
© 2019 Journal of Medical Signals & Sensors | Published by Wolters Kluwer - Medknow� 1

Abstract
Background: Macular disorders, such as diabetic macular edema (DME) and age-related macular 
degeneration (AMD) are among the major ocular diseases. Having one of these diseases can lead to 
vision impairments or even permanent blindness in a not-so-long time span. So, the early diagnosis 
of these diseases are the main goals for researchers in the field. Methods: This study is designed in 
order to present a comparative analysis on the recent convolutional mixture of experts (CMoE) models 
for distinguishing normal macular OCT from DME and AMD. For this purpose, we considered three 
recent CMoE models called Mixture ensemble of convolutional neural networks (ME-CNN), Multi-
scale Convolutional Mixture of Experts (MCME), and Wavelet-based Convolutional Mixture of Experts 
(WCME) models. For this research study, the models were evaluated on a database of three different 
macular OCT sets. Two first OCT sets were acquired by Heidelberg imaging systems consisting of 148 
and 45 subjects respectively and set3 was constituted of 384 Bioptigen OCT acquisitions. To provide 
better performance insight into the CMoE ensembles, we extensively analyzed the models based on the 
5-fold cross-validation method and various classification measures such as precision and average area 
under the ROC curve (AUC). Results: Experimental evaluations showed that the MCME and WCME 
outperformed the ME-CNN model and presented overall precisions of 98.14% and 96.06% for aligned 
OCTs respectively. For non-aligned retinal OCTs, these values were 93.95% and 95.56%. Conclusion: 
Based on the comparative analysis, although the MCME model outperformed the other CMoE models 
in the analysis of aligned retinal OCTs, the WCME offers a robust model for diagnosis of non-aligned 
retinal OCTs. This allows having a fast and robust computer-aided system in macular OCT imaging 
which does not rely on the routine computerized processes such as denoising, segmentation of retinal 
layers, and also retinal layers alignment.
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Introduction
Retinal disorders, especially those 
involving macula, such as diabetic 
macular edema (DME) and age-related 
macular degeneration (AMD), are among 
the major ocular diseases.[1,2] Having one 
of these diseases can lead to permanent 
blindness in a not-so-long time span. 
Today, the progression rate of these 
diseases in industrialized and developing 
countries has become a growing concern 
that can endanger the vision of people.[3] 
Based on clinical evaluations in modern 
societies, these diseases are trending toward 
becoming the most important causes of 
blindness and visual impairment. Vision 
impairments or blindness due to the chronic 
retinal diseases can be averted if they are 

detected and treated early via screening 
programs.[4] Hence, the early diagnosis and 
effective treatment of these diseases are the 
main goals of eye researchers in the field of 
health.[5]

One of the main methods for detecting 
macular diseases and monitoring response 
to treatment is the optical coherence 
tomography (OCT) imaging of the eye. 
OCT, as a non-invasive three-dimensional 
(3-D) imaging technique, can effectively 
visualize intraocular microscopic structures 
such as the retina and the optic nerve 
head.[6] Hence, it has the ability to diagnose 
intrinsic diseases in macula such as AMD 
and DME. As OCT images are produced 
at higher sampling rates and resolution, 
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there is a strong need for the analysis of their images 
with helpful computer-aided diagnosis (CAD) systems to 
diagnose diseases early and to examine how the response 
to treatment occurs.[3]

Most software research studies that have been performed 
for the automatic analysis of OCT images include various 
algorithms for image preprocessing, enhancement, and 
segmentation processes. However, limited work has been 
reported for automatic diagnosis of ocular diseases via OCT 
imaging.[7] Most commonly used methods for classifying 
OCT images rely on a precise retinal layer segmentation 
step. Since there has been no effective method for the 
segmentation of pathological retinal layers in OCT images, 
relying on segmentation as the main step for classification 
of OCT images can greatly affect the performance of the 
diagnostic systems. In the following, some recent works on 
macular OCT CAD systems are briefly reviewed.

In,[3] the authors proposed a multiscale local binary pattern 
(LBP) feature extraction step and a non-linear support 
vector machine (SVM) method for the diagnosis of macular 
pathologies including macular edema, macular hole, and 
AMD from normal ones using a dataset of 326 OCT scans. 
With the help of a retinal alignment preprocessing step 
based on morphological operations and using the receiver 
operating characteristic (ROC) analysis, the algorithm 
reached an average area under the ROC curve (AUC) 
of 0.93.

Farsiu et al.[8] developed a semi-automatic classification 
method for AMD diagnosis in a dataset of 384 retinal 
Bioptigen spectral domain OCTs (SD-OCTs). Given 
manually-corrected segmentations of Bruch’s membrane 
(BM), the retinal pigment epithelium (RPE) and inner 
limiting membrane layers, they calculated a number of 
metrics: Total thickness of the retina; thickness between 
drusen apexes and the RPE; abnormal thickness score; 
abnormal thinness score. Then, they trained linear 
regression models using different combinations of these 
metrics. Using the best combination and the leave-one-out 
validation approach, the method achieved an AUC of 0.99.

In another study,[9] the authors employed a feature 
extraction method based on the histogram of oriented 
gradients (HOG) and fed the features to three linear SVM 
classifiers for the purpose of discrimination among DME, 
AMD, and normal SD-OCT volumes. The research utilized 
a preprocessing stage composed of block matching and 
3-D-filtering (BM3D) denoizing,[10] and retinal curvature 
flattening steps. Based on a threshold of 33% of abnormal 
B-scans for decision-making on a dataset of 45 OCTs. This 
method achieved a classification rate of 86.67%, 100%, and 
100% for normal, DME and AMD classes, respectively.

In Sugmk et al.,[11] after the segmentation of the RPE 
layer, binary features were computed from the RPE layer 
to identify AMD and DME pathologies. The experimental 

results showed an accuracy of 87.5% through a dataset of 
16 OCT images.

