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Abstract

Background: Body weight has been implicated as a risk factor
for latent tuberculosis infection (LTBI) and the active disease.

Design and Methods: This study aimed to develop artificial
neural network (ANN) models for predicting LTBI from body
weight and other host-related disease risk factors.

We used datasets from participants of the US-National Health
and Nutrition Examination Survey (NHANES; 2012; n=5,156;
514 with LTBI and 4,642 controls) to develop three ANNs
employing body mass index (BMI, Network I), BMI and HbA1C
(as a proxy for diabetes; Network II) and BMI, HbA1C and edu-
cation (as a proxy for socioeconomic status; Network III). The
models were trained on n=1018 age- and sex-matched subjects
equally distributed between the control and LTBI groups. The end-
point was the prediction of LTBI.

Results: When data was adjusted for age, sex, diabetes and
level of education, odds ratio (OR) and 95% confidence intervals
(CI) for risk of LTBI with increased BMI was 0.85 (95%CI: 0.77
—0.96, p=0.01). The three ANNSs had a predictive accuracy varied
from 75 to 80% with sensitivities ranged from 85% to 94% and
specificities of approximately 70%. Areas under the receiver oper-
ating characteristic curve (AUC) were between 0.82 and 0.87.
Optimal ANN performance was noted using BMI as a risk indica-
tor.

Conclusion: Body weight can be employed in developing arti-
ficial intelligence-based tool to predict LTBI. This can be useful in
precise decision making in clinical and public health practices
aiming to curb the burden of tuberculosis, e.g., in the management
and monitoring of the tuberculosis prevention programs and to
evaluate the impact of healthy weight on tuberculosis risk and bur-
den.

Significance for public health

Introduction

Globally, active tuberculosis is a major public health problem
and among the leading causes of death from a single infectious
pathogen.! Although the prevention and treatment of the disease
have improved significantly over the past two decades, tuberculo-
sis still responsible for more than one million deaths each year
principally in low- and middle-income countries.!? The number of
cases with latent tuberculosis infection (LTBI) is over 10 million
with approximately 1.5 million deaths — in both HIV-negative and
-positive individuals.! About 30% of the individuals exposed
to Mycobacterium tuberculosis infection develop a state of persis-
tent immune response to the pathogen and remain clinically
asymptomatic (i.e., LTBI).? Only 10% of the latter, however, may
progress to active tuberculosis (TB) disease, presenting with clin-
ical signs and symptoms of the disease.* Since subjects with LTBI
represent a reservoir for active cases; effective prediction, detec-
tion, targeted management of this early disease stage were viewed
as key components in the World Health Organization’s (WHO)
“End TB Strategy”.> This strategy aims at reducing the world
rates of TB incidence and mortality by 90% and 95%, respective-
ly, by 2035.>6 Although detection of active TB case has been the
primary public health response to TB, reducing the LTBI reservoir
is viewed as fundamental in reaching the ambitious goal of the
“End TB Strategy”.6

Acute or chronic diminution in body weight was proposed as
a risk factor that influence the development of LTBI upon expo-
sure to M. tuberculosis.” For example, recently odds ratio (OR)
for tuberculosis was reported to be 4.96 in underweight patients
and 0.26 in their obese counterparts.!? This inverse association
between LTBI and body mass index (BMI) was also depicted
when a number of studies from Hong Kong, USA, Finland and
Norway were collectively and systematically evaluated.”!!
Furthermore, 3.2-fold increased relative risk of LTBI was noted in
people with BMI <185 kg/m'? compared to those with normal

The study aims at developing artificial neural network (ANN) models to predict latent tuberculosis infection (LTBI) from body weight and other host-related
disease risk factors in the general population. Three ANNs were developed and trained age- and sex-matched subjects equally distributed between the control
and LTBI groups. The predictive accuracy of the three ANNs varied from 75 to 80% with sensitivities ranged from 85% to 94% and specificities of approximately
70%. Areas under the receiver operating characteristic curve (AUC) were between 0.82 and 0.87 with the optimal performance noted using BMI as a risk indi-
cator. Body weight can be employed in developing artificial intelligence-based tool to predict LTBI in the general population and to curb the incidence of active

