytics-as-a-
service”) for delivery at the point of care. It acts as an
FHIR wrapper for an OMOP database using a data con-
verter (backbone) between OMOP and FHIR.

ICGC-ARGO
The International Cancer Genome Consortium-
Accelerate Research in Genomic Oncology ICG-ARGO
Data Dictionary expresses the details of a cancer-focused
data model and describes the attributes and permissible
values for all of the fields within the model [34]. It is
used to analyse data in the ICGC platform, which con-
tains specimens from 100,000 cancer patients with high-
quality clinical data. In addition, several funded projects
are using the model, including EuCanCan, an Horizon
2020 project in cancer research in Canada and Europe.
Besides the aforementioned data models, whose main

features are summarised in Table 1, it is worth mention-
ing the possibility of adopting a model based on common
data elements (CDEs). A CDE describes a specific data
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item, its specific attributes, and all their possible values
according to a vocabulary that is both human and
machine-readable. The use of CDEs has already been
adopted in several medical fields, including radiology,
where a CDE model has been defined based on existing
international standards [35]. In addition, several ontol-
ogies have also been developed specifically for capturing
medical imaging metadata, and, although they have not
been used by the projects presented in the sequel, we
mention them for reasons of completeness. First, the
Radiomics Ontology [36] models the radiomics feature
domain, includes computational details, and has tools
that generate template tables for standardised reporting
and scripts/tools for publishing the modeled data as
linked open data. Second, the Radiation Oncology Ontol-
ogy [37] aims to cover the radiation oncology domain,
including cancer diseases, cancer-staging systems, and
oncology treatments, with a strong focus on reusing
existing ontologies. Third, the Ontology-guided radio-
mics analysis workflow [38] is an open-source software
package that deploys a standard lexicon to uniquely de-
scribe radiomics features in common usage, and it pro-
vides methods to publish radiomic features as a
semantically interoperable data graph object complying
with Findability, Accessibility, Interoperability, and Re-
use (FAIR) data principles, using metalabels attached
from the Radiation Oncology Ontology and the IBSI
compliant Radiomics Ontology. Fourth, the Dependency
Layered Ontology for Radiation Oncology [39] was built
in an effort to capture the knowledge in radiation oncol-
ogy, including the dependency semantics among the
identified terms. The ontology reuses other standard on-
tologies and terminologies, such as the International
Classification of Disease 10 from the World Health
Organization [40], the National Cancer Institute The-
saurus [41], the Systematized Nomenclature of Medicine
Clinical Terms (SNOMED-CT) [42], and MOSAIQ on-
cology information system [43], and is exploited as input
for building Bayesian networks for the domain of

radiation oncology. Finally, Radiation Oncology Struc-
tures Ontology [44] describes commonly contoured (ana-
tomical and treatment planning) structures for radiation
treatment planning. It includes more than 22,000 struc-
ture labels (created over a 16-year period in a radiation
department) which were extracted, classified and cate-
gorised to produce this ontology. This ontology was cre-
ated to ease and standardise the integration of radiation
oncology data into clinical data warehouses for multi-
centric studies. As stated in Ref. [44], the ontology is
aligned to external ontologies like the Model of Anat-
omy [45] and Unified Medical Language System
/SNOMED-CT [42].

Problems with existing metadata models and approaches
Although in the previous section we presented multiple
approaches and metadata models developed for medical
imaging, still many problems are left unsolved. In this sec-
tion, we elaborate on the problems with existing metadata
models and the corresponding approaches focusing on
three key dimensions, i.e., the diversity of the available
data to be modeled, the diversity of existing models, and
the diversity of homogenisation efforts that further com-
plicate the selection of the appropriate workflow.

Diversity of data The data generated by different disci-
plines (such as genomic, metabolomic, proteomic, radio-
mics) have differences in format and structure that make
correlation difficult. The problem of correlation between
data of different nature is certainly in the domain of sta-
tistics, which provides various tools and solutions. At
the same time, the large amount of data available from
the different omics sciences requires a high computa-
tional capacity for their efficient correlation [46]. It is
therefore necessary to group the data by creating meta-
data models that can facilitate correlation. An example
to better understand the topic is the correlation between
gene mutations and a tumour progression index, as
could be an imaging biomarker [47].