With the same OCT set as Farsiu et al.,[8] an automatic 
AMD identification method was proposed Apostolopoulos 
et al.[12] based on convolutional neural networks (CNNs) 
with an AUC of 0.997. For this purpose, the method 
remapped the OCT volumes to large image mosaics and 
trained a two-dimensional (2-D) CNN, called RetiNet-C, 
for the classification of retinal OCTs.

In Hassan et al.,[13] proposed a feature extraction 
methodology based on structural tensors. They extracted 
three thickness profiles, and two cyst fluids features for the 
classification of macular edema, central serous retinopathy, 
and healthy OCTs. The algorithm correctly classified 88 out 
of 90 subjects with the accuracy, sensitivity, and specificity 
of 97.77%, 100%, and 93.33%, respectively.

In addition, Sun et al.,[14] proposed a macular pathology 
detection algorithm in OCT images using sparse coding 
and dictionary learning. After using the BM3D denoizing 
and retinal curvature correction, the authors performed 
a dictionary learning technique on shift invariant feature 
transform features on partitioned B-scans. Then, they used 
three binary linear SVM classifiers for discrimination 
between normal, DME, and AMD OCT volumes with a 
classification rate of 93.33%, 100%, and 100%, respectively 
on a dataset of 45 OCTs.[9]

Recently, in[15] the authors proposed a CAD in macular 
OCT diagnosis including two learning stages: (I) adaptive 
feature learning through a new Wavelet-based CNN, 
and (II) random forests (RF) classifier learning. With the 
application of the algorithm on a set of 45 OCT volumes[9] 
and 10 repetitions of 5-fold cross-validation (CV), the 
proposed scheme obtained an average precision of 98.67% 
on the dataset as a three-class classification task (AMD/
DME/normal).

Most recently, Rasti et al. introduced two novel 
convolutional mixture of experts (CMoE) models called 
multiscale convolutional mixture of experts (MCMEs),[16] 
and wavelet-based convolutional mixture of experts 
(WCMEs)[17] for the diagnosis of macular abnormalities. 
The MCME ensemble using the prior multiscale spatial 
pyramid (MSSP) decomposition method was developed 
to incorporate multiple CNNs with special fields of view 
same as the attention models to represent the aligned 
macular region at multiple scales. The information fusion 
in this model was conducted through a Gaussian mixture 
objective function benefiting from a new cross-correlation 
penalty term. The WCME ensemble was designed to 
impose the spatial-frequency information fusion in 
multiple CNNs with special receptive fields. Using a prior 
2D-Daubechies wavelet decomposition, this model tries 
to represent the non-aligned macular region at multiple 
frequency maps.
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The present study is designed to perform a comparative 
analysis on the recent MCME[16] and WCME[17] models for 
distinguishing normal macular OCT from DME and AMD 
using three different SD-OCT datasets. The rest of the 
paper is structured as follows: Section 2 describes the OCT 
database and data pre-processing steps. It also introduces 
evaluated baselines and the methods. Section 3 presents 
the experimental setup and results of the evaluated CMoE 
ensembles. Sections 4 and 5 give the research discussion 
and conclusion, respectively.

Materials and Methods
In this section, we first introduce the retinal OCT image 
database and present a general data preprocessing pipeline 
used for retinal OCT image analysis. We briefly review 
the architecture and mathematical model of regular CNNs. 
Then, the evaluated CMoE model are presented and 
described in detail.

Optical coherence tomography database

For this research study, the proposed algorithms were 
designed and evaluated on three different SD-OCT datasets 
acquired by Heidelberg and Bioptigen OCT imaging 
systems.

Dataset 1: Local\Heidelberg dataset

The first macular dataset was acquired at Noor Eye 
Hospital in Tehran consisting of 50 normal, 48 dry AMD, 
and 50 DME OCTs from Heidelberg device (Heidelberg 
Engineering Inc., Heidelberg, Germany). For this dataset, 
the number of A-scans varied among 512 or 768 scans 
where 19-61 B-scans per volume were acquired from 
different patients. Figure 1 illustrates example B-scans 
from different SD-OCT volumes of each class in Dataset 1.

Dataset 2: Duke-Harvard-Michigan Heidelberg dataset

The second dataset was a collection of Heidelberg 
acquisitions that contains 45 OCTs.[9] This dataset included 
volumetric scans (nonunique protocols) of control, AMD, 
and DME classes with 15 subjects for each class. The OCT 
B-scans in this dataset varies in a range of 31 to 97 slices 
with the size of 512 × 496 or 768 × 496 pixels.

In addition to the provided case labels, all B-scans in 
the two Heidelberg research datasets were annotated by 
an expert ophthalmologist experienced in OCT imaging. 
Therefore, all B-scans in Dataset1 and Dataset2 (4142 
and 3247 respectively) were annotated as normal, AMD 

or DME images. The B-scans and annotations were used 
for training and evaluating the proposed models. In total, 
Dataset1 included 862 DME and 969 AMD B-scans. 
These samples were 856 and 711 B-scans for Dataset2. In 
addition, other B-scans were taken as healthy images.

Dataset 3: Duke Bioptigen Dataset

The third dataset was a set of Bioptigen SD-OCT data, 
which totally includes 384 retinal OCTs (269 AMD, 115 
control volumes).[8] The control group consisted of healthy 
subjects who had no evidence of macular drusen or AMD 
signs in both eyes. One hundred foveal B-scans for each 
volume were obtained with a resolution of 1000 × 512 
pixels. Since manual analysis and annotating of this dataset 
(including 38,400 B-scans) is a very time-consuming task 
and demanding for days of hard-work by ophthalmologists, 
therefore we consider and call this OCT set as an unseen 
data for validation purposes.

Optical coherence tomography data preprocessing

A general pipeline of the preprocessing algorithm is shown 
in Figure 2.