tuberculosis as a major public health problem.
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weight.? Irrespective to the nature of interplay between the two
conditions and whether body weight causes or is affected by TB,
there is a general consensus that higher BMI is linked to lower dis-
ease incidence both at population and individual levels.!3 This rela-
tionship may be substantiated by observations indicating car-
diometabolic risk markers (particularly those associated with obe-
sity such as fasting insulin, total cholesterol, LDL-cholesterol,
HDL-cholesterol, and fasting triglycerides) can triple the risk of
both LTBI and TB.!416 In contrast, some evidence has emerged
demonstrating that individuals who are overweight, in close con-
tact with active TB patients and over 50 years of age are all at high-
er risk of LTBI compared to their counterparts of normal weight.!”
Furthermore, in a population-based study from rural China, over-
weight and obese subjects were shown to have higher rates of
LTBI positivity compared to individuals with normal body
weight.!8

Recently, digital technologies were proposed as effective and
efficient tools that can be integrated into the global efforts against
TB through aiding in surveillance, patient care, program manage-
ment and e-learning.!® The performance and efficiency of digital
technology, however, can be augmented by incorporating the inno-
vative approach of artificial intelligence;2° a branch of computer
science concerned with the automation of intelligent behavior.2! A
number of applications were developed in medicine utilizing the
framework of artificial neural network (ANN; an artificial intelli-
gence function that imitates the human brain in processing unstruc-
tured data) to create patterns that can be used in clinical decision
making.?? For example, artificial intelligence is already embedded
in many computer-aided diagnostic platforms and in generating
data-driven risk prediction approaches that can be straightforward-
ly deployed into clinical practices. In this respect, a deep learning
algorithm was recently developed and validated to predict and
classify clinical abnormalities and pneumonia from chest radio-
graphs at a performance level comparable to practicing radiolo-
gists?? and in the predictions of 30-day unplanned readmission,
length of hospitalization and final discharge diagnoses and/or mor-
tality.>* Within the context of tuberculosis, a number of ANNs
were recently introduced for cases of LTBI to predict the risk of
developing TB utilizing data on factors such as age, gender, HIV-
status, TB history,?> smoking status, and blood count?® as well as
for classification of the active disease.?’” To our knowledge no
study was undertaken to predict acquiring LTBI in healthy subjects
assuming exposure to M. tuberculosis. Since the association
between obesity and tuberculosis suggests a utility for BMI (and
the related cardiometabolic risk markers) in identifying subjects at
risk of LTBI upon infection'?, the objective of the present study
was to examine the relationship between the two conditions and to
use ANNSs in evaluating the value of BMI in LTBI prediction in a
population-based setting.

Design and Methods

Study population

Data were collected from the US National Health and Nutrition
Examination Survey (NHANES), a cross-sectional survey of the
noninstitutionalized civilian US resident population. The survey is
designed to collect information on the health and wellness as well
as nutrition status of the populations. It is conducted by the
National Center for Health Statistics (NCHS), Centers for Disease
Control and Prevention (CDC) and examines a nationally repre-
sentative sample of approximately 5,000 individuals of all age
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groups each year from all counties across the USA. Study methods
were all approved by the NCHS research ethics review board and
informed consent was obtained from all the study participants.2
The study subjects were selected by using a complex multistage
sampling design.28 This survey includes an in-home health inter-
view and a physical examination in a mobile examination centre
(MEC) in addition to a follow-up telephone interview. The present
study includes data from the 2011/2012 cycles of NHANES, a
cycle that includes QuantiFERON®-TB Gold In Tube (QFT-GIT)
to measure LTBI.2° Detailed methods of the NHANES survey con-
struction and sampling strategy have been previously
described.3%3! The cycles are stratified, multistage, probability
random-sample designed to represent the noninstitutionalized
house-dwelling US civilian population. In this analysis, eligible
participants were adults (>18 years) who completed the interview
and health examination and had valid QFTGIT (positive/negative)
and weight and height results. The total number of participants
included in the present study was 5,156 subjects (male:female ratio
of 1:1.06). The study participants were further divided to controls
(n =4,642) and LTBI (n = 514) subgroups.