Table 1 Summary of the most relevant metadata models currently available, the type of metadata they represent, and the scope of
the model

Model Type of metadata Scope

DICOM extensions Clinical variables Extend DICOM metadata to other domains

SEDI DICOM tags Enable semantic search over DICOM tags

MIABIS Biological samples and tissues Standard for traditional biobanks and Biobanking and Biomolecular
Resources Research Infrastructure–European Research Infrastructure Consortium Directory

OMOP CDM Clinical variables Standardise observational medical outcomes

FHIR Clinical variables Standard for health care data exchange

OMOP on FHIR Clinical variables Bidirectional mapping

ICGC-ARGO Cancer-focused clinical variables Standardise variables, attributes, and permissive values in the cancer domain

DICOM Digital Imaging and Communications in Medicine, FHIR Fast Healthcare Interoperability Resources, ICGC-ARGO International Cancer Genome Consortium-
Accelerating Research in Genomic Oncology, MIABIS Minimum Information About BIobank data Sharing, OMOP CDM Observational Medical Outcomes Partnership
Common Data Model, SEDI Semantic DICOM
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Diversity of ontologies
Besides the diversity of data, there is also a wide variety in
the models built for homogenising and storing these data,
leading to ontology “silos.” As such, ontologies and data
models are usually developed for describing limited sets of
data and cannot scale when other types of data need to be
stored using the same model. More than this, various
groups are performing extensions to ontologies that are
not synchronised and compatible with each other, thus
leading to several variations of the same ontology, which
complicates the ontology selection and its reuse. Cur-
rently, no single ontology is sufficient, and usually, mul-
tiple ones have to be combined to fully perform project-
specific data integration and homogenisation, as usually
the needs of each project differ from the exact ones that
the existing models try to cover.

Data harmonisation
The variation of multicentre data is caused by the het-
erogeneity of acquisition equipment, which may be seen
in biomedical signals, computed tomography, MR im-
aging, and pathology images. Vendor-specific detector
systems, coil sensitivity, positional and physiologic fluc-
tuations during acquisition, and magnetic field variations
in MR imaging, among other factors, all contribute to
this variability. Some radiomics properties are non-
reproducible even when utilising a fixed acquisition
methodology for multiple scanner manufacturers, ac-
cording to studies. Berenguer et al. [48], for example, in-
vestigated the repeatability of radiomics features on five
different scanners using the same acquisition method-
ology and found significant variances, with 16% to 85%
of radiomics features being repeatable. As such, it is ob-
vious that in large-scale digital healthcare research, re-
moving the bias and variation of multicentre data has
always been a challenge, requiring the capacity to com-
bine clinical characteristics retrieved from data gathered
by diverse scanners and protocols, to increase stability
and robustness. Data harmonisation, in particular com-
putational data harmonisation, provides an effective so-
lution for analysing multicentre and multiscanner
acquired medical imaging data along with metadata. By
changing data formats, terminologies, and measurement
units, data harmonisation refers to merging data from
several sources into a single coherent data set. It is
mostly used to resolve difficulties produced by non-
identical annotations or records between operators or
imaging systems, when downstream clinical tasks neces-
sitate the usage of a consistent methodology. Besides,
the harmonisation of data collected from data providers
participating in the research and existing data from open
databases is a necessary step for their use in data-driven
research. The harmonisation process includes the

evaluation and management of the compatibility of data
acquired by various sites and heterogeneous sources
[49].
In this scope, a number of existing harmonisation

methods exist [50]. As far as DICOM metadata, curation
workflows have been defined for all DICOM-defined ob-
jects. The Perl Open Source DICOM Archive (POSDA)
incorporates DICOM validation rules and guides de-
identification processes, including validation and correc-
tion of linkages, inconsistencies at DICOM series/study/
patient level, encoding errors, and more [51]. Other
tools are mentioned in [52]. With respect to automating
data analysis, an extract-transform-load (ETL) procedure
has been proposed by Godinho et al. [53], as the Rule-
Based Data Cleansing, based on the Dicoogle [54], an
open source PACS archive. However, a more generic
and standard-based solution, not bound to a PACS sys-
tem or a legacy system, would be preferable. When it
comes to calculated features, harmonisation methods
refer to mathematical transformations applied to the fea-
tures, to account for the different vendors’ raw data, as
in the ComBat system [55].
Concerning imaging biomarkers, the issue of standard-

isation relates to both simple and more complicated bio-
markers pertaining to radiomics. Imaging biomarkers
refer to features that are relevant to a patient’s diagnosis
or prognosis. These biomarkers are usually extracted
through calculating image intensities or distributions,
given by machine learning and mathematical modeling
algorithms. For instance, the GLCM can be used as an
independent prognostic factor in patients with surgically
treated rectal cancer [56]. However, while the IBSI initia-
tive standardises which data to extract, technical and hu-
man segmentation parameters may still induce
variability in such outputs. For example, images acquired
with different acquisition protocols alter the absolute
values of biomarkers without reflecting any actual bio-
logical variance. This can lead to the weak reproducibil-
ity of quantitative biomarkers and limit the time-series
studies based on multi-source datasets. Data harmonisa-
tion is a solution that can be adapted to both images
and image features to eliminate the non-biological
variances.