Standardization

All B-scans in the database were first resized to 512 × 496 
pixels and the possible missing regions in the background 
were compensated using the “imfill” morphological 
operation[18] with an intensity value of zero. In addition, a 
normalization step was done to remove the intensity mean 
value of each B-scan and to scale it so that we could have 
a standard deviation of one.

B-scan denoising

In general, OCT images are corrupted by speckle noise 
in imaging step.[5] Since CNNs are rather robust to image 
noise; however, it seems beneficial to denoize their input 
images to facilitate the learning process of classifiers. 
Therefore, by denoizing individual B-scans in the OCT 
volumes, the quality of the database was improved. For this 
purpose, the BM3D method, according to Fang et al.,[19] 
was used in which the standard deviation of the noise 
(corresponding to image intensities in the range [0,255]) 
was adaptively estimated for each B-scan. Hence, 4 
different 10 × 10 window boxes were considered at the 
corners of each raw image, and the minimum value of 
these four noise standard deviations was selected as the 
sigma value in the BM3D algorithm.

Figure 1: Example B-scans from normal (left), age-related macular degeneration (middle), and diabetic macular edema (right) subjects in Dataset1
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Retinal layers flattening

In ocular OCT images, due to the imaging distortion and 
anatomical structures, the retinal layers may be randomly 
translated or rotated in the B-scans. To counteract these 
variations, a graph-based curvature correction algorithm[20] 
was performed. As for the main idea in the flattening block 
[Figure 3], the hyper-reflective complex (HRC) band is 
detected, then a convex second-order polynomial curve is 
fitted on the HRC band. Consequently, the retina layers are 
wrapped up in a way that the HRC points can be placed 
horizontally.[20]

Image cropping

Nonaligned data

To crop raw retinal B-scans, middle row position of the 
maximum intensity values in B-scans of current OCT 
volume was selected as the central row of the case. Hence, 
for each B-scan, 135 rows above and 120-row pixels below 
the calculated central row were selected as the cropped 
image. In severely misaligned cases with very low or high 
central row, 256 rows located on the top or bottom of the 
image were selected for image cropping purpose.

Aligned data

Here, to focus on the retina and reduce image sizes, each 
B-scan was first cropped at 200 pixels higher and 35 
pixels lower than the detected HRC band. These values 
were selected through visual inspection over the datasets 
to maintain all retinal information. Finally, the cropped 
images were downsampled to 128 × 512 pixels as the 
aligned fields of view (FOVs) for further processes.

Volume of interest generation and augmentation

Nonaligned data

Here, in the first step, a centered 256 × 470 pixels bounding 
box was defined as a FOV in a cropped B-scan. This FOV 
was used to generate the central region of interests (ROIs) 
for a given volume of interest (VOI). In the training phase 
for generalization of the problem and to have an effective 
training process, the selected FOVs in training cases were 
horizontally flipped, translated by (±10, ±20) pixels, and 
rotated by (±3°, ±5°) angles. This augmentation trend 
increased the number of the nonaligned samples with 
a factor of 18 in our training process. Furthermore, all 

the extracted ROIs were resized to 128 × 256 pixels for 
subsequent processes. In the testing phase, only the resized 
central ROIs in a given volume were considered for the 
evaluation purpose.

Aligned data

In the case of aligned B-scans, the ROI was selected 
with a limited and centered box of 128 × 420 pixels in 
each B-scan. In the next step, all extracted ROIs in all 
B-scans were downsampled to 128 × 256 pixels and were 
concatenated to produce the case VOI. In the training 
phase, the centered bounding box was flipped horizontally 
and/or translated by ± 20 pixels to produce augmented 
ROI training sets. The number of training examples was 
increased by a factor of 6 using this strategy. Basically, 
the augmentation technique helps to reduce the chance of 
overfitting by degrading the data bias with respect to the 
number of right and left eyes.[12]

Figure 2: A general overview of the data preprocessing algorithm

Figure 3: Retinal layers flattening on noisy B-scans: (top row) normal, 
(middle row) age-related macular degeneration, (bottom row) diabetic 
macular edema B-scan instances
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Regular convolutional neural networks

CNN is a deep neural network model that captures spatial 
information of the input image data.[21] The typical CNN consists 
of a cascade of several convolutional (C or CONV) layers, 
nonlinearity, pooling (P or POOL) layers, and fully connected 
(FC) layers. Other CNN layers exist for recent published CNNs 
such as batch-normalization layers (BN layers)[22] and dropout 
layers[23] for creating more efficient convolutional models.

Convolutional neural network signal forward propagation

As shown in Figure 4, in a regular CNN model, layers are 
arranged in a feed-forward structure: Stacks of hidden C-P 
layers (CONV-POOL), some hidden FC layers, and a final 
FC-layer called output layer (O-layer). In CNNs, C and 
P-layers have several extracted planes which called output 
feature maps (FMs).

Convolutional layer

In a typical convolutional layer or C-layer for short, a set 
of 2-D neural kernels (filters) are learned to fuse local 
spatial information of the preceding layer output(s). For this 
purpose, several convolutional kernels, which are 2-D arrays 
of neuron weights, are convolved with the 2-D input FMs. 
By conducting the multiple convolution operations between 
the input FMs and the kernels, the C-layer can represent 
the visual features at input pixel locations adaptively and 
efficiently. Figure 5 demonstrates a typical C-layer. In this 
figure, the output of the layer is a 2-D FM which is then 
connected to exactly one plane in the next P-layer.[24]

In C-layer l, nth output feature map is calculated 
mathematically as:

o f o W b
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l
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l

l m
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m,n
l
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Where fl is the activation function of layer, om
l-1  is output 

FM of the previous layer, Wm,n
l  is the convolutional 2-D 

kernel of weights from mth FM in layer (l − 1) to nth FM in 
layer l. Indeed, bn

l  is the bias term associated with nth FM 
and pn

l  denotes the list of all planes in layer (l − 1) that are 
connected to nth FM. The ⊗  indicates the 2-D convolution 
operation without any zero-padding.

