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Abstract

Individual-based modeling is widely applied to investigate the ecological mechanisms driv-

ing microbial community dynamics. In such models, the population or community dynamics

emerge from the behavior and interplay of individual entities, which are simulated according

to a predefined set of rules. If the rules that govern the behavior of individuals are based on

generic and mechanistically sound principles, the models are referred to as next-generation

individual-based models. These models perform particularly well in recapitulating actual

ecological dynamics. However, implementation of such models is time-consuming and

requires proficiency in programming or in using specific software, which likely hinders a

broader application of this powerful method. Here we present McComedy, a modeling tool

designed to facilitate the development of next-generation individual-based models of micro-

bial consumer-resource systems. This tool allows flexibly combining pre-implemented build-

ing blocks that represent physical and biological processes. The ability of McComedy to

capture the essential dynamics of microbial consumer-resource systems is demonstrated

by reproducing and furthermore adding to the results of two distinct studies from the litera-

ture. With this article, we provide a versatile tool for developing next-generation individual-

based models that can foster understanding of microbial ecology in both research and

education.

Author summary

Microorganisms such as bacteria and fungi can be found in virtually any natural environ-

ment. To better understand the ecology of these microorganisms–which is important for

several research fields including medicine, biotechnology, and conservation biology–

researchers often use computer models to simulate and predict the behavior of microbial

communities. Commonly, a particular technique called individual-based modeling is used

to generate structurally realistic models of these communities by explicitly simulating
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each individual microorganism. Here we developed a tool calledMcComedy that helps

researchers applying individual-based modeling efficiently without having to program

low-level processes, thus allowing them to focus on their actual research questions. To test

whetherMcComedy is not only convenient to use but also generates meaningful models,

we used it to reproduce previously reported findings of two other research groups. Given

that our results could well recapitulate and furthermore extend the original findings, we

are confident thatMcComedy is a powerful and versatile tool that can help to address fun-

damental questions in microbial ecology.

Introduction

Microbial communities are pervasive across all ecosystems and most often essential for their

functioning [1,2]. However, the vast taxonomic diversity of their members, manifold interac-

tions within communities and between microorganisms and their environments, as well as

heterogeneities (e.g. in composition and functioning) across spatial and temporal scales pose a

major challenge to understand their ecology [1,2,3–5]. On the other hand, a better sense of

how microbial communities assemble and respond to environmental conditions is essential to

fuel advance in various research fields such as medicine, biotechnology, and climate change

research [6–8].

Microbial community dynamics usually involve metabolic interactions such as the

exchange of and competition for resources [9,10]. Focusing on those interactions, microbial

communities together with the resources can be viewed as consumer-resource systems. Tradi-

tionally, consumer-resource systems are modeled using differential equations for the densities

of consumer and resource species at the level of populations [11,12]. Such population-level

equations are still applied in microbial ecology [13–15], but recent research of microbial con-

sumer-resource systems is increasingly concerned with the dynamics within populations, par-

ticularly when a spatial component needs to be explicitly considered [16–19]. Such spatially

explicit approaches can provide insight on how localized processes (e.g. cross-feeding in a

structured environment [16,18]) shape the community on a larger scale. For that, individual-

based models (IBMs) are widely applied [20].

IBMs are commonly used to investigate the dynamics of populations or communities by

simulating individual entities, which in ecology usually represent individual organisms

[21,22]. The dynamics of populations and communities then emerge from the simulated

behavior of these individuals. This bottom-up approach has been shown to be particularly use-

ful for modeling complex systems, where individuals exhibit trait variation, adaptive behavior,

or localized interactions [23,24].

The relatively well-understood nature of individual microorganisms in terms of movement,

metabolism, and reproduction (as opposed to the more complex dynamics at the level of popu-

lations and communities) makes microbial systems particularly well-suited for simulation in

IBMs. For this reason, IBMs are frequently applied to analyze different aspects of microbial

ecology and evolution [20]. The simulation model results can be analyzed on different levels of

organization, ranging from below (e.g. metabolic networks within individual microorganisms

[19,25,26]), at (e.g. movement trajectories of individuals) and above the level of individuals

(e.g. spatial distributions of entire populations or community compositions [16–18]). In addi-

tion, the resulting data can be directly compared to results derived from experiments, thus

making IBMs very powerful to link empirical observations with theory.
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IBMs can be distinguished between traditional ones and so-called next-generation IBMs

[27]. Traditional IBMs are designed and parametrized on the basis of site-specific measure-

ments (e.g. the interaction of two species is modeled according to their co-occurrence in the

modeled ecosystem). This makes these models non-generic and non-transferable to other

environments [27]. Next-generation IBMs overcome this drawback by constructing the indi-

viduals’ behavior from generic submodels that are based on well-understood principles from

physics, chemistry, physiology, and evolutionary biology [24,27]. This mechanistic approach

increases the propensity of the models to capture the organization and functioning of the real

system (i.e. structural realism) rather than only matching empirically observed patterns [24].

In microbial ecology, this is reflected in several IBMs (e.g. [19,28–30]), which result in strik-

ingly realistic model behavior and a thorough understanding of ecological mechanisms.

Besides providing specific insights in their respective fields of application, these models dem-

onstrate the general potential of next-generation IBMs for microbial ecology. However, build-

ing and using next-generation IBMs usually requires good knowledge in programming or

proficiency with specific software tools, which hinders a more widespread application by

microbial ecologists. An easy-to-use framework that facilitates the development of such IBMs

from pre-implemented, tested, generic and mechanistically sound submodels could therefore

contribute significantly to the field.