FAIR principles
Although FAIR principles do not necessarily require
harmonisation, current practices for health data man-
agement, with respect to data reuse for research and
new knowledge extraction, suggest data FAIRification
as part of the integration and harmonisation of multi-
site health data [57]. FAIR principles provide guide-
lines to improve the Findability, Accessibility,
Interoperability and Reuse of digital assets. Findability
is related to making the data easy to find for both
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computers and humans, by providing appropriate,
rich, clear, and unambiguous metadata for automatic
discovery. Accessibility has to do with the ways that
data can be accessed using a standardised, open, free
and universally implementable communication proto-
col. Interoperability on the other hand has to do with
using an appropriate language for knowledge repre-
sentation, the exploitation of standard vocabularies
enabling the data to interoperate with applications, or
workflows for analysis, storage, and processing. Reuse
has to do with optimising the reuse of data. To
achieve this, metadata and data should be well-
described so that they can be replicated and/or com-
bined in different settings. This procedure includes as
crucial steps the semantic definition, the definition of
access rights coupled with data de-identification and
pseudonymisation, the definition of metadata, the data
curation and validation, the data versioning, indexing,
and linking. These mainly refer to the raw medical
data (imaging data accompanied by non-imaging data:
clinical status, laboratory exams, and therapeutic pro-
cedures/outcomes), whose secondary use is crucial in
research, as well as to derived data, i.e., features pro-
duced from raw data with some computational pro-
cedure. Of note, regarding data-driven AI research,
the role of metadata is crucial in supporting not only
the generation of models, but also AI trustworthiness,
analysis of bias, etc.

Legal framework
Legal, ethical, privacy, and security requirements emerging
from, among others, the charter of Fundamental Rights of
the European Union [58], the Clinical Trials Regulation
[59], the General Data Protection Regulation [60], the
World Medical Association Declaration of Helsinki [61],

are essential prerequisites when harmonising sensitive data
for developing AI for disease management and research
purposes. Health data are obviously sensitive data and as
such each integration/harmonisation approach should be
done on the basis of the following principles: data
minimization (including anonymisation and pseudonymi-
sation) and accuracy; informed consent, lawfulness and
further processing of personal data; transparency and com-
munication objectives; privacy data protection by design
and default; continuous risk assessment; data security (in-
tegrity and confidentiality) and storage limitation; patient’s
rights and data subject’s rights; anonymised collection of
essential personal data; accountability for data processing;
data ownership and intellectual property rights.
All these principles should be met by any harmonisa-

tion approach, which in many cases can make the whole
process more difficult, however always ensuring that the
legal and ethical framework is respected.

The approach of European Union projects focusing on
health imaging
In this section we report on the strategies and the meta-
data models adopted by the five projects of the Artificial
Intelligence In Health Imaging (AI4HI) network, trying
to identify common elements and workflows. The main
information about these projects is summarised in Table
2. In addition, Table 3 presents the key points on the
metadata management of the AI4HI projects.

PRIMAGE: PRedictive In-silico Multiscale Analytics to
support cancer personalized diaGnosis and prognosis,
Empowered by imaging biomarkers
PRIMAGE is a Horizon 2020 funded project (grant
agreement number 826494) aimed at building an im-
aging biobank of two types of paediatric tumours:

Table 2 Summary of the AI4HI projects, listing their goals, use-cases, types of metadata identified so far

Project Goal Considered use cases Types of metadata Adopted models

PRIMAGE To build an imaging biobank for the
training and validation of machine
learning and multiscale simulation
algorithms

Paediatric neuroblastoma and
diffuse intrinsic pontine glioma

DICOM tags
Image analysis metadata
(registration, denoising, radiomics)
Clinical variables

DICOM-MIABIS
OMOP CDM

EuCanImage To build a European cancer imaging
platform for enhanced AI in oncology