Pooling layer

An s × t pooling layer (P-layer) is usually applied after 
convolutional layers. To reduce computational complexity 
and also to improve translation invariance, a pooling layer 
fuses local spatial information in a small window in the 
same FM with the max operation. For this purpose, this 
layer performs a down-sampling function (Max-Pooling 
in this study) over the nonoverlapping patches of size 
s × t pixels. As shown in Figure 6, for P-layer l, nth output 
FM is calculated as:

o f o w bn
l
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n
l

n
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The pool (.) is a max-pooling operator, reduced dimension 
of input FMs by a factor of s × t. Here, wn

l  and bn
l  are the 

scalar weights and the bias term related to nth FM in this 
layer.

Fully connected layer

This layer consists of some FC neurons. The inputs of 
these FC neurons are flattened feature maps provided by 
the previous layer. These FC units map the input values to 
a vector of scalar features. In the O-layer, the outputs of 
FC neurons are considered as the network outputs which 
indicate the predicted classes. Figure 7 shows a FC O-layer 
in CNN. Sometimes, in multiclass problems, this layer is 
followed by a “Softmax” operator to generate probabilistic 
outputs.

The output relation for an FC layer is expressed as:
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Where pl denotes the collection set of all planes in the 
previous layer that is connected to output neurons.

Convolutional neural network signal error backpropagation

In literature, for the training of the regular CNN models, 
batch error back-propagation (BP) method is used with 
mean square error objective function. Suppose that the 
training set has K input images and K desired outputs. 
Let X (K) be the kth image of training pattern, d (k) be the 

Figure 4: An example of layers configuration in a regular 6-active layer convolutional neural network
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corresponding desired output vector, and that oL be the 
actual network output. The error function is defined as:

E k
K

o k d k
k

K
L( ) = −

=
∑1

2 1

2( [ ] [ ]) � (4)

This is an error function of all network free parameters 
such as weights, kernels, and biases. By following the 
partial derivative of the CNN output error, the error 
sensitivities and gradient equations of free parameters in 
different layers are summarized in Table 1.

In this table, net and k are weighted-sum of the active layer 
and the number of 2-D input pattern, respectively. Wl is the 
layer weights’ tensor and ol is the vector of output scalar 
feature maps of the layer. Since n is the number of error 
BP paths in the layer, Wn

l  is nth 2-D kernel of the layer, and 
On

l,k  is corresponding output 2-D FM of the layer for kth 
sample. Indeed, δn

l  and netn
l  are matrices of the layer error 

sensitivity and weighted-sum of the active layer feature 
maps through nth error BP path. Moreover, in the table, 
unpool (.)  is a dimension double size increasing operator 
according to the repetitions of the rows and columns of the 
input delta map.⊗  indicates the 2-D convolution operation 
without any zero-padding. ** operator is the conventional 
2-D convolution, and p indicates kernels’ collection that is 
defined between two consecutive layers.

Convolutional mixture of experts model

Mixture ensemble of convolutional neural networks model

CNN-Mixture ensemble model[25] works based on the 

idea of the divide-and-conquer approach using the MoE 
combination method. The traditional structure of the 
MoE was introduced by Jordan and Jacob in 1991.[26] 
The MoE is an adaptive and dynamic information fusion 
method in machine learning literature. In CNN version 
of the MoE model, using a convolutional gating network 
(CGN), the output decision of different local CNNs 
(experts) are adaptively weighted to generate the overall 
result. Technically, this model benefits from an inherent 
competitive behavior for input space partitioning by CNN 
sub-modules.[6] As illustrated in Figure 8, CGN in this 
model combines the output of several local CNNs. In fact, 
the CGN performs an adaptive weighting role that makes 
the overall model run a competitive learning process over 
the local CNN expert modules.[26] For this purpose, MoE 
maximizes the probability function based on the Gaussian 
mixture model (GMM) in which each Gaussian term 
corresponds with a local CNN expert.[16]

Multi-scale convolutional mixture of expert model

As demonstrated in Figure 9, the MCME model performs 
a mechanism for combining several multi-scaled CNN sub-
modules. Inspired by visual attention systems, this design 
enables the MoE model to perform a multi-scale analysis 
of input patterns.[16] For this purpose, MCME includes a 
prior multi-scale spatial pyramid (MSSP) decomposition[27] 
layer in which a symmetric Gaussian kernel is employed 
for input image decomposition. Subsequently, the pyramid 
scales are delivered to the local CNN experts and CGN for 
information abstraction.

In contrast to the traditional MoE, suggesting a prior 
decomposition of the inputs would be useful for reducing 
the computational complexity of the overall model by 

Figure 7: Output layer with one neuron in convolutional neural network

Figure 8: The conventional mixture of L experts (classifiers) structure: a 
common signal supplies the input of all modules i.e., the experts and the 
gating network

Figure 5: A typical convolutional layer in convolutional neural network

Figure 6: A typical pooling layer in convolutional neural networks including 
an s × t sub-sampler
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dividing the task among simpler and scaled CNNs. For 
this, the CGN tries to integrate key information of different 
scales. In this model, total error cost function for kth input 
image is defined as:
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which assigned by the CGN. In addition, dk, ρi, and L are 
the desire output of the input sample xk, a cross-correlation 
penalty term, and the number of CNN experts in the model, 
respectively. Here, ρi is defined as follows:
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Here, OT is the overall output of the model. In addition, the 
strength of the above penalty is adjusted explicitly with the 
parameter  0≤ λ ≤1.