Study measures, metabolic markers, sociodemographic
factors and other covariates

As an indicator of obesity, BMI (kg/m?) was assessed as previ-
ously described.3! International classification of adult under-
weight, normal weight, overweight and obesity statuses according
to BMI were £18.50, 18.50 — 24.99, 25.00 — 29.99 and >30.00
kg/m?, respectively as defined by the World Health Organization
(WHO).!2 Assessment for the status of LTBI was carried out by
QFT-GIT, analyzed according to manufacturer instructions
[QuantiFERON®-TB Gold (QFT®) ELISA; QIAGEN,
Germantown, MD, USA - www.quantiferon.com]. Results were
interpreted according to guidelines from the CDC for using inter-
feron-gamma release assays (IGRAs).3? Participants with positive
QFT-GIT results were classified as LTBI positive whereas partici-
pants with negative QFT-GIT results were classified as LTBI neg-
ative (controls). Individuals with indeterminate QFTGIT results
and those who self-reported they had ever been told by a health
care professional to have active TB were excluded. Samples for
QFT-GIT testing were processed at a Clinical Laboratory
Improvement Act-certified laboratory as previously described.?3

A number of metabolic markers were measured including car-
diometabolic risk markers (apolipoprotein [Apo] B1 [g/L], LDL-C
[mmol/L], HDL-C [mmol/L], T-Chol [mmol/L], T-Chol:HDL-C
ratio, triglycerides [mmol/L], and HbAlc [%]); and systolic and
diastolic blood pressure (mmHg).3%3! Diabetes status was defined
as self-reported or HbAlc >6.5%.34 Individuals who have already
been diagnosed as hypertensive, diabetic, or those who were using
antihypertensive drugs were included.?3-37 Insulin resistance was
approximated using the homeostatic model assessment (HOMA-
IR) formula [(glucose (mmol/L) x insulin (uIU/mL))+22.5].3839
Sociodemographic information was captured through responses to
questionnaires given during the structured interview portion of the
survey and included age, gender, ethnicity, education, history of
injection drug use, and ratio of family income to poverty. Ethnicity
was categorized into 4 main subgroups: White, African Americans,
Asian (i.e., Korean, Filipino, Japanese, Chinese, South Asian,
Southeast Asian, Arab, and West Asian), and Other (i.e., Latin
American or mixed racial origins). Ratio of family income to
poverty was assessed as determined by the Department of Health
and Human Services to be used as a measure of poverty.*0 Self-
reported smoking status was categorized into smokers (daily/occa-
sional) and non-smokers.*!
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Approach to the artificial neural networks

Data processing

Before training the neural network architecture, datasets were
extracted to contain either BMI, gender and age alone (basic net-
work, Network I) or in addition to HbA1C (as a proxy for diabetes,
Network II) and further addition of education (as a proxy for
socioeconomic status, Network III). These variables were selected
based on the odds ratio (OR) for LTBI with increased BMI (see
below). Third, since the ratio of control to LTBI cases was >9:1,
we applied age- and sex-matching procedure within each of the 3
networks to balance class distribution for the outcome where each
subject in the LTBI group was matched with a counterpart from the
control group that has a matching sex and age (within £5 years).
Although the latter matching criterion reduced the number of sam-
ples available for training to n=1018, it ensured class balance
known to improve model performance.??

Neural network architecture, hyperparameters and model training

The analysis was done with the Python Programming
Language (v.3.7.6; 2019, Python Software Foundation)*? using the
TensorFlow backend.** As shown in Figure 1, the feed-forward
ANN consists of an input layer, a series of hidden layers with
nodes (neurons), and an output layer. Layers are interconnected
through feed-forward links between nodes (see below).

The hyperparameters tuned for the ANN models were devel-
oped based on the Keras hyperparameter optimization frame-
work.*> ANN training was undertaken in two consecutive stages: 1)
a forward pass; and ii) a backward pass as previously described.*®
Each forward pass calculates a weighted sum of inputs x;,i=0,...,n
into a node (y) and passed through an activation function ¢ as fol-
lows:

y =a (Z?ZU MJI xi):

where W, represents the bias term. The activation function was
chosen to be the leaky rectified linear unit (LReLU) to prevent zero
gradients during backpropagation, where ReLU(x)=max(a-x,x),0<
o <1 where o was chosen to be 0.3 (the default value in Keras).
Batch normalization was used prior to application of activation
function. The ANN weights were initialized using He uniform
variance initialization (“he uniform” kernel initializer in Keras).*’
This approach accelerates the gradient descent process of learning
for a neural network that uses Rectified Linear Unit (ReLU) acti-
vations.