Here we present the modeling toolMcComedy (Microbial Communities, Metabolism, and

Dynamics), which constitutes a framework for individual-based modeling of microbial con-

sumer-resource systems. A central idea of this framework is to provide generic submodels

based on biological and physical principles, which we refer to as process modules and which

can be combined and parametrized in a user-friendly graphical interface, resulting in ready-

to-use next-generation IBMs. We tested the validity of our approach by usingMcComedy to

implement two specific IBMs corresponding to two different studies of spatial and evolution-

ary dynamics of microbial communities, which involved both experiments and IBMs. For

both cases, we demonstrate that the respective model constructed withMcComedy was able to

robustly reproduce the general results and capture the essential mechanisms underlying the

microbial community dynamics in the original studies. Furthermore, we demonstrate how

McComedy can be used for tackling open research questions by extending the two original

studies with additional insights.

Results

McComedy

McComedy is an open-source modeling tool for developing and using IBMs of microbial com-

munities, with a focus on consumer-resource interactions and their implications for the func-

tioning of the corresponding communities. This tool was developed to facilitate fast and user-

friendly operation as well as to grant high flexibility in model design (Fig 1). The software can

be downloaded from https://git.ufz.de/bogdanow/mccomedy, where also the source code and

a tutorial on how to get started are provided. To create a new IBM, the user can select several

process modules, which implement biological and physical processes of relevance for micro-

bial consumer-resource systems such as consumption or production of resources, resource dif-

fusion through the environment, and growth of individual microorganisms. Next, parameter

values of the selected process modules can be defined according to the specifics of the modeled

system on the basis of empirical observation or literature. Subsequently, simulations are exe-

cuted and spatially explicit data on the modeled system at discrete time points is generated.

A specific IBM created withMcComedy describes a three-dimensional environment in

which individual microorganisms (inMcComedy referred to asmicrobes) and resources
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interact. Microbes are modeled as individual objects with spherical shapes and continuous

positions in the environment. Specific types can be defined that differ in certain traits, such as

their metabolic requirement or growth parameters. Resources are not modeled as individual

particles but instead as concentrations in each grid cell of a three-dimensional grid covering

the simulated environment. Resources are different metabolites that can be consumed or pro-

duced by the microbes. If necessary, the three-dimensional environment can be reduced to

represent two dimensions by constraining the third dimension to just one layer of grid cells.

Over the simulated time span, microbes and resources are subject to the modeled processes.

These processes are encapsulated in so-called process modules, which mediate direct and indi-

rect interactions among microbes and between microbes and the resources. Each process

module simulates one component of the system dynamics, such as microbial growth or

resource diffusion. In order to facilitate a flexible yet functional model design, each process

module is implemented based on generic principles, which means that no ad-hoc assumptions

are made for particular model applications. Instead, the dynamics of each modeled microbial

system emerge entirely from the same pool of generic principles. For example, the process

module Growth transforms consumed resources into biomass under consideration of a yield

to be defined (cf. McComedy ODD protocol (S1 Text), 7.2.6 Growth). The module Replication
divides a microbe individual into two once a critical biomass has been reached (cf. McComedy

ODD protocol (S1 Text), 7.2.11 Replication). These processes are mechanistically valid regard-

less of the specific modeled system and are therefore preferable to alternatives, such as imposed

rules or ad-hoc assumptions (e.g. a microbe replicating by chance when it is close to resources).

We use the term generic principles (instead of first principles, which is also common in the

Fig 1. Intended workflow when using McComedy. The modeler designs an individual-based model (IBM) by selecting process modules under

consideration of the research question and the current understanding of the system. The parameter values that are necessary for the simulation of the

selected processes are set by the modeler, e.g. according to experimental data or literature. The resulting IBM generates spatiotemporally explicit data of

the modeled microbial system.

https://doi.org/10.1371/journal.pcbi.1009777.g001
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literature [24]), because we do not claim that our processes are completely described by scien-

tific laws, as we also use reasonable simplifications if we consider them mechanistically sound.

McComedy does not allow for imposing higher-level processes (e.g. spatial pattern formation

or density-dependent regulation of population size) as such dynamics are supposed to emerge

from the generic process modules.

The graphical user interface ofMcComedy supports a fast and user-friendly model develop-

ment. The user is guided through different development stages, starting with the selection of

process modules. According to the selection,McComedy shows tables containing the required

parameters with editable default values. The user can also specify lists of values for single

parameters andMcComedy will run simulations for every combination of these parameter val-

ues. Moreover, the user can control technical settings such as the number of replicates and the

configuration of the model output.

The model output is generated separately for each individual simulation, in order to facili-

tate comparative analyses with regard to parameter variations as well as variance analyses due

to stochasticity. For each simulation, the state of each microbe and resource grid cell is written

into result files at predefined time intervals. The aforementioned state includes spatial coordi-

nates, biomass, microbial type, resource concentration, as well as other properties, which allow

not only for a highly-resolved and spatially explicit model analysis, but also for a direct statisti-

cal comparison with a variety of empirical data (e.g. growth kinetics, spatial patterns, func-

tional responses, etc.).

The computation time for a simulation depends mostly on the size of the simulated envi-

ronment, the number of microbes included, the time step lengths of the process modules, the

termination condition, and the hardware used. Simulating a microbial community for 10 vir-

tual hours on a regular computer can take between few minutes and several days. We provide

an estimate of reference computation times on a current standard computer for different rep-

resentative parameter choices in S2 File.