Wavelet-based convolutional mixture of expert model

The WCME model[17] is an ensemble model based on the 
MoE mechanism in the spatial-frequency domain. This 
model forces the CNN experts to consider different level 
frequency maps of the input data directly and tries to reduce 
the computational effort by the model to build high-level 
representations. Using the wavelet transform (WT),[28] the 
analysis of the image spatial and frequency characteristics 

at multiple resolutions is possible in this model. This 
model includes a one-level decomposition block of the 2-D 
Daubechies WT to partition the input space and to produce 
low pass approximation (LL), horizontal detail (LH), 
vertical detail (HL), and diagonal detail (HH) sub-bands, 
respectively. Figure 10 shows the WCME model.

In forward pass, given a pattern, wavelet-based CNN 
experts perform distinct classifications over the spatial-
frequency maps. Moreover, the outputs of the CGN 
represent specific confidences in local CNNs. For this, 
CGN simultaneously analyzes spatial information of the 
original input image and the performance of the experts. 
Finally, WCME presents an overall output based on the 
weighted sum of the all estimated probabilities by local 
experts.

Convolutional neural network training algorithm

Training of the CNN models is based on error BP technique. 
Numerous optimization algorithms can be applied to minimize 
the error gradients of different layers in the model.[11] In 
this work, for training the proposed ensemble models, the 
mini-batch Root Mean Square Propagation (RMSprop) was 
evaluated as the state-of-the-art optimization methods on 
CNN models. This optimization algorithm was introduced 
by Hinton et al.[29] to train neural structures. The main idea 
here is to divide the learning rate for network weights 
using average magnitudes of the recent and correspondent 

Figure 9: The multiscale convolutional mixture of expert structure: the 
convolutional neural network experts and gating network are fed by 
specific scales of the input pattern through a multiscale spatial pyramid 
decomposition block

Figure 10: The proposed wavelet-based convolutional mixture of expert 
model for retinal optical coherence tomography B-scan analysis. In this 
structure, all modules are trained simultaneously based on an end-to-end 
learning procedure
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gradients. Therefore, the following training parameters 
were considered for training the CNN structures: 
lr = 0.001, ρ = 0.9, batch size = 32, epoch = 50, and 
decay = 0.00005.

Performance measures

In the present paper, diagnostic performance is calculated 
and reported based on the confusion matrix and ROC 
analysis at the patient level which are: accuracy, recall, 
F1 score and average AUC values. For this purpose, 
we computed precision, recall, F1-score, and AUC 
values for each class, which were defined in a binary 
classification problem for the target classes (one-vs.-
the-rest). In a three-class classification problem, the 
negative samples were considered as the samples that 
do not exist in the considered class. Therefore, the 
overall precision, recall, F1-score, and AUC values 
were averaged over the three class labels and reported 
as the final performance measures. The measures were 
defined as follows:
•	 The Precision (or positive predictive value) is defined 

as:

	 Precision TP
TP + FP

= � (7)

	 where TP is the number of true positives and FP the 
number of false positives[30]

•	 The recall (or sensitivity, or true positive rate) is the 
below ratio:

	 Recall TP
TP + FN

= � (8)

Here FN the number of false negatives
•	 The F1 score which can be defined as:[30]

	 F1 2= =
PPV.TPR
PPV+TPR

2 TP
2 TP+FP+FN

� (9)

•	 The area under the ROC curve, or “AUC” or “Az”. A 
reliable and valid AUC estimate can be interpreted as 
the probability that the classifier will assign a higher 
score to a randomly chosen positive example than to a 
randomly chosen negative example[31]

•	 Normalized cross-correlation: The strength and direction 
of a linear relationship between CNN experts in an 
ensemble model can be indicated by the normalized 
cross-correlation factor:

	
1 1,

1 ˆ ˆNCC ( , )
2N = = ≠

= ∑ ∑
L L

i j
i j j i

corr y y � (10)

	 In the above formula, ˆiy  is a 1 × N vector of predicted 
output values generated by ith CNN expert module in a 
trained ensemble model

•	 Cohen’s kappa (κ): −1≤ κ ≤1 is a statistical measure 
of classifiers agreement between each pair of different 
estimators.[32]

Computer equipment and setup

All convolutional models in this study were implemented 
in Python 2.7 using the Theano v0.8.2[33] and Keras v1.2[34] 
Toolkits. Training of the networks was executed on an 
NVIDIA GTX 1080-8GB graphic card, Cuda Toolkit v8.0, 
and accelerating cuDNN library v5.1. Main codes and 
other CPU-based toolboxes were run with Corei7 CPU at 
3.4GHz (Intel 6800K: 15M), and 32 GB of RAM.

Optical coherence tomography diagnostic strategy

For test VOIs, the diagnostic decision was made by this 
role: if more than 15% of the B-scans were predicted 
as abnormal by the trained model, the maximum vote 
according to AMD /DME scores, determined the type of 
retinal disease at the patient level.

Experimental Design and Results
Baselines

In this research study, the following baselines were 
considered to demonstrate the proficiency of the evaluated 
strategies. This experimental setup obtains a benchmark for 
comparing the performance and complexity of models in 
retinal OCT image classification.
•	� Feature-Based Methods: As the first baseline study, 

two commonly used feature-based approaches were 
implemented. These two approaches extract LBP[3] and 
HOG[9] features at multiple scales and then use SVM 
classifier.

•	� Mixture ensemble of convolutional neural network 
(ME-CNN) model: ME-CNN, as the basic model of 
convolutional MoE[25], was considered to challenge the 
performance of the MCME and WCME models in our 
problem. This comparative analysis gets better insight 
into the suggested prior multiscale decomposition in 
the convolutional MoE model, and the proposed cost 
function as well. For this purpose, ME-CNN was 
studied using the full-scale combination of  2, 3, and 4 
CNN experts [CNN1 in Table 2].

Multi-scale convolutional mixture of expert model

Here, in order to evaluate the MCME model, a low-to-high-
resolution strategy was performed to assess the number of 
scales influencing the performance of the convolutional 
MoE. Following this goal, different scale-dependent CNNs 
were considered for local expert modules according to Table 
2. Additionally, CGN was designed based on the CNN1 
structure and "Softmax" output layer.