Following the activation function phase, the entire process is
repeated with the values from one layer acting as the input for the
next layer until the output layer is reached (Figure 1). A sigmoid
activation function was used in the final layer of the network to
scale predicted values between 0 and 1, i.e., as class probabilities.
Based on the binary classification nature of the prediction sought,
the binary cross-entropy loss function or sigmoid cross-entropy
loss (L) was used to calculate the average of class errors as follows:

N

1
Lo = -5

i=0

*log(§) + (1 —v) =log(1 —9:))

where N is the number of samples, y; is the true label for instance
i=1,...,Nand is the predicted probability from the ANN. The back-
ward pass through the ANN involves updating network weights
using backpropagation based on the discrepancy between y; and

9 and using the derivative of L(y, §) with respect to network
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parameters W used to calculate §:. Hyperparameters tuned for
each of the three developed Networks are shown in Supplement
Table 1.

Model evaluation

To evaluate the performance of our three Networks, we used
the -fold cross validation procedure with K=10,2 i.e., our protocol
separates a dataset into 10 groups or folds. Given N folds, there is
a corresponding number of validation sessions (n=10). For each
session, one of the folds is held out for testing, while the remaining
folds are used for training, until the entire dataset has been used.
Receiver operating characteristic (ROC) curves and the areas
under the curves (AUC) were then generated from the false posi-
tive and true positive rates calculated for each of the Networks as
previously described.5® For performance comparison, a series of
baseline benchmark machine learning methods were evaluated for
the three ANN models. The baseline machine learning methods
included: 1) random decision forests (RDF) method,** ii) support-
vector machines (SVMs) using the sigmoid sklearn, and iii)
logistic regression (LG) method>® to model binary dependent vari-
ables (using the default cut-off value of 0.5). The performance of
the baseline evaluation methods (i.e., specificity, sensitivity and
AUC) is shown in Supplementary Table 2 and Supplementary
Figure 1.

Statistical analysis

All analyses excluded survey weights and were stratified by
LTBI status. Frequency distributions and means (+standard devia-
tion, SD) were used to describe baseline characteristics.
Differences between controls and LTB groups for the examined
sociodemographic characteristics and levels of biomarkers and
cardiometabolic risk factors were determined using t-test and y?
tests for continuous and categorical variables, respectively.
Fisher’s exact test was used for categorical data analysis where
there was a small sample size. Multivariate logistic regression
models were used to estimate adjusted odds ratios (OR) and 95%

Input layer

Hidden layers Output layer

Backpropagation

Figure 1. Architecture of multilayer artificial neural network.
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Table 1. Characteristics of the study populations.

Males (%) 487 457
(2259) (236)
Age (years) 46,1185 55.8+15.7  <0.001
(4642) (514)
Ethnicity (%)
White 3.1 142 <0.001
(1816) (1)
Black 26.2 238
(1218) (122)
Asian 12.2 218
(564) (143)
Highest level of education (%)
Less than grade 12 19.9 36.0 <0.001
(921 (190)
High-school graduate 198 20.0
(923) (104)
Post-secondary graduate 544 413
(2530) (215)
Other 5.9 2.2
(262) (105)
Ratio of family income to poverty 24216 2.19£15 0.036
(4282) (454)
History of intravenous drug use (%) 13 17
(61) ©)
Smoking status (%)
Daily / Occasional 18.8 19.6 0.003
(872) (102
Non-smoker 209 26.
(972) (138)
Diabetes (%) - self-reported or HbAlc = 6.5%* 141 214 <0.001
(653) (121
Cardiometabolic risk markers
Systolic blood pressure (mmHg) 12318 12619 <(0.001
(4276) (4
Diastolic blood pressure (mmHg) 7113 71213
(4276) (m
Triglycerides, fasting (mmol/L) 1421 144085
(2258) (239)
Total cholesterol (mmol/L) 495108 5.04=1.04
(4553) (503)
LDL-C (mmol/L) 2924091 2.93089
(2216) (231)
HDL-C (mmol/L) 1362038 1.32+037
(4553) (503)
Total cholesterol:HDL-C ratio 387129 405130
(4553) (504)
Insulin, fasting (pmol/L) 81.6+72.0  84.1+69.9
(2174) (232)
Glucose, fasting (mmol/L) 593187 6.32+2.05
(2284) (244
HOMA-IR 21269 311839
(2172) (234) 0.0423
HbAlc (%) 5.03«110  6.03x1.23
(4630) (514)
Apolipoprotein B, fasting (¢/L) 089025  0.90+0.23
(2259) (239)
Obesity
Body mass index (kg/m?) 28.71.0 285+6.7
(4642) (515)
Underweight: BMI: <18.5 kg/m? (%) 2.18 2.33
(101) (12)
Normal weight: BMI: 18.5— 24.9 ke/m? (%) 30.63 31.46
(1422) (162)
Overweight: BMI: 25 — 29.9 ke/m? (%) 32.06 3437
(1488) (177
Obese: BMI: >30 kg/m? (%) 35.13 31.66
(1631) (163)