For further details on the implementation and use ofMcComedy please consult the Meth-

ods section as well as the ODD protocol (S1 Text).

To demonstrate that the IBMs built withMcComedy can capture and serve to analyze the

dynamics of specific microbial systems,McComedy was used to reproduce the outcomes of

two exemplary studies of microbial systems. The studies were chosen from the literature based

on the close correspondence of their research questions toMcComedy’s intended field of appli-

cation. Thus, both studies assess spatial structuring in microbial communities as a conse-

quence of consumer-resource interactions. We compared the outcomes ofMcComedy with

the empirical and modeling results of the original studies. In the following, we show how

McComedy can help to analyze and compare the respective results and how it can provide

additional insight into the underlying mechanisms.

Example 1: Spatial organization model (Mitri et al. [17])

To fully understand the functioning of microbial communities, it is essential to identify the

drivers of spatial structuring and the diversity in their assemblage. In this context, Mitri et al.
[17] conducted experiments with bacteria to assess whether resource limitation leads to spatial

separation of different strains in an initially well-mixed, growing colony. The authors used an

IBM to identify the ecological mechanisms underlying their experimentally observed results.

In the experiment, two droplets of two differently labeled strains of Pseudomonas aerugi-
nosa, visually discriminable by green and blue color, were spotted on nutrient-poor agar. After

two weeks of incubation, the colony had grown in size and exhibited a strong pattern of inter-

mixing among the two strains in the center, yet a clear separation of green and blue bacteria in
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the outer rim of the colony. Increasing the initial resource concentration in the agar led to an

increased demixing distance, defined as the distance between the initial inoculum and the

region of spatial separation (Fig 2A, Figure 2a in [17]). Quantitatively, the observed spatial

structure of the colony was assessed by measuring the degree of heterozygosity (i.e. how much

the two strains were intermixed in a given location) across the colony (Fig 2B, Figure 2c in

[17]). The demixing distance corresponds to the distance from the initial inoculum, at which

heterozygosity showed the steepest decrease.

The correlation of resource concentration and demixing distance was hypothesized to be

attributable to the varying resource accessibility at the periphery of the colony. At high

resource concentrations, more resources diffuse into the colony, which support the growth of

a higher number of bacterial cells, thus reducing the chance of excluding one strain from

growth at a given location. Analogously, at low resource concentrations, growth of fewer bac-

terial cells is supported at the edge of the colony, resulting in a more immediate loss of the

local diversity. In population genetics, this mechanism is known as the bottleneck effect [31].

Mitri et al. [17] applied an IBM to recapitulate the empirical pattern (Figure 4a and 4b in [17]).

In agreement with the hypothesis, also in the model the demixing distance increased with

increasing initial resource concentrations. Based on the analysis of their model, the authors

thus concluded that the bottleneck effect in an expanding colony is indeed the mechanism that

most likely explains spatial separation of bacteria under resource-limited conditions.

To validateMcComedy, we created an IBM to recapitulate the results presented by Mitri

et al. [17]. In accordance with the original system, the model was specified with two types of

bacteria having exactly the same properties (except for their color) and a resource at varied,

initially homogeneous concentrations in a two-dimensional environment. Process modules

were selected to account for resource diffusion, resource consumption, microbial growth, and

replication. A detailed description of the model implementation is provided in the Methods

section and a complete list of the selected process modules and parameter values is available in

S1 File.

The model simulations generated very similar bacterial community dynamics compared to

the original study (Fig 2C and 2D) and also the spatial organization of the two strains (Fig 2C)

qualitatively matched those described by Mitri et al. [17] (Fig 2A and Figures 2a and 4a in

[17]). The resulting colonies showed a clear separation (demixing) of the two strains towards

the edge of the colony, whereby the demixing distance also increased with higher resource

concentrations. For a quantitative analysis of the demixing dynamics in response to different

initial resource levels, the measure of heterozygosity was calculated based on the exact position

of each single bacterial individual in the simulations (Fig 2D) as was done for the original

model results (Figure 4b in [17]). This analysis showed that heterozygosity dropped from

approximately 0.5 (highly mixed strains) at the inoculum to almost zero (segregated strains) at

the edge of the colony. Moreover, the demixing distance increased with initial resource con-

centrations. Quantitatively, both simulation models do not precisely match the experimental

data and show slight discrepancies between each other, which may originate from different

implementation details or choices of parameter values. However, the consistent qualitative

response of the spatial pattern to the varied resource concentrations demonstrates that also the

new model is well-suited to study the mechanisms generating such patterns. This is facilitated

byMcComedy’s capabilities to observe and quantify the characteristics of spatiotemporal col-

ony dynamics that emerge from suites of different scenarios.