Eight use cases regarding liver,
breast, and colorectal cancer

Imaging data
Clinical variables

DICOM-MIABIS
ICGC-ARGO

INCISIVE To improve cancer diagnosis and
prediction with AI and big data

Lung, breast, colorectal, and
prostate cancer

Imaging data
Clinical and biological data

FHIR

CHAIMELEON To develop a structured repository
of health images and related clinical
and molecular data

Lung, breast, prostate, and
colorectal cancer

Imaging data
Clinical variables

DICOM-MIABIS
OMOP CDM

ProCancer-I To develop an AI Platform integrating
imaging data and models

Prostate cancer Imaging data
Clinical variables

DICOM-Radiation
therapy
OMOP CDM with
Oncology Extension

AI Artificial intelligence, AI4HI Artificial Intelligence for Health Imaging, DICOM Digital Imaging and Communications in Medicine, FHIR Fast Healthcare
Interoperability Resources, ICGC-ARGO International Cancer Genome Consortium-Accelerating Research in Genomic Oncology, MIABIS Minimum Information About
BIobank data Sharing, OMOP CDM Observational Medical Outcomes Partnership Common Data Model, SEDI Semantic DICOM
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neuroblastoma and diffuse intrinsic pontine glioma [3,
4]. The project is constructed as an observational in
silico study involving high-quality anonymised datasets
(imaging, clinical, molecular, and genetics) for the train-
ing and validation of machine learning and multiscale
simulation algorithms.
In PRIMAGE data repositories, for each patient im-

aging data is linked to their available pseudonymised
biological, pathological, and genetics data. All metadata
of the PRIMAGE platform are grouped into a so-called
“e-form”, which represents the multiomics data collec-
tion interface. The fully web-based PRIMAGE platform
allows the centralised management of medical images
and their analysis through the extraction of imaging bio-
markers and the development of multi-scale models.
Therefore, we can identify three categories of metadata
that are relevant for this platform: image metadata, clin-
ical variables, and metadata relative to the image radio-
mics analysis. The DICOM-MIABIS model described
earlier was developed within the PRIMAGE framework
to facilitate linkage and harmonisation of these three
types of data inside the platform, as well as to allow the
link of the PRIMAGE metadata with other types of bior-
epositories. The choice of unifying the two standards,
DICOM for imaging metadata and MIABIS for bio-
logical samples and tissue, was mainly led by the ESR
long-term goal of creating a network of imaging bio-
banks integrated with the already-existing biobanking
network [19]. In addition, work is ongoing to map the
clinical variables collected in the platform for the two

types of paediatric tumours to the OMOP CDM to en-
sure their harmonisation.
An interesting research development in PRIMAGE is

represented by the metadata model that captures the
biomechanical/signalling behaviour of tumours. A multi-
scale patient-specific model has been proposed to pre-
dict the spatiotemporal evolution of the tumour after
simulating the individualised clinical treatment. The
multiscale approach has allowed the integration of vari-
ous length scales from molecules to whole tumours on
different time scales. Starting from the image geometry
of the tumour, a macroscopic Finite Element model re-
producing the exact tumour geometry was created. In
addition, image biomarkers from the patient (DCE-MR
imaging maps) are also being integrated into the same
personalised Finite Element model, taking into account
heterogeneous spatial distribution of cellularity and vas-
cularisation. Both tumours, neuroblastoma, and diffuse
intrinsic pontine glioma are characterised by high het-
erogeneity. In particular, the ANSYS commercial Finite
Element software is used. This macroscopic biomechan-
ics finite element-based model allows the evaluation of
the non-uniform growth and the residual stresses char-
acteristics of tumours [62]. This macroscopic approach
is fed by a multicellular model that regulates the spatio-
temporal evolution of the tumour. In PRIMAGE, the
critical behaviours of cells within the tumour are cap-
tured using a hybrid model, where individual cells are
represented by equivalent virtual entities known as “soft-
ware agents.” The latter are embedded in virtual lattice

Table 3 Metadata management approaches of the AI4HI projects

Project Metadata
collection

Metadata types Models used Unique characteristics

PRIMAGE Structured
e-forms

Imaging, clinical,
image radiomic
analysis

DICOM for imaging metadata
MIABIS for biological samples and
tissue
OMOP-CDM for clinical

Integration of the DICOM and MIABIS standards, and metadata
model that captures the biomechanical/signalling behaviour of
tumours