*Percentages are for unweighted frequency: numbers in parentheses represent the number of
assessed subjects; *significant difference between control and tuberculosis cases was carried out by
test or Student’s t-test: Only significant differences are shown; §diabetes is defined as Hb1Ac =6.5% or
self-reported cases as per survey questionnaire; LTBI, latent tuberculosis infection; LDL-C, low-density
lipoprotein; HDL-C, high-density lipoprotein; HOMA-IR, homeostatic model assessment insulin resist-
ance; HbAlc (%), glycosylated haemoglobin.
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confidence intervals (CI) between BMI and LTBI and were adjust-
ed for potential confounders. The degree of missing data was
assessed for each variable and was considered for multivariable
regression model inclusion. If a variable had >80% missing data, it
would not be fit to be included in the regression model. All analy-
ses were conducted using SPSS (IBM SPSS Statistics, ver. 21.0.
Armonk, NY, USA).

Results

A total of 5,156 respondents were examined in the present
study. The prevalence of LTBI in the study population was approx-
imately 10% (n=514). Baseline sociodemographic characteristics
and levels of cardiometabolic risk markers of the study population
are shown in Table 1, stratified by LTBI status. Individuals with
LTBI were, on average, older than their control counterparts
(p<0.001). The control group was predominantly Whites (39.1%)
whereas in individuals with LTBI, Black and Asian subjects con-
stituted >50% of the group. There was a significantly higher per-
centage of subjects with less than grade 12 education in the LTBI
compared to controls and lower percentage of those had post-sec-
ondary education. Also, the ratio of family income to poverty was
significantly lower in the LTBI group (p = 0.036). Approximately
1.7-fold significantly higher (p<0.001) prevalence of diabetes was
noted in the LTBI group than controls. No significant differences
were shown between LTBI and control group in any of the exam-
ined cardiometabolic risk markers except for the levels of fasting
triglycerides that was slightly but significantly higher in the LTBI
than controls (p<0.001).

We categorized BMI into the ranges defined by the WHO with
cut-off points of £18.50, 18.50 —24.99, 25.00 — 29.99 and >30.00
kg/m? for underweight, normal weight, overweight and obese,
respectively.'? Multivariate logistic regression models used to esti-
mate OR adjusted for potential confounders (and 95% CI) for

Table 2. Odds for latent tuberculosis infection with increased
body mass index.

No LTBI 1
(Ref)

Crude 0.94

(0.84—1.04)
Age 0.89

(0.80 —0.98) 0.038
Diabetes® (HblAc = 6.5%) 0.90

(0.82-10.97) 0.049
Age and sex 0.89

(0.80—0.99) 0.048
Age and diabetes 0.87

(0.79-0.97) 0.019
Age, sex and diabetes 0.88

(0.79—10.98) 0.026
Age, sex, diabetes and education 0.85

(0.77-0.96) 0.010

*Multivariate logistic regression models were used to estimate the adjusted odds ratios and 95% Cl
between LTBI and increased BMI; fonly significant values are shown; Sdiabetes is defined as HblAc
=6.5%; LTBI, latent tuberculosis infection; OR, odds ratio; 95% CI, 95% confidence intervals.

[Journal of Public Health Research 2021; 10:1985]



LTBI with increased BMI is shown in Table 2. Age, sex, diabetes
and level of education were the main confounders in the associa-
tion between increased BMI and lower LTBI risk. When adjusted
for age, sex and diabetes, OR for LTBI was 0.88 (95%CI: 0.79 —
0.98; p=0.026). When this model was further adjusted for the level
of education, the OR was decreased to 0.85 (95%CI: 0.77 — 0.96,
p=0.01). The addition of smoking, injection drug use and ethnicity
to the model, did not affect the odds of LTBI associated with
increased BMI (data not shown).