To further test the potential ofMcComedy for understanding mechanisms operating in

microbial consumer-resource systems, we used it to simulate colony growth under different

resource diffusion constants, while keeping the initial resource concentration constant. This

type of analysis should additionally corroborate the explanation by Mitri et al. [17], which
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attributes the spatial separation to the bottleneck effect. Here we hypothesized that increasing

the resource diffusion constant should have an effect that is similar to increasing the initial

resource concentration. Indeed, simulating increased rates of diffusion revealed that resources

diffused deeper into the colony, thus resulting in less spatial segregation of both strains and an

increased demixing distance (Fig 3). These results confirm that the bottleneck-effect drives the

Fig 2. McComedy can reproduce the results of experiments and simulations by Mitri et al. [17] both quantitatively and qualitatively. Top views on

colonies at different initial resource (nutrient) concentrations and degree of heterozygosity over the distance to the inoculum. The unit xLB is defined as

the fold-concentration of LB medium. Blue and green colors on colony images indicate the two bacterial strains. White circles on the colony images

indicate the inoculum. Red circles indicate where the demixing area begins. Analyses withMcComedy were conducted after 45 simulated hours of

growth. A: Stylized recreation of top views on colonies at different resource concentrations according to Figures 2a and 4a in [17]. B: Stylized recreation

of the heterozygosity over distance from inoculum and corresponding demixing distances at different resource concentrations according to Figures 2c

and 4b in [17]. Axis labels of distances are not shown as they varied between experimental and simulation results and were of no consequence for the

qualitative pattern. C: Representive top views on colonies at different resource concentrations in theMcComedy IBM. D: Heterozygisity over distance

from inoculum and estimated demixing distances at different resource concentrations in theMcComedy IBM. Images A and B were recreated due to

copyright issues. Refer to Figures 2 and 4 in [17] to view the original data.

https://doi.org/10.1371/journal.pcbi.1009777.g002

Fig 3. Increased diffusion resulted in an increased demixing distance. Simulations were performed withMcComedy. Analysis after 39

simulated hours of growth. A: Top views on representative colonies as simulated usingMcComedy using different resource diffusion constants.

Blue and green colors on colony images indicate the two bacterial strains. White circles on the colony images indicate the size of the inoculum.

Red circles indicate where the demixing area begins. B: Heterozygosity over distance from inoculum and estimated demixing distance at different

resource diffusion constants.

https://doi.org/10.1371/journal.pcbi.1009777.g003
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separation of the two populations and thatMcComedy is a powerful tool to investigate the spa-

tiotemporal dynamics and mechanisms underlying experimental observations.

Example 2: Cooperation model (Momeni et al. [16])

The second example concerns research on the maintenance of cooperation in spatially struc-

tured environments, where pairs of individual microorganisms can interact repeatedly (as

opposed to a well-mixed, spatially unstructured environment). In this context, it is important

to understand how metabolic interactions affect the spatial organization of resident strains

and thus the distribution of different strategists within microbial communities. Momeni et al.
[16] performed experiments with yeast strains to investigate how spatial self-organization

affects the abundance of cooperative and non-cooperative strains. For this, they used syntheti-

cally engineered cooperative and non-cooperative strains of Saccharomyces cerevisiae, of

which the former two strains provided the resources lysine and adenine to the community. In

their study, the observation that cooperators intermix, while non-cooperators spatially segre-

gate, was explained using an IBM.

In particular, the authors designed a system with three strains of Saccharomyces cerevisiae,
two complementary cooperators and one non-cooperator. One cooperator strain G A

!L

required adenine and released lysine upon cell death, while the other cooperator R L
!A required

lysine and continuously released adenine. In contrast, the non-cooperating strain C L also

required lysine for growth, yet did not release any resource to enhance the growth of other

cells. This latter strain gained a fitness advantage from not sharing resources. After mixing the

three strains and plating them on agar at low density, individual yeast cells formed colonies

that increased in diameter, until the entire agar plate was covered after which the yeast cells

started to grow upwards. During this process, the two cooperating strains intermixed with

each other, grew well, and formed a thick layer, whereas the non-cooperators spatially segre-

gated from the cooperators and only formed a thin layer of cells (Fig 4B). In a control experi-

ment, the growth medium was supplemented with adenine and lysine, such that the two

cooperators could grow independently of the cooperation of their corresponding partners.

Under these conditions, cooperation turned into competition for space and other limiting

resources. As a consequence, none of the strains intermixed to a significant extent and the

thickness of the microbial layer was almost uniform, independent of which strain formed it

(Fig 4A).

An IBM was used to recapitulate these experimental results and examine the mechanism

that explains the observed exclusion of non-cooperating types. The simulations robustly repro-

duced the partner intermixing of the two cooperative strains (Fig 4C and 4D). Moreover, it

was shown that the spatial association of the cooperators G A
!L with their partners R L

!A

increased over time compared to their association with the non-cooperating strain C L. These

association differences were quantified by computing the association index A3D
RG=CG, which is

the ratio between the frequencies of individuals of type G A
!L in the direct vicinity of individuals

of type R L
!A, and in the direct vicinity of individuals of type C L (Fig 5A). Furthermore, the

abundance of the cooperator R L
!A relative to the corresponding non-cooperator C L (both of

which compete for lysine) increased (Fig 5C). The following mechanism drove the observed

spatial self-organization: distinct populations that reciprocally provide each other with local-

ized benefits are expected to intermix as individual yeast cells grow best in the vicinity of a

cooperating partner [32]. By the same logic, populations that provide no localized benefits to

the community are expected to segregate. The IBM demonstrated that this mechanism alone

was sufficient to generate the observed spatial patterns and no additional rules implemented

by the modeler such as e.g. partner recognition or positive chemotaxis were required.
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To verify whetherMcComedy can reproduce the results of Momeni et al. [16], a corre-

sponding model of a microbial system with two cooperating and one non-cooperating yeast

strains and two resource types was implemented inMcComedy. Simulations were performed

in a three-dimensional environment and yeast cells were initially distributed on a plane at the

bottom. Process modules were selected to account for the production, release, diffusion, and

consumption of resources, microbial growth, replication and mortality, and a weak