EuCanImage Structured
e-forms

Imaging, clinical DICOM-MIABIS for imaging data
Extension of ICGC-ARGO for clinical
variables

Link between imaging and non-imaging data

INCISIVE Structured
e-forms

Clinical,
biological,
imaging

Multiple terminologies for clinical
data (e.g., SNOMED-CT, ICD10, ATC
classification)
FHIR for communication

Data Integration Quality Check Tool employed to identify
whether data follow the harmonisation requirements defined

CHAIMELEON Structured
e-forms

Imaging, clinical DICOM for imaging metadata
MIABIS for biological samples and
tissue
OMOP-CDM for clinical

A multimodal analytical data engine will facilitate interpretation,
extraction, data harmonisation, and exploitation of the stored
information. The CHAIMELEON repository will ensure the
usability and performance of the repository as a tool fostering
AI experimentation

ProCancer-I Data
upload
tool (e-
forms)

Imaging, clinical DICOM-Radiation therapy for
imaging data
OMOP-CDM for clinical data

Provides an extension to OMOP-CDM going beyond radiology/
oncology extensions and introduces another model (AI pass-
port) for modeling analysis workflows and AI development

AI Artificial intelligence, AI4HI Artificial Intelligence for Health Imaging, ATC Anatomical Therapeutic Chemical Classification (World Health Organization), DICOM
Digital Imaging and Communications in Medicine, FHIR Fast Healthcare Interoperability Resources, ICD 10 International Classification of Diseases 10, ICGC-ARGO
International Cancer Genome Consortium-Accelerating Research in Genomic Oncology, MIABIS Minimum Information About BIobank data Sharing, OMOP CDM
Observational Medical Outcomes Partnership Common Data Model, SEDI Semantic DICOM, SNOMED-CT Systematized Nomenclature of Medicine Clinical Terms

Kondylakis et al. European Radiology Experimental            (2022) 6:29 Page 8 of 15



(a “continuous automaton”) which represents the distri-
bution of non-cellular material in the microenvironment
and interacts physically via a cell-centred method of dis-
placement resulting from repulsive forces, as described
[63]. Cell agents, which represent different cell types are
iteratively updated and permitted to divide, differentiate,
or die according to rules relating to their current in-
ternal state (representing the mutation profile/activa-
tion/expression level of a subset of key proteins
including MYCN, Alk, TERT), and signals from the local
microenvironment (local cell density, oxygen level, pres-
ence of particular chemotherapeutic drugs). The imple-
mentation of this multiscale strategy is computationally
intensive and is currently intractable for whole-tumour
scale simulations. For this reason, a particularisation
approach has been adopted, whereas 20 elements of the
organ scale simulation have been selected for cellular
scale modeling at each time step. Cellular scale models
are then initiated and executed for a period representing
14 days using the parallelised FLAMEGPU framework,
which permits the simulation of millions of cells in
tractable timescales [64, 65].

EuCanImage: towards a European cancer imaging platform
for enhanced AI in oncology
EuCanImage is a Horizon 2020 project (grant agreement
number 952103) that aims to build a federated large-
scale European cancer imaging platform, with capabil-
ities that will allow the development of multi-scale AI
solutions that integrate clinical predictors into dense,
patient-specific cancer fingerprints [5]. From a clinical
perspective, EuCanImage is divided into eight use cases,
tackling liver, breast, and colorectal cancer types. For
each individual in each use case, there are a series of MR
images of the tumour and around 80 non-imaging pa-
rameters ranging from age at diagnosis and gender to in-
formation about treatment, comorbidities, etc. As many
hospitals and clinical centres participate in this project,
the source and format of these data are highly
heterogeneous.
To deal with heterogeneous sources of imaging data,

the data model for imaging data will be based on the in-
tegrated DICOM-MIABIS structure described before, be-
cause it features tables and attributes to describe image
metadata that are particularly suited to EuCanImage’s
needs. The ICGC-ARGO dictionary was selected as a basis
for the EuCanImage data model of clinical variables, be-
cause it is used to analyse data in the ICGC platform,
which contains specimens from 100,000 cancer patients
with high-quality clinical data. In addition, several funded
projects are using the model, including EuCanCan [66], an
Horizon 2020 project in cancer research in Canada and
Europe. A dedicated EuCanImage working group, includ-
ing the ICGC model curator, reviewed all data types/