In this experiment, the MCME model was evaluated considering 
any combination of 2, 3, or 4 scales. So, four different structures 
were considered using CNNs in Table 2. All regular CNNs 
were made using the CONV-BN-POOL composite sequence 
and connected to two FC-BN layers. In addition, in order to 
reduce the probability of over-fitting, an optimized dropout 
factor of 70% was set for the entire FC1 layers.
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In Table 2, FM, C, P and FC stand for the featured map, 
convolutional layer, pooling layer, and fully-connected 
layer. Output activation functions for experts and CGN 
were considered as "Sigmoid" and "Softmax", respectively 
where the "ReLU" function was selected for hidden layers 
thoroughly. All modules were initialized with the "Glorot 
Uniform" method.[35] In addition, the MoE cost function 
was optimized by monitoring the control parameter λ 
between 0 and 1 with a step of 0.1 in the Eq. 5.

Multiscale convolutional mixture of expert analysis

Table 3 reports the average results of the best structures on 
Dataset1 obtained with the 5-fold CV method. According 
to the table, the MCME model with l3-l2-l1-l0 combination 
at λ = 0.2 performed better than the other methods. For this 
configuration, the AUC, precision, and recall were 0.998, 
99.39%, and 99.36% in Dataset1 respectively. In this 
experiment, the best multi-scale structure was evaluated by 
exploring the optimal λ parameter at τ = 15% in Dataset2. 
As a result, the l3 - l2 - l1 - l0 MCME model performed with 
a precision of 96.67%.

Performance evaluation of the multi-scale convolutional 
mixture with respect to the role of image denoizing and 
retinal flattening steps

In this experiment, to evaluate the reliability of the 
performance of the proposed MCME model to the 
preprocessing steps, retinal OCT ROIs/VOIs were 
prepared in four different categories, and the MCME 
model was evaluated according to the following OCT 
data categories: (I) denoized and aligned, (II) denoized 
and non-aligned, (III) without noise elimination but with 

alignment, and (IV) without any noise elimination and 
alignment.

As shown in Figure 11, the MCME model with retinal 
alignment process and without denoizing step (i.e., the case 
of “No. D-Yes. A” in the figure) outperformed the other 
configurations with a precision of 99.39% ± 1.21%. It follows 
that the prior MSSP decomposition in the MCME model is 
practically efficient when the model analyzes aligned retinal 
B-scans. When we used a prior denoizing step by the BM3D 
method, the model resulted in a precision of 96.02% ± 1.40%.

Figure 11: The effects of the BM3D denoizing and the graph-based alignment 
processes on the precision measure for the l3 – l2 – l1 – l0 multiscale 
convolutional mixture of expert model at λ = 0.2 on Dataset1. In this figure, 
the letters “D” and “A” indicate “Denoizing” and “Alignment” preprocesses, 
respectively. The results were calculated at the patent level based on the 
thresholding technique for decision-making considering τ = 15%

Table 2: Structural details of scale‑dependent convolutional experts
Module Input 

scale
Input 
size

Number 
of layers

First conv‑ 
mask size

Other conv‑ 
mask size

Max‑pooling 
size

Number of 
FMs in C 

and P layers

Number 
of FC1 

neurons

Number 
of FC2 

neurons

Number 
of free 

parameters
CNN1 l0 128×256 19 5×5 3×3 2×2 3 15 3 2993
CNN2 l1 64×128 16 5×5 3×3 2×2 3 15 3 1901
CNN3 l2 32×64 13 5×5 3×3 2×2 3 15 3 1381
CNN4 l3 16×32 10 5×5 3×3 2×2 3 15 3 997
CNN – Convolutional neural networks; FM – Feature maps

Table 3: Details and the average performance of the baselines and the multi‑scale convolutional mixture of experts 
structures on Dataset1 according to the 5‑fold cross‑validation, the threshold of 15% for decision‑making, and 

optimum λ values for mixture of experts models
Method Configuration Best 

λ
Precision (%) Performance

Recall (%) F1‑score (%) AUC NCC κ Training time (s/ROI)
Feature 
based

LBP + RBF.SVM[3] − 84.24±7.25 83.41±7.97 83.55±7.77 0.895 − − −
HOG + L.SVM[9] − 85.35±9.51 82.56±11.2 82.09±11.1 0.903 − − −

ME‑CNN[25] l0−l0−l0 0.1 98.83±1.48 98.64±1.63 98.67±1.64 0.992 0.11 −0.02 0.193
MCME[16] l3−l2−l1−l0 0.2 99.39±1.21 99.36±1.33 99.34±1.34 0.998 −0.04 0.03 0.170
li – Indicates the multiscale spatial pyramid decomposition level of the input ROI for CNNs in the models. MCME – Multiscale convolutional 
mixture of experts; ME‑CNN – Mixture ensemble of convolutional neural networks; AUC – Area under the ROC curve; NCC – Normalized 
cross‑correlation; ROC – Receiver operating characteristic; LBP – Local binary pattern; SVM – Support vector machine; RBF – Radial basis 
function; HOG – Histogram of oriented gradients; ROI – Regions of interest
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It should be noted that the model`s precision for Dataset1 
without any denoizing and retinal alignment was 
92.79% ± 2.92% at λ = 0.2. By exploring the λ parameter 
in the interval of [0,1], the precision value recomputed at 
the optimal value of λ = 0 reached to 94.23% ± 2.53%.

Wavelet-based convolutional mixture of expert analysis

In this experiment, two different structures were considered 
according to Table 4. Same as the MCME experimental 
settings, to reduce over-fitting probability during the 
learning process, a dropout factor of 70% is considered for 
all FC1 layers too.