Fig 4. McComedy reproduces qualitative results of experiments and simulations by Momeni et al. [16]. Vertical cross-section views on layers of

yeast cells grown on media supplemented with lysine and adenine (+ LA) and on media without these resources (- LA). Red and green color indicates

the two cooperative yeast strains, blue color indicates the non-cooperative yeast strain. Simulations performed withMcComedy were visualized after 6

generations. A, C, E: Representative cross-sections of yeast cells grown with supplemented lysine and adenine (+LA) in the experiment, original IBM,

andMcComedy IBM, respectively. B, D, F: Representative cross-sections of yeast cells grown without lysine and adenine (-LA) in the experiment,

original IBM, andMcComedy IBM, respectively. Scale bar: 100 μm. Images A, B, C, D adapted from [16].

https://doi.org/10.1371/journal.pcbi.1009777.g004

Fig 5. McComedy reproduces quantitative results of simulations by Momeni et al. [16]. The quantitative metrics were assessed for

yeast cells grown on media supplemented with lysine and adenine (+ LA) and on media without these resources (- LA). A, B:

Association index of the two cooperative strains (R L
!A with G A

!L ) and the non-cooperators C L in the original IBM andMcComedy
IBM, respectively. C, D: Abundance ratio between the cooperators R L

!A and the non-cooperators C L in the original IBM and

McComedy, respectively. Note the logarithmic scales of the vertical axes. Images A, C adapted from [16].

https://doi.org/10.1371/journal.pcbi.1009777.g005
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gravitational force that kept the yeast cells at the bottom of the environment. Other resources

than lysine and adenine were not explicitly modeled but assumed to be not limiting and con-

stantly available for microbial uptake. This allows for the production of lysine or adenine,

respectively, also for non-growing individuals. A detailed description of the model implemen-

tation is provided in the Methods section and a complete list of the selected process modules

and parameter values is available in S1 File.

The IBM created withMcComedy succeeded in qualitatively reproducing the self-organized

pattern observed in both the original IBM and the experimental setup. In the competitive sce-

nario with additional adenine and lysine provided (+ LA), the microbial layer consisted of

strongly separated yeast strains, which exhibited uniform thickness (Fig 4E). In the scenario

without additional resource providing (- LA), cooperating partners intermixed and formed

thick layers, whereas non-cooperators were spatially excluded from the cooperative benefit

and only formed thin layers (Fig 4F). For a quantitative comparison, the two measures from

the original study (i) association index and (ii) ratio of the abundances of R L
!A and C L were

calculated based on the new simulation results.

Both measures match very well between the two models. The association index increases in

both cases initially, before plateauing after approximately four generations between values of

1.5 and 2 (Fig 5A and 5B). The ratio of abundances of R L
!A and C L increases in both models

exponentially (Fig 5C and 5D, note the logarithmic vertical axes). Both the original model and

the newMcComedymodel fit the empirical evidence, as the experimental setup was evaluated

once after six to eight generations, showing an increased intermixing of cooperators (cf. origi-

nal study [16]).

According to Momeni et al. [16], the intermixing of two cooperative strains depends on the

amount of the essential resources that is exchanged between strains. This means that if a coop-

erative strain reduces the release of the shared resource, it will also intermix less with its coop-

eration partners and, thus, be inferior to another, more cooperative strain, even though it

saves some of the cost for producing the cooperative benefit [16]. This finding raises a follow-

up question: How would the system behave if both genotypes R L
!A and G A

!L would simulta-

neously exhibit an increased or reduced cooperativity? UsingMcComedy, we examined this

situation. A reduced overall cooperativity in terms of resource release by both cooperative

strains led to an increased intermixing and relative abundance of cooperators (Fig 6), which

might seem counterintuitive. However, a reduced resource release results in less resources that

diffuse in the environment. Thus, resources are mostly available in short distances to the

respective producing (cooperative) individuals, which leads to a stronger localization of coop-

erative benefit, thus favoring intermixing as discussed by Momeni et al. [16]. Note that this

strong spatial intermixing due to reduced cooperation coincided with considerably slower

growth of the entire population (i.e. longer generation times, Fig 6C). For very low rates of

resource release, cooperators were not able to sustain the whole population, resulting in extinc-

tion after few generations. Therefore, the question arises, whether the model system is evolu-

tionary unstable, albeit robust against non-cooperators in the short term. This example shows

that the model implemented withMcComedy serves as a powerful tool to understand mecha-

nisms that drive spatial self-organization of microorganisms and also hints to possible chal-

lenges when evolutionary dynamics are taken into account.

Discussion

In this study, we introducedMcComedy, a tool for developing and analyzing next-generation

IBMs of microbial consumer-resource systems. The goal was to create a modeling framework

that (i) allows to accurately capture the spatiotemporal dynamics of microbial communities as
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a consequence of mechanistically sound simulations of the relevant processes, (ii) is highly

modularized to facilitate simulation of various distinct microbial systems by combining the

relevant processes, and (iii) is user-friendly and accessible to researchers without profound

programming knowledge.McComedy was successfully tested by reproducing the experimental

and model results of two published studies that analyzed the spatiotemporal dynamics of

microbial communities with consumer-resource interactions. In both cases,McComedy was

additionally applied to investigate the studied systems beyond the scope of the original publi-

cations, providing additional insights that complement the original studies. Thus, it was also

demonstrated howMcComedy can be flexibly adjusted to assess new scenarios.