variables individually based on the eight clinical use cases
that are part of the EuCanImage project. The extent to
which the parameters can be mapped onto the ARGO dic-
tionary was assessed, the potential gaps were identified
based on feedback from the clinical partners and clinical
data, and the ARGO schema was extended accordingly to
obtain a comprehensive data model taking into account
heterogeneity between sites. From this qualitative analysis,
descriptive statistics reflecting the proportion of variables
that are already represented in the ARGO dictionary was
derived (Fig. 2). Based on the eight clinical use cases (liver,
colorectal, and breast tumours), the dictionary already has
implemented 64% of the parameters, ranging from 44 to
80% across use cases. The ARGO dictionary is being ex-
tended to account for an additional 9% of the missing pa-
rameters, while other parameters are currently under
discussion.

CHAIMELEON: accelerating the lab to market transition of
AI tools for cancer management
The CHAIMELEON project (grant agreement number
952172) aims to develop a structured repository of
health images and related clinical and molecular data on
the most prevalent cancers in Europe: lung, breast, pros-
tate, and colorectal [6]. The key objectives of CHAIME-
LEON are to establish a European Union-wide
interoperable repository with quality-checked imaging
data as a resource for developing and testing AI tools for
cancer management; to set up a distributed infrastruc-
ture building on existing initiatives; to ensure the sus-
tainability of the repository beyond the project runtime;
and to develop novel data harmonisation technologies
for handling multicentre, multimodal, and multiscanner
data. The project involves the collection of images of
over 40,000 patients but also has the ambition to include
clinical data associated with the images. In order to rep-
resent such data within the repository, the strategy
already tested in the PRIMAGE project, of which many
CHAIMELEON researchers are partners, will be used. A
specific CHAIMELEON work package is dedicated to
the sustainability of the biobank. The work package fore-
sees that the imaging biomarkers, which will be devel-
oped within the biobank, are correctly represented and
encoded to be linked to the non-imaging data.
Data acquired at multiple centres with different scan-

ners (cross-vendor/cross-institution image datasets) will
be used to access a vast amount of health imaging data-
sets. Due to a lack of consistency of source medical im-
ages generated from different equipment vendors,
models, and releases, as well as the lack of an appropri-
ate framework in terms of image acquisition/reconstruc-
tion, the quantitative image features and parameters
values and ranges extracted from images acquired at one
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centre may not be reproducible from images acquired at
another centre.
In the context of secondary use of health imaging data,

the reproducibility of quantitative imaging biomarkers in
radiomics is critical. One of the major aims of CHAIME-
LEON project is to contribute to imaging data
harmonisation. Various harmonisation approaches based
on image preprocessing and postprocessing will be pro-
posed, including a disruptive approach based on the use
of AI models to generate synthetic images adjusted to a
common harmonisation framework, harmonising the
quantitative imaging biomarkers results, and ensuring
that the authenticity and integrity of each synthetic co-
herent image is properly secured.

INCISIVE: a multimodal AI-based toolbox and an interoperable
health imaging repository for the empowerment of imaging
analysis related to the diagnosis, prediction, and follow-up of
cancer
The INCISIVE project [8] is a Horizon 2020 funded pro-
ject (grant agreement number 826494) focusing on im-
proving cancer diagnosis and prediction with AI and big
data. Its aims are to develop, deploy, and validate: (a) an
AI-based toolbox that enhances the accuracy, specificity,
sensitivity, interpretability, and cost-effectiveness of exist-
ing cancer imaging methods; and (b) an interoperable
pan-European federated repository of medical images that
enables secure donation and sharing of data in compliance
with ethical, legal, and privacy requirements. The long-
term vision of INCISIVE is, by increasing accessibility and
enabling experimentation of AI-based solutions, to show-
case its impact, towards their large-scale adoption in can-
cer diagnosis, prediction, treatment, and follow-up.
Four important cancer types are considered (lung,

breast, colorectal, and prostate cancer), and different
challenges are recognised in each cancer type, seeking
leverage via data-driven AI solutions, based on imaging

and other clinical and biological data. Retrospective and
prospective studies are set up in five countries (Cyprus,
Greece, Italy, Serbia, and Spain), to collect and share a
multitude of data towards enabling both the AI toolbox
and the federated repository. These data are divided into
two categories: (a) clinical and biological data; and (b)
imaging data. The first category, provided in structured
text form, includes demographic and medical history
data, histological and blood markers, treatment and
tumour details, as well as the imaging acquisition proto-
col. The second category includes body scans in different
modalities DICOM format and histopathological images
in png or tiff format. These data include distinct time
points during the patients’ treatment: (1) diagnosis; (2)
after first treatment (surgery or therapy); (3) first follow-
up; (4) second follow-up.
To construct a model for storing the non-imaging data