For the comparison purpose, the ME-CNN model was also 
considered to evaluate the WT decomposition proficiency 
for feeding relevant nonaligned information to the WCME 
model. For this purpose, the ensemble of ME-CNN without 
any WT decomposition and retinal alignment was analyzed 
as the benchmark study. Table 5 summarizes the diagnosis 
performance of the evaluated methods at the patient level 
on Dataset1.

For Dataset2 (without denoising and alignment), the 
WCME resulted in a precision and AUC values of 
97.78% ± 4.44% and 0.999, respectively at λ = 0.1 and 
τ = 15% where it often misestimated a normal subject as 
AMD in this dataset.

Comparative analysis of the multiscale convolutional 
mixture of expert and wavelet-based convolutional 
mixture of expert models

In this experiment, to get a general insight into the 
performance of the evaluated CNN-ensemble models, 
10 repetitions of the unbiased 5-fold CV method were 
applied at the patient level. Hence, the generated VOIs 
were used to train and to evaluate the diagnostic efficacy 
of MCME and WCME schemes. For evaluation purpose, 
in each repetition, the Heidelberg datasets were reshuffled 

initially and partitioned into five case folds. By applying 
the augmentation methods (for aligned and non-aligned 
B-scans), training of these convolutional MoE models 
were executed. Moreover, test folds were considered and 
analyzed to get average performance results.

Table 6 reports average results of the evaluated ensemble 
models. In this table, Ave. λ for a specific model and 
configuration indicates to the mean value of the best 
Lambdas in 10 repetition of the 5-fold CV method.

Furthermore, Dataset3 was also tested as an unseen retinal 
OCT database to evaluate the generalization ability of 
the proposed models in a comparative manner. For this 
purpose, the models` topologies were modified to be 
consistent with a 2-class classification problem according 
to the nature of the Bioptigen dataset (Dataset3). Hence, 
CNN experts were modified to include 2-output neurons 
in the MCME and WCME models. Subsequently, the 
transfer-learning technique was considered to retrain the 
models for diagnosis of AMD-vs-normal classes on a 
combined dataset. The combined dataset was composed of 
the AMD and normal cases from the Dataset1 and Dataset2 
(the Heidelberg datasets). For transfer-learning, only the 
output neurons of the convolutional structures and the 
RF classifier were retrained according to the grand truths 
where all the hidden layers` weights and the biases were 
frozen. Table 7 summarizes the performance results of the 
evaluated ensemble models on Dataset3.

Discussion
As the experimental showed in Section 3, the MSSP 
decomposition was not an effective processing block in 
the CMoE models to represent nonaligned OCT data. One 
suitable strategy for achieving this goal was to apply the 
wavelet decomposition and using WCME ensemble model 
on spatial-frequency domain sub-bands. From the details 
in Table 5 in Sub-sections 3.2.2, the spatial-frequency 

Table 4: Details of the wavelet‑based convolutional mixture of experts modules structures
Module Input  

scale
Input  
size

Number 
of layers

First 
convolutional 

‑ mask size

Other 
convolutional 

‑ mask size

Max‑ 
pooling  

size

Number  
of FMs in C 
and P layers

Number 
of FC1 

neurons

Number 
of FC2 

neurons

Number  
of 

parameters
CGN l0 128×256 19 5×5 3×3 2×2 3 15 4 3988
Expert 1, 2, 3, 4 LL−LH−HL−HH 64×128 16 5×5 3×3 2×2 3 15 3 1901
FM – Feature maps

Table 5: Test performance comparison of the proposed wavelet‑based convolutional mixture of experts and the 
mixture ensemble of convolutional neural networks models on Dataset1 (without denoizing and alignment) using 

τ=15% for decision‑making
Method Configuration Best 

λ
Precision (%) Performance

Recall (%) F1‑score (%) AUC NCC κ Training time (s/ROI)
ME‑CNN[25] l0−l0−l0−l0 0.2 94.41±4.38 93.03±5.76 92.94±5.81 0.986 0.15 0.06 0.228
WCME[17] LL−LH−HL−HH 0.1 95.90±2.97 95.17±3.40 95.09±3.62 0.993 0.06 0.05 0.141
MCME – Multiscale convolutional mixture of experts; ME‑CNN – Mixture ensemble of convolutional neural networks; AUC – Area under 
the ROC curve; NCC – Normalized cross‑correlation; ROC – Receiver operating characteristic; ROI – Regions of interest
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decomposition in the WCME model (provided by 2D 
Daubechies DWT) caused a promising performance and 
time-complexity versus the comparable ME-CNN model.

Results showed that the WCME model at optimal λ = 
0.1 outperformed the ME-CNN ensemble (at optimal 
λ = 0.2) with a precision rate of 1.49% on non-aligned 
Dataset1. This indicates that WCME performs more high-
level representation than the ME-CNN. Most likely the 
analysis of the spatial-frequency domain of input data in 
the WCME model can directly and effectively solve the 
input partitioning problem in the MoE model. Additionally, 
the prior decomposition strategy is a way of defining the 
architecture of the convolutional MoE, where the number 
of local CNN experts should be the same as the number 
of WT sub-bands. In fact, according to the prior wavelet 
decomposition, there is a straightforward distinction 
between the responsibilities of the local CNN experts in the 
WCME model.

The WCME outperformed the MCME model in the 
diagnosis of non-aligned retinal OCTs in Dataset1. 
However, it could not yield a considerable performance 
same as the MCME on aligned OCTs in this dataset. 
The difference was due to the prior decomposition and 
partitioning. The experimental finding showed that, for 
analyzing aligned OCT data, the MSSP was a more 
effective unsupervised decomposition approach than the 

DWT to partition input space and to feed scale-dependent 
CNNs in convolutional MoE models.