We consider the good correspondence of our model results with previously published data

a consequence ofMcComedy’s generic process modules that were combined and interact in

the specific IBMs. Such simulation of standardized low-level processes and their interplay

favors the emergence of structural realism, which means that a model largely captures the

functional and organizational structure of a system [24]. As the two IBMs that we imple-

mented build on similar sets of process modules to be combined (Table 1) and adhere to

McComedy’s fundamental design concepts and assumptions (e.g. continuous spatial positions

of the microorganism individuals), they are very similar with respect to the model structure

and implementation details. In contrast, the two IBMs provided by Mitri et al. [17] and

Momeni et al. [16] are designed quite differently. For example, the former model is based on

explicit individuals representing microorganisms, whereas the latter model is based on local

Fig 6. Reduced resource release rates increase abundance and intermixing of cooperators but also their generation time.

Simulations were performed withMcComedy with varied resource release rates and all other parameter values corresponding to

scenario without supplemented lysine and adenine (- LA) in Fig 5. At low resource release rates, not all simulated communities

achieved six generations. Numbers indicate how many of the initial 10 simulations contributed to the data visualized in the

same color, starting from the respective X-position. Ribbons indicate the standard deviation. A: Association index of the two

cooperative strains (R L
!A with G A

!L ) and the non-cooperators C L. B: Abundance ratio between the cooperators R L
!A and the

non-cooperators C L. C: Mean time until respective generation time is reached. One generation corresponds to the biomass

doubling time of the simulated community.

https://doi.org/10.1371/journal.pcbi.1009777.g006
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densities of microorganisms in discrete spatial grid cells. While both models accurately repre-

sent the respective microbial system, an attempt to compare or synthesize the results of the

two studies would be hampered by the different designs used. This raises the question of how

much of the different observations can be attributed to distinct ecological processes and how

much is a consequence of the different design choices. By simulating both scenarios with

McComedy, we firstly corroborate the generality of the respective findings and secondly dem-

onstrate how the approach of building IBMs from generic process modules contributes to a

coherent understanding of different ecological processes.

In terms of providing a framework for IBMs of microbial communities,McComedy is not

the first of its kind. There are several other prominent and highly useful examples like Simbio-

tics [33], iDynoMiCS [28], NUFEB [30], COMETS [26], and Biocellion [34]. Also NetLogo

[35] is a versatile and widely used framework for individual-based modeling of, for instance,

microbial communities [36,37]. Although tailored for a broader community, these frameworks

can be challenging and time-consuming to master for non-experts. Therefore,McComedy can

be particularly useful to microbial ecologists and modelers who have little experience with pro-

gramming and cannot invest much time into learning the specifics of other frameworks. This

also offers the possibility of usingMcComedy for teaching purposes. The intuitive user

Table 1. Process modules currently available in McComedy. The columns SOM (Spatial organization model, Mitri et al. [17]) and CM (Cooperation model, Momeni

et al. [16]) indicate with an ‘X’ which process modules were integrated in the correspondingMcComedymodels. A more detailed description of each process module is pro-

vided in the ODD protocol (S1 Text).

Process module Description SOM CM

Attachment Upon physical contact, microbes can attach to each other.

CellPartition This module estimates the overlap of each microbial cell with resource grid cells. It is required by some other processes

and enhances the computation time of the simulation.

X X

ChangeGenotype Microbes change their type with a predefined probability. X

ConstantProduction Microbes produce a resource at a predefined constant rate. The resource remains in an intracellular pool. X

ConstantResourceBoundaries Resource concentrations are held constant at the boundaries of the environment (opposed to default periodic boundary

conditions).

X X

Diffusion Resources diffuse through the environment at a predefined rate. X X

Flow Microbes move in a predefined direction. This does not affect resources. X

Growth Consumed resources that have been allocated for growth are transformed into biomass with a predefined yield. X X

ImpermeableMicrobeBoundaries Microbes cannot penetrate the boundaries of the system (opposed to default periodic boundary conditions). X

InitBiofilm Upon simulation start, microbes are placed on a two-dimensional plane at the bottom of the simulated environment. X

InitCluster Upon simulation start, microbes are distributed within a sphere at the center of the simulated environment. X

InitModel This is the only obligatory process module. It attaches the initial resources and microbes to the environment and sets

the initial values of the state variables.

X X

LocalSource Resource concentrations are increased or reduced at one or multiple locations according to a predefined rate.

Lysis Microbes are removed from the environment at a given probability.

PassiveRelease Microbes release produced intracellular resources into resource grid cells that the microbes overlap with. X

PassiveUptake Microbes consume resources from grid cells that the microbes overlap with, according to Monod-kinetics. X X

ProximityManager This module groups microbes that are close to each other in order to boost searching algorithms. It is required by some

other processes and enhances the computation time of the simulation.

X X

Replication When a microbe’s biomass exceeds a predefined value, it is divided into two individuals. X X

ResourceDecay At all grid positions, the concentration of resources decays at predefined rates.

Shoving Microbes that overlap spatially push each other away. X X

Starving Microbes that are marked as starving are removed from the environment.

SubstrateUtilization Intracellular resources are reduced at a predefined rate to account for maintenance costs. The remainder is allocated to

biomass growth. If the maintenance cost exceeds the amount of intracellular resources, the microbe is marked as

starving.

X X

https://doi.org/10.1371/journal.pcbi.1009777.t001
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interface and high flexibility allow an easy entry into individual-based modeling. In this con-

text, student projects could for example constitute the reproduction of existing studies, as pre-

sented in this work.