a template per cancer type was formulated along with
the experts, standardising the used fields and adopting
terminologies based on medical standards such as the
International Classification of Diseases 10 [40] and the
Anatomical Therapeutic Chemical (ATC) classification
[67]. This structure, presented in Fig. 3, was the basis for
the formation of the INCISIVE data model. To that end,
the fields of the structured templates were linked to
standardised terminologies using the SNOMED-CT vo-
cabulary. To ensure interoperability, an FHIR-based
model was created for the communication between the
various components of the INCISIVE infrastructure. The
data are classified in 3 levels: (i) demographics, patient’s
personal information, and medical history; (ii) time-
points, including the baseline and follow-ups, and for
each one of them, tumour characteristics resulting from
scan examinations, the progression, and status of the
disease linked with the actual scan examinations; and
(iii) information about histopathology findings, treat-
ment, and blood tests connected to each timepoint.

Fig. 2 Level of EuCanImage variable mapping into the Accelerating Research in Genomic Oncology (ARGO) model based on the clinical use
cases, at the time of assessment (July 2021). TBC To be confirmed
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With regard to the imaging data, the integration proced-
ure included as a first step the analysis of the imaging data
from all the sites. The metadata of all DICOM files were
processed to investigate harmonisation and de-
identification issues and a list with all the attributes for
each data provider was created. Furthermore, the same
procedure was applied in open datasets and compared
with the mock-ups to conclude in an anonymisation
standard. Additional attributes related to the image, such
as field of view and slice thickness was also analysed for
harmonisation purposes. Eventually, the protocol and data
collection procedure for a harmonised data storage was
defined. After the data collection and the images de-
identification step, which is implemented via the CTP
DICOM Anonymizer [68] and a configuration following
the DICOM PS3.15 [69] standard, and before data upload-
ing to the repository, a quality check takes place at the
local level using Data Integration Quality Check Tool [70],
a rule-based engine, implementing domain knowledge,
and aims to identify whether data follow the data
harmonisation requirements defined within the project, as
well as the integrity and consistency of the data.

ProCancer-I: an AI platform integrating imaging data and
models, supporting precision care through prostate cancer
continuum
ProCancer-I (Horizon 2020 grant agreement number
952159) aspires to develop an AI platform integrating

imaging data and models, supporting precision care
through prostate cancer continuum [9]. The ProCAncer-
I project brings together 20 partners, including prostate
cancer centres of reference, world leaders in AI and in-
novative small and medium-sized enterprises, with
recognised expertise in their respective domains, with
the objective to design, develop and sustain a cloud-
based, secure European image infrastructure with tools
and services for data handling. The platform will host
the largest collection of prostate cancer multiparametric
MR imaging, anonymised image data worldwide (>
17,000 cases), based on data donorship, in line with
European Union General Data Protection Regulation.
Exploiting the available data, robust AI models will be
developed, based on novel ensemble learning method-
ologies, leading to vendor-specific and -neutral AI
models for addressing eight prostate cancer clinical
scenarios.
The data that will be collected through the lifetime

of the project are imaging data and clinical data. The
imaging data will be prostate multiparametric MR im-
aging data and histopathologic (whole-slide pathology
images). The clinical data include clinical, prostate
specific antigen, prostate specific antigen density,
Gleason group, the status of resection margins, pres-
ence of extraprostatic invasion, nodal status, post-
prostatectomy prostate specific antigen, nodal status,

Fig. 3 The design of the INCISIVE data model
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follow-up measurements of prostate specific antigen,
toxicity, and quality of life.
Imaging data adopt DICOM-Radiation Therapy and

are accompanied with the relevant metadata for captur-
ing the related information. All imaging metadata are
currently stored in a metadata catalog, developed expli-
citly for this purpose. The metadata catalog adopts the
OMOP-CDM v6.0 model. However, as the model has
limited support for oncological data, the Oncology CDM
Extension of the OMOP-CDM is also used for repre-
senting the prostate cancer data at the levels of granular-
ity and abstraction required by the project. For radiology
exams, although those can be currently registered using
the OMOP-CDM, the model does not enable the storage
of the subsequent curation process. As such, the
ProCancer-I has already introduced a custom radiology
extension and is currently working on it in collaboration
with the OHDSI Medical Imaging Working Group, fo-
cusing on including annotation, segmentation, and cur-
ation data as radiomics features that need to be stored
as well. Terms found in the source data are also mapped
to concepts in the OMOP standard vocabularies to
achieve semantic interoperability, whereas in the case
that such a mapping cannot be made, non-standard con-
cepts are introduced by the ProCancer-I project.