In Section 3.3, we also analyzed the proposed models in 
a comparative manner. Hence, the convolutional MoE 
models were evaluated according to the two different study 
schemes: (I) the diagnosis of AMD, DME, and normal 
cases on the Heidelberg datasets using 10 repetition of 
the 5-fold CV method, and (II) the diagnosis of AMD, 
and normal (control) cases in an unseen Bioptigen dataset 
of 384 subjects. In study (I), the MCME model presented 
average precisions of 98.14% and 93.95% for aligned 
and non-aligned Heidelberg OCTs, respectively. Table 6 
showed that the WCME model performance outperformed 
the other ensemble models on nonaligned OCT on average. 
It offered a robust method against retinal curvatures for 
the analysis of macular OCT data. Indeed, regarding the 
training time, the WCME model located in the first place 
before the MCME and ME-CNN models.

Through this study, we found that in the MoE ensemble 
models (i.e., MCME and WCME models), best λ values for 
nonaligned OCT data were less than those ones for aligned 
retinal OCTs in general. This is probably because of the 
input variations (reduced correlation between data) that the 
non-aligned data add to the models. In this way, the model 
requires a smaller λ parameter to differentiate among CNN 

Table 6: Comparison of average classification performance for multiscale convolutional mixture of experts and 
wavelet‑based convolutional mixture of experts on the research Heidelberg datasets based on 10 repetitions of 5‑fold 

cross‑validation method with τ=15% for decision‑making
Model Configuration Dataset Curvature 

correction
Average 

λ
Performance

Precision (%) AUC Average testing time (s/VOI)
MCME[16] l3−l2−l1−l0 Set 1 × 0.08 94.68±1.47 0.961 10.9

√ 0.21 99.01±0.41 0.998
Set 2 × 0.17 94.63±2.45 0.974

√ 0.26 97.11±0.96 0.994
WCME[17] LL−LH−HL−HH Set 1 × 0.12 95.91±1.56 0.976 9.34

√ 0.18 97.40±0.78 0.995
Set 2 × 0.21 96.03±2.14 0.986

√ 0.24 96.33±1.29 0.990
MCME – Multiscale convolutional mixture of experts; AUC – Area under the ROC curve; ROC – Receiver operating characteristic; 
WCME – Wavelet‑based convolutional mixture of experts; VOI – Volume of interest

Table 7: Comparison of classification performance for multiscale convolutional mixture of experts and wavelet‑based 
convolutional mixture of experts on the unseen Dataset3 with τ=15% for decision‑making

Model Configuration Dataset Curvature 
correction

λ Performance
Precision (%) Recall (%) F1 AUC Average testing time (s/VOI)

MCME[16] l3−l2−l1−l0 Set 3 × 0.125* 92.54 93.94 93.23 0.965 0.51
√ 0.235* 96.64 97.37 97.01 0.986

WCME[17] LL−LH−HL−HH × 0.165* 94.74 94.38 94.56 0.974 0.45
√ 0.210* 94.44 95.51 94.97 0.971

*λ values were considered based on the average Lambdas in Table 7 for each model and configuration. In addition, OCT volumes including 
64 retinal B‑scans were analyzed to report average testing time. MCME – Multiscale convolutional mixture of experts; AUC – Area under 
the ROC curve; ROC – Receiver operating characteristic; WCME – Wavelet‑based convolutional mixture of experts; OCT – Optical 
coherence tomography; VOI – Volume of interest



Rasti, et al.: Convolutional mixture of experts model: A comparative study on ...

12� Journal of Medical Signals & Sensors | Volume 9 | Issue 1 | January-March 2019

experts in the intrinsic competitive process for information 
fusion.

For unseen dataset in study (II) in Section 3.3, although the 
best performance was obtained by the MCME for aligned 
OCTs with a precision of 96.64%, the WCME model 
presented the same precision on aligned and nonaligned 
data on average where its average precision was 94.59%. 
As expected, the test speed of the WCME model was lower 
than the MCME too.

By and large, spatial frequency decomposition in the 
WCME ensemble provided by the Daubechies WT 
caused the framework to have a high potential for fast 
and discriminative feature representation and diagnosis of 
macular diseases with minimum OCT image preprocessing 
requirements.

Conclusion
The goal of this paper was to explore different convolutional 
mixture ensemble methods for learning hierarchical 
features from retinal OCT images. Following this purpose, 
we considered three recent convolutional ensemble models 
called ME-CNN, MCME, and WCME networks. In addition, 
the ME-CNN model was evaluated on our database as the 
basic convolutional mixture ensemble model. To represent 
macular region at multiple scales, the MCME ensemble 
using the prior MSSP decomposition method tried to 
incorporate multiple CNNs with special fields of view 
same as the attention models. Although the MCME model 
yielded promising diagnostic performance on flattened and 
registered (aligned) retinal OCT images, its performance 
was improved intuitively on nonaligned data in WCME 
model using the 2D-Daubechies wavelet decomposition 
instead of the prior MSSP. Imposing the spatial-frequency 
information fusion was the key concept used in WCME 
model. To provide better performance insight into the 
proposed convolutional ensemble networks, we extensively 
analyzed and discussed the models. Comparative analysis 
showed that although the MCME model outperformed the 
other proposed models on aligned retinal OCT analysis, the 
WCME offers a promising performance and robust model 
on nonaligned retinal OCT data diagnosis. This allows 
having a CAD algorithm in macular OCTs which does 
not rely on the routine computerized processes such as 
denoizing, segmentation of retinal layers, and also retinal 
curvature correction (flattening). This is a significantly 
important feature when dealing with severe retina diseases 
where segmentation and alignment of pathological retinas 
are very challenging tasks.

Finally, we investigated ways to improve the performance 
of convolutional mixture ensemble models for macular 
diagnosis while showing indirectly the impact of prior 
unsupervised decomposition for the features learned at 
the subsequent layers of the models. We hope this study 
will enable future work on better modeling of the macular 

OCT abnormalities for developing useful clinical CAD 
systems.
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