WithMcComedy, the output data of the IBMs allows for sophisticated analysis of the sim-

ulated community dynamics across spatial scales and organizational levels. For example,

simulation data on the biomass of each individual microbe over time can be aggregated into

population dynamics (Figs 5C, 5D, 6B and 6C) and data on the spatial position of each indi-

vidual microbe can be used for spatial pattern analysis (Figs 2D, 3B, 5A, 5B and 6A). The

possibility to analyze the microbial communities across spatial scales and organizational lev-

els allows for pattern-oriented modeling, a technique where the model output is matched

with as many different empirical patterns as possible to increase structural realism and

reduce complexity [38].

Current limitations for a broad application ofMcComedy for the modeling of various

microbial systems are given by the set of available process modules. With the presented version

ofMcComedy, we provide a library of selected process modules that allow for microbial com-

munity modeling with a focus on spatially explicit interactions and consumer-resource

dynamics. At the current stage,McComedy facilitates modeling communities that consist of

sessile microorganisms (e.g. in colonies and biofilms), planktonic individuals that move ran-

domly in a liquid medium, and microbial aggregates suspended in liquid medium.

Process modules encompass diffusion and decay of resources, passive movement, attach-

ment, and shoving of microbes, different initial microbe distributions, boundary conditions, a

simple metabolism of microbes that optionally involves production and/or consumption of

resources, and microbial growth and replication. However, there are additional processes that

might be relevant in microbial communities but are not yet covered by the currently available

catalogue of process modules. Therefore, we will continue the development ofMcComedy and

provide more process modules in future versions that will allow for a wider range of microbial

IBMs. For example, we are currently working on other forms of metabolic interactions such as

direct resource exchange via nanotubes [39,40] and evolutionary mechanisms such as muta-

tion of microbial traits. Furthermore, future versions ofMcComedy will facilitate active micro-

bial movement (e.g. based on chemotaxis) and negative metabolic interactions (e.g. release of

growth-inhibitory by-products). Due to the free access to the code ofMcComedy, further pro-

cess modules could be developed by other modelers too, if they are proficient with the pro-

gramming language Java.

Another limitation ofMcComedy concerns the size of both the environment and the micro-

bial communities that can be simulated. Although, technically, there are no hard limits for

either of these, we recommend to not exceed community sizes of 2,000 individuals or environ-

ments of 50,000 grid cells to ensure reasonable computation times (see also computation times

for representative simulations in S2 File). This recommended scale allows to analyze the com-

munity dynamics at the level of individual cells, which is the intended use ofMcComedy.
Larger-scale simulations, for example on the scale of an entire test tube, should be rather con-

ducted on a more aggregated level using other modeling frameworks.

Based on the successful testing ofMcComedy with different studies from the literature and

due to the simple and fast model creation, we conclude thatMcComedy is a promising tool for

users who require next-generation IBMs of spatially explicit microbial consumer-resource sys-

tems. As shown in this work, the flexibility to model different systems does not come at the

cost of accuracy because the system dynamics emerge from the mechanistic interplay of the

generic process modules, close to what happens in the real systems. The development ofMcCo-
medy goes on and we invite all researches from fields related to microbial ecology to try apply-

ingMcComedy within their own projects.
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Methods

Implementation of McComedy
In this section, an overview over the implementation ofMcComedy is provided. For a complete

description and implementation details, refer to the ODD (overview, design concepts and

details) protocol for standardized descriptions of individual-based models [41,42] (S1 Text).

McComedy is implemented in Java 11 using the JavaFX library for the graphical user interface.

The process modules, each represented by one Java class, have been tested with the JUnit unit-

testing framework.McComedy is open-source and the code can be viewed and downloaded

from https://git.ufz.de/bogdanow/mccomedy.

A microbial community modeled withMcComedy is represented by a spatially explicit

three-dimensional environment in which resources have local concentrations in discrete grid

cells and microbe entities with a spherical shape have continuous position coordinates. At

each time step the state of the system is defined by a set of state variables that are attached to

the environment and individual microbes. The list of state variables is provided in the section

2. Entities, state variables, and scales of the ODD protocol (S1 Text).

Over simulated time, the state variables are subject to change by a set of process modules.

The process modules are repeatedly executed at a specific frequency and simulate natural pro-

cesses, which are assumed to shape the dynamics of the modeled system (Table 1). Please see

section 7. Submodels of the ODD protocol (S1 Text) for detailed descriptions. As the simulation

runs, the state of the system (i.e. values of all state variables) is saved in model output files in

predefined intervals. This enables analyses of the temporal progression of the modeled system.

Spatial organization model (Mitri et al. [17])

Corresponding to the original model by Mitri et al. [17], the system was simulated in an

approximately two-dimensional environment of size 250 μm x 250 μm x 1 μm. The model was

initialized with one homogeneously distributed resource R and two types of microbes,M1 and

M2, both of which could consume R and were also identical in all other respects except for the

name and color. From each type, 100 microbes were randomly placed in a cluster at the center

of the simulated environment (process module InitCluster).
The process modules PassiveUptake, SubstrateUtilization, and Growth were integrated into

the model to account for resource uptake and biomass growth according to Monod-kinetics

[43]. Microbes were assumed to divide into two individuals upon exceeding a critical biomass

(process module Replication). Mechanical interaction between microbes (i.e. pushing each

other away when overlapping spatially) was simulated by the process module Shoving accord-

ing to the algorithm described in [28]. The process module Diffusion was used to simulate

resource diffusion throughout the environment. The ‘agar plate’ that contained the resources

and on which the microbes grew was assumed to extend far beyond the simulation boundaries.