Conclusions and future directions
Developing high-quality AI models for health imaging
requires access to large amounts of imaging data along
with their metadata. However, those datasets might have
been produced by different vendors and workflows and
use different terminologies and data models to be repre-
sented. Many different common data models, ontologies,
and terminologies have been developed in order to en-
able homogeneous representation of the available data.
However, despite the plethora of models, typically the
specific requirements set by each individual project ne-
cessitate the use of multiple models and terminologies in
order to appropriately describe the available data. And
even that is usually not enough, as extensions are also
often required. Recent projects participating in the
AI4HI network adopt mostly DICOM-MIABIS struc-
tures, the OMOP-CDM along with its extensions, and
ICGC-ARGO for modeling imaging and clinical data
along with relevant clinical terminologies.
Experiences from all projects should guide future de-

velopments in the aforementioned models. For example,
already the projects adopting OMOP-CDM joined forces
with the Radiology OHDSI working group in order to
promote extensions that cover not only the basic radi-
ology information, but also information required for
tracking the various curation steps, and for AI subse-
quent development. The authors believe that standard-
isation is the road to go. However, this is a long and

time-consuming process. On the other hand, it is com-
mon that different groups might have different interests,
and as such modular, well-defined, and properly de-
scribed standards are essential so that the appropriate
modules can be selected by the appropriate group ac-
cording to the specific needs. The adoption of common
such standards will enable the easier integration and
harmonisation of the collected datasets.
Direct application of one data harmonisation method

from one project to another may not be straightforward.
This is because different data resources (e.g., different
scanning modalities) and different clinical questions may
require specialised design of the data harmonisation. For
example, data harmonisation of tabular data could be
different from that of imaging data. To address this
issue, transfer learning could be used to enhance the ro-
bustness of data harmonisation models by holding a
priori knowledge on the way data can vary, and the suc-
cessful application in-between projects may also be de-
termined by extra training samples in a different project
to reduce the uncertainty with respect to the variability
of data that models can cope with. However, there is
growing evidence that integrating data harmonisation
with AI methods allows for robust and accurate predic-
tions on multicentre datasets.
Effectively integrating all these datasets beyond indi-

vidual project boundaries by specifying a common data
model will facilitate the establishment of a common data
model for oncology, paving the way for a patient-centric,
federated, multi-source, and interoperable data-sharing
ecosystem, where healthcare providers, clinical experts,
citizens, and researchers contribute, access, and reuse
multimodal health data, thereby making a significant
contribution to the creation of the European Health
Data Space.
However, in that direction, several obstacles should be

overcome. At individual project level, the necessary
FAIR services should be implemented and be available,
enabling regulated, federated access to the data available
in each own project infrastructure. The various data
sources might use different models for storing data and
the corresponding metadata, however exposing a com-
mon interface on top for data/metadata access will fur-
ther promote and ease the integration of the available
data. A problem is that most of the projects develop
their FAIR services towards the end of the project, when
the whole infrastructure is ready, as usually the focus is
on the AI tools that each project is delivering and FAIRi-
fication is only a minor side project. However, this usu-
ally has as a result that no proper time is left for
integration with external projects and for promoting
such activities. Incorporating FAIR-by-design principles
in the first stages of the infrastructure development and
producing early in project lifetime relevant services,
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could boost cooperation opportunities among different
projects.
Finally, to ensure a smooth translation from basic sci-

ence AI research into the clinical arena, explainable AI,
XAI, provides a ploy that tries to give rationale, trans-
parency, and traceability of frequently black-box AI algo-
rithms, as well as testability of causal assumptions. In
biomedical signal and image processing, especially appli-
cations in digital healthcare, determining causation is es-
pecially important to justify why a decision is taken and
why one intervention or treatment option is preferred
over others. Explainable AI is a step toward realising the
FATE (Fairness, Accountability, Transparency, and Eth-
ics) and FAIR (Findable, Accessible, Interoperable, Re-
usable) principles.
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