Based on the findings from the multivariate logistic regression
and OR for LTBI risk with increased BMI (Table 2), three ANNs
were generated from age- (+5 years) and sex-matched set of data
to employ BMI (Network I), BMI and HbA1C (Network II) and
BMI, HbA1C and education (Network III) in the prediction of
LTBI. The models were, therefore, trained on n=1018 subjects
equally distributed between the control and LTBI groups. To gen-
erate the ANN for the prediction of LTBI from obesity and related
factors, a different number of hidden units and hidden layers were
used for each of the three trained Networks (Table 3). Hidden units
and layers were, respectively, 16 and 1 in Network I; 32 and 2 in
Network II and 16 and 3 in Network III. We applied this number
of layers in calculating the accuracy, sensitivity and specificity of
the three Networks. Accuracies (%) varied from 74.3£9.2 in
Network III to 80.3+4.7 in Network 1. As shown in Table 3, the
sensitivities of the three ANNs fell between 85%-94%.
Specifically, when BMI alone was considered, the sensitivity of
Network I was 94% that declined to 90% upon the inclusion of
HbAIC and further to 85% when a socioeconomic factor such as
education was additionally included. Similarly, Network specifici-
ty varied from 60-70% based on the obesity-related factor included
in the ANN. The maximum specificity, while keeping the sensitiv-
ity above 90%, was 70% in Network I, i.e., when BMI was consid-
ered alone as a predictor.

The ROC curves for predicting LTBI are shown in Figure 2.
The ROC curves of the three Networks were all well above the
diagonal line, the line of no-discrimination, representing random

guessing. The values of the AUC were 0.86, 0.82 and 0.87 for
Network I, II and III, respectively. Values of sensitivity, specificity
and AUC of the main trained model were comparable to those from
the benchmark machine learning models generated from the RDF,
SVMs and LG methods (Supplementary Table 2 and
Supplementary Figure 1).

Discussion

This is the first evaluation of multiple artificial neural net-
works for predicting LTBI based on obesity and its related factors.
Optimal Network performance was observed when BMI was con-
sidered as a LTBI risk predictor with a model accuracy of 80%,
sensitivity of 94%, specificity of 70% and AUC of 0.86. These
ANN performance indicators were slightly decreased when dia-
betes and education were further included into the model.
Nevertheless, the two ANNs that utilized diabetes and education as

Table 3. Hyperparameters, specificity and sensitivity of the artifi-
cial neural network predicting latent tuberculosis from obesity
and related factors.

Hidden units 16 32 16
Hidden layers 1 2 3
Accuracy £SD (%) 80.3+4.7 76.3+2.3 74.3£9.2
Sensitivity (%) 94 90 85
Specificity (%) 70 66 60

*All models are age- and sex-matched and include either BMI alone (Model I), BMI and HbAIC (Model
1) or BMI, HbAIC and education (Model III).
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Figure 2. Receiver operating characteristic curves for predicting latent tuberculosis infection. The three trained artificial neural net-
works were all age- and sex-matched and trained for BMI (a), BMI and HbA1C (b) and BMI, HbA1C and level of education (c). AUC,

area under the receiver operating characteristic curve.
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LTBI risk predictors still had good performance with accuracies of
no less than 74%, sensitivity 85%, specificity 60% and AUC 0.82.
The performances obtained from the three models demonstrate a
distinct ability of ANNSs that include host-related factors (e.g., age,
sex, BMI, diabetes, and socioeconomic status) in capturing non-
linear interrelationships between the input predictive elements!$!?
as with the RDF and SVM models using a non-linear kernel >+