Therefore, resource concentrations at the boundaries of the simulated environment were

maintained at the initial resource concentration to account for diffusion into the simulated

system (process module ConstantResourceBoundaries).
Across different simulations, the parameter values for the initial resource concentration

and diffusion constant were varied. Five replicates for each variant of parametrization were

simulated, each of which differed in the initial distribution of microbes due to different ran-

dom generator seeds. However, the replicates for different variants of parametrization were

initialized and simulated with the same random generator seeds. The generic units ofMcCo-
medy for time T, distance S, resource mass M, and microbial dry mass M� were treated as sec-

onds, micrometers, femtograms, and femtograms (dry weight), respectively. A complete list of

model parameters and their values is provided in S1 File.
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Simulations were set to run for a maximum of 100 hours or until the community reached

a total abundance of 20,000 microbes. The statistical analysis was conducted at the time

point, at which the first simulation stopped, which was the case after 45 simulated hours,

when initial concentrations were varied and after 39 hours, when the diffusion constant was

varied.

Top-views on colonies (Figs 2C and 3A) were rendered with McComedy. The quantita-

tive analysis of the heterozygosity and the demixing distances was performed according to

Mitri et al. [17]. The heterozygosity was calculated by sampling boxes of 5 μm x 5 μm along

transects from the initial inoculum to the edge of the colony and counting individuals of

M1 and M2 in each box. The heterozygosity as a function of distance from the inoculum is

given by

H xð Þ ¼
2

F

XF

φ
f1 x; φð Þð1 � f1ðx; φÞÞ;

Where f1(x, φ) is the proportion of microbes M1 at distance x from the inoculum location

in transect φ and F is the number of transects. The demixing distance is defined as the

point where dH
dx , the derivative of the heterozygosity function, is minimal.

Cooperation model (Momeni et al. [16])

The microbial system was simulated in a three-dimensional environment of size 480 μm x

100 μm x 240 μm. Two resources, L and A (representing lysine and adenine, respectively) and

three types of microbes,R L
!A, G A

!L , and C L, were added to the environment. The model was

initialized with either empty resource grid cells for the scenario in which lysine and adenine

were not provided (–LA) or with inexhaustibly high resource concentrations (i.e. 9999999

fmole/125 μm3) for the scenario in which lysine and adenine were provided (+ LA). Initially,

115 microbes of each type were randomly distributed on a two-dimensional plane (orthogonal

to the Y-axis) close to the bottom of the simulated environment (process module InitBiofilm).

This plane represented the surface of the agar, on which microbes were growing. Note that in

the original study [16], vertical positions are described by Z-coordinates, whereas inMcCo-
medy, vertical positions are described by Y-coordinates.

Microbes were restricted from movement below the surface of the agar by the process mod-

ule ImpermeableMicrobeBoundaries and a weak gravitational force was simulated by moving

the microbes towards the agar surface with the process module Flow. As in the previous exam-

ple, resource consumption and metabolism were modeled with the process modules Passi-
veUptake, SubstrateUtilization, and Growth. Additionally, resource overproduction and

release were integrated with the process modules ConstantProduction, PassiveRelease, and
ChangeGenotype. To account for mortality, the strain R, which constantly produced adenine,

changed with a low probability to a metabolically inactive type. Strain G, which released lysine

only upon cell death, was modeled such that it did not produce lysine when active. In the case

of mortality (also occurring with a low probability) it first changed to a temporary type that

produced a high amount of lysine and after one more time step to a metabolically inactive

type. The process module Diffusion was used to simulate resource diffusion throughout the

environment. The boundaries in X- and Z-direction were kept periodic (McComedy default)

and resource concentrations at Y-boundaries were maintained at the initial concentration to

simulate open boundaries (process module ConstantResourceBoundaries).
10 replicates were simulated for every variant of parametrization, each of which differed in

the initial distribution of microbes due to different random generator seeds. However, the rep-

licates for different variants of parametrization were initialized and simulated with the same
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random generator seeds. The generic units ofMcComedy for time T, distance S, resource mass

M, and microbial dry mass M� were treated as seconds, 5 micrometers, femtomoles, and 10

picograms (dry weight), respectively. A complete list of model parameters and their values is

provided in S1 File.

The simulations ran until the community reached a total abundance of 22,080 microbes

(i.e. 6 doublings of the initial 345 microbes) or until all microbes were dead. The analyses were

performed at all time points at which the community size doubled (i.e. when the community

abundance was closest to 345; 690; 1,380; 2,760; 5,520; 11,040; and 28,080 microbes,

respectively).

Vertical cross-section views (Fig 4E and 4F) were rendered withMcComedy. The ratio

between two types was calculated with respect to the biomass of each type. The association

index is given by

A ¼

1

n R L
!A

PnY1

i að R L
!Ai;G

 A
!L Þ

1

nC L

PnY3

j aðC Lj; G A
!L Þ

;

where nR L
!A

is the number of microbes of type R L
!A that are in proximity of at least one microbe

of a different type and aðR L
!Ai;G

 A
!L Þ is the number of microbes of type G A

!L that are in proxim-

ity of the i-th microbe of type R L
!A (microbes of type R L

!A that have no microbes of a different

type in their proximity are excluded). Here, ‘in proximity’ means a maximum distance of

7.5 μm between the midpoints of the two microbes, which includes almost only directly adja-

cent microbes. The variables in the denominator are defined analogously.

Statistical analysis

Statistical analysis was conducted with R 4.0.3 [44]. Plots were created with the package

‘ggplot2’ [45]. R-scripts are provided in S1 Scripts.
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