In this study, a priori statistical evaluation guided our design
of the ANN algorithms. The main features in our model training to
include HbA1C (as a proxy for diabetes) and education (as a proxy
for socioeconomic status) together with applying protocols for
age- and sex-matching were all principally based on findings gen-
erated from our estimates of ORs for LTBI with increased body
weight. It is apparent, therefore, that an initial statistical evaluation
of the data can be used to guide the design of ANN algorithms
regarding factor inclusion for an effective model planning and
engineering.’’ Furthermore, disregarding the effect of sex and gen-
der in ANNSs architecture would have generated sub-optimal
results, inaccurate predictions, and biased outcomes. The perfor-
mance of the ANNs observed in the present study validates this
assumption and supports the effectiveness of age- and sex- match-
ing protocols in avoiding biases in artificial intelligence used in
biomedicine and healthcare, particularly when a small set of data
is available for training, e.g., in personalized medicine.®® It is
known that factors such as ethnic origin, marital status, age, history
of TB contact, urban residency, socioeconomic status, and
metabolic syndrome-related conditions, e.g., obesity and diabetes
are all related to LTBI risk and the later development of active dis-
ease.”*93 These genetic, sociodemographic and environmental risk
factors exhibit a large inter-individual variation in the general pop-
ulation. Accounting for inter-individual differences of these factors
in artificial intelligence, e.g., via stratification and data matching,
can both circumvent model biases and facilitate the progress
towards individually tailored predictive and preventative measures
as well as personalized therapeutic choices.8

This study evaluates the utility of factors such as age, sex obe-
sity, diabetes and socioeconomic status in the prediction of LTBI
upon exposure to the disease pathogen. Our recent findings!? and
those of others’%-046¢ indicate an inverse relationship between
BMI and incidence of tuberculosis. When this relationship was
adjusted for age, sex, diabetes and education, an overall 15%
reduction in LTBI risk with increased BMI observed (OR = 0.85;
95%CI: 0.77 — 0.96, p=0.01), indicating that these factors may
influence the relationship between body weight and the risk of
LTBI. The present study demonstrates that the inclusion of these
factors into ANNs may be valuable in predicting the susceptibility
to LTBI. Although more data would have improved the predictive
outcome of the ANNs and permitted the inclusion of other disease
risk factors,>3-67 our results may shed light on some of the mecha-
nisms mediating the inverse relationship between obesity and
tuberculosis. There is a well-characterized interrelationship
between levels of cardiometabolic risk markers (e.g., insulin resis-
tance and HbA1C and levels of triglycerides) and increased body
weight or adiposity.®8 Adipocytes and the immune cells within the
adipose tissue secrete elevated levels of inflammatory mediators®®
that affect both innate and adaptive immune responses and subse-
quently the immune system capacity to combat tuberculosis and
other infectious diseases.®? Increased synthesis of pro-inflamma-
tory cytokines correlates positively with increased body weight
both in normal individuals®® and in patients with tuberculosis’! to
mediate the impact of obesity on response to infection, e.g., with
M. tuberculosis.” Persons with a prolonged persistence to tubercu-
losis (i.e., LTBI) have elevated insulin resistance and impaired
fasting glucose,’? a profile known to also emerge as BMI increas-
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es.% This complex interrelationship between obesity, car-
diometabolic factors (such as HbA1C, a diabetes risk marker), age
and LTBI was noted in a cohort of elderly individuals (>65 years
old) who were followed up for 5 years and reported 10% decreased
hazard ratio for tuberculosis per unit increase in BMI.% In addition
to age, obesity and diabetes, we used education level — within an
ANN - as a surrogate for socioeconomic status” to predict risk of
LTBI. Differences in education performance and education level
are well-known to be associated with significant differences in
socioeconomic status.”® In support, the ratio of family income to
poverty in the population examined here was significantly lower in
the LTBI group as was the corresponding level of education.
Several studies have linked less education together with low
income, crowding and high unemployment to increased rates of
tuberculosis.”7¢ Although the inclusion of this socioeconomic
factor and diabetes did not improve the LTBI predictive perfor-
mance of the ANN compared to that obtained when only BMI was
included, an overall difference of <10% was observed between the
two approaches. The small dataset and the large inter-individual
variation may have influenced the lack of significant improvement
in ANN performance upon the inclusion of additional LTBI risk
factors. Indeed, size and disparity of the trained data are two criti-
cal factors known to markedly influence artificial intelligence
models for data exploration, learning and accurate predictions.”’
With large datasets, it may be possible to include a tailored set of
risk factors — depending on the characteristics of screened individ-
ual — to facilitate generating more accurate outcomes of personal-
ized prediction.’®

A critical component in achieving the goal of the WHO’s “End
TB Strategy” is the prediction and detection of early disease
stages; i.e., LTBL.>!9 The present study demonstrates the utility of
ANN-based applications in predicting LTBI risk upon exposure to
the pathogen — taking into consideration a more personalized
rather than the one-size-fits-all approach.”® In achieving this, the
engineered ANNs maintained a high sensitivity while accounting
for the large interindividual variation of prognostic host-related
factors known to present in the general population. Artificial intel-
ligence-based applications were introduced to support efforts
against tuberculosis at several levels such as patient care (e.g.,
adhesion to medication), surveillance (e.g., recording and tracking
patient information electronically), program management (e.g.,
handling of diagnostic data) and e-learning (e.g., customizing the
approaches of knowledge acquisition).?? Additionally, artificial
intelligence can contribute to basic research. For example, the
present study further establishes the inverse relationship between
increased body weight and incidence of LTBI and substantiates the
feasibility of employing this host-related factor in disease risk pre-
diction.®19 In this context, the output of the ANN models devel-
oped here, i.e., risk prediction, is one of the main outputs expected
from artificial intelligence that also include diagnosis of medical
conditions or recommendations of treatments.*8

The present report has several limitations. The studied popula-
tion has 1:9 ratio of LTBI to control. The small number of subjects
in the LTBI may have led to a high level of heterogeneity and large
inter-individual variation. This may have also resulted in the lack
of expected significant difference between controls and LTBI
groups in a number of the risk factors assessed here, e.g., history
of intravenous drug use and a number of cardiometabolic risk fac-
tors. Furthermore, the small dataset employed in the engineering of
the ANNs may have introduced some level of imprecision to the
Networks’ outcome as artificial intelligence machine learning
methods utilize inputs of large data sets to have the capacity to
learn the desired function and improve model accuracy for a preci-
sion outcome.” To overcome this limitation, the techniques used
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here in the model training phase were structured to work with a
small set of data. We used a relatively shallow network and regu-
larization using dropout to minimize the number of effective
parameters in the model, considering the small sample size avail-
able for training,® hence enhancing the existing ANN architecture.
Another limitation is that we did not consider the interaction of
LTBI and obesity with cardiometabolic risk markers other than
HbAI1C (proxy for diabetes) despite the well-established relation-
ships between the increased body weight and other metabolic syn-
drome risk markers and related chronic diseases.?! Using a surro-
gate such as HbA1C for diabetes may have introduced measure-
ment bias (that occurs when measured data are often proxies for
some ideal features) into our ANN model.”®82 Algorithmic biases
may have also been introduced into our ANN models when educa-
tion was used as a proxy for socioeconomic status without correct-
ing for ethnicity and/or inequalities in health access.®> However,
introducing stratification of data by age and sex avoided a key bias
known to occur in artificial intelligence applications used in
biomedicine when a small dataset is available for training.’® Lastly,
the inverse relationship between obesity and LTBI observed here
merely reflects an association between the two conditions and does
not substantiate an inference to the causality. We did not explore
underlying mechanisms for the effect of body weight on the LTBI
risk such as the role and effect of malnutrition,3# adiposity,”® syn-
thesis of pro-inflammatory cytokines®> or plasma leptin.8¢ These
factors were all proposed to influence the relationship between
LTBI and body weight in human populations.

In conclusion, the present study further underlines the role of
body weight as a risk factor in LTBI where underweight is linked
to increased disease risk. Factors that may influence this relation-
ship include age, sex, diabetes and socioeconomic status. Utilizing
these disease risk factors, we developed a new risk prediction arti-
ficial intelligence-based tool for LTBI using ANN approach. The
models predicted the risk of LTBI with high accuracy and sensitiv-
ity and permitted further demonstration of the complex interrela-
tionship between body weight and disease risk. This study indicat-
ed the feasibility and effectiveness of the artificial intelligence
algorithm models as useful tools for precise decision making in
clinical and public health practices aiming to curb the burden of
tuberculosis. This tool can be introduced, for example in the man-
agement and monitoring of tuberculosis prevention or eradication
programs by evaluating the potential impact of improving nutri-
tional status on tuberculosis risk in a given population. In this con-
text, eradicating malnutrition and mitigating the effects of other
disease risk factors were estimated to further lower the global
tuberculosis incidence in 2035 by 33% than the present rate of
decline.?” Our results, however, warrant developing further studies
aiming at improving the performance of the artificial neural net-
work models engineered here either via analyzing and training
larger datasets, using ideal features and labels rather than proxies
and correcting for existing inequalities in healthcare access.
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