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Effective intrahepatic CD81 T-cell immune responses
are induced by low but not high numbers of
antigen-expressing hepatocytes

Aaron Ochel1,4,5, Marcin Cebula1,5, Mathias Riehn1, Upneet Hillebrand1, Christoph Lipps1,
Reinhold Schirmbeck2, Hansjörg Hauser1 and Dagmar Wirth1,3

Liver infections with hepatotropic viruses, such as hepatitis B virus and hepatitis C virus are accompanied by viral

persistence and immune failure. CD81 T cells are crucial mediators of the intrahepatic antiviral immune response.

Chronic infections of the liver and other organs correlate with T-cell exhaustion. It was previously suggested that high

antigen load could result in T-cell exhaustion. We aimed at elucidating the impact of different intrahepatic antigen

loads on the quality of CD81 T-cell-mediated immunity by employing an infection-free transgenic mouse model

expressing ovalbumin (Ova) as the target antigen. Adoptive transfer of OT-I cells induced a transient intrahepatic immune

response toward both high and low Ova levels. However, antigen clearance was achieved only in mice expressing low

antigen levels. In contrast, T cells exposed to high antigen levels underwent exhaustion and became depleted, causing

antigen persistence. Moreover, when functional T cells were exposed to high intrahepatic antigen levels, a complete

transition toward exhaustion was observed. Thus, this study shows that the antigen expression level in the liver correlates

inversely with T-cell immunity in vivo and governs the efficiency of immune responses upon antigen presentation.
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INTRODUCTION

Antigen-specific CD81 T cells are crucial mediators of the

antiviral responses to hepatitis B virus (HBV) and hepatitis C

virus (HCV). They recognize target cells that present viral epi-

topes in the context of major histocompatibility complex

(MHC) class I molecules and induce their killing. If such an

acute response is established, clearance of virus infected cells

can be achieved.1,2 However, in patients who are chronically

infected with either virus, antigen-specific CD81 T cells dis-

play an exhausted phenotype, as indicated by the expression of

inhibitory surface markers and the loss of effector function.3,4

Induction of T-cell exhaustion is not restricted to the liver but

is also observed in other organs, as a consequence of bacterial or

viral infections.5,6 Such functionally impaired T cells can result

in the establishment of a chronic infection state, which is char-

acterized by viral persistence.6–9 Several mechanisms contrib-

ute to the failure of an immune response.10 Some studies

suggest that viral load might impact T-cell potency. In clinical

studies evaluating chronically HIV-infected patients, less

exhausted T cells were found when the antigen load was

reduced, i.e., upon successful antiviral therapy.11,12 These

observations suggest that CD81 T-cell exhaustion not only is

a consequence of a failure in T-cell priming but also is affected

by the antigen level. This is supported by studies showing that

high levels of antigen presented by dendritic cells favor chronic

progression rather than acute clearance.13,14 However, these

studies relied on antigen presentation as a result of a previous

infection. Thus, the immunomodulatory effects caused by the

infection process cannot be excluded.

T-cell activation inside the liver remains controversial,

because both the induction of tolerance that is mediated

by T-cell deletion15,16 and the development of full effector
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function have been observed.17 One reason that tolerance is

induced in the liver may be its immunosuppressive envir-

onment. This is due to the liver’s physiological role and its

continuous exposure to a large amount of food-derived neo

antigens, which enter the liver by the portal vein and are pre-

sented by various cell types.2,18 As a consequence, the liver

represents various antigenic stimuli that can potentially activ-

ate immune responses. At the same time, the liver is rich in cells

that shape immunity.19 High anti-inflammatory cytokine

levels drives the liver to create a tolerogenic rather than an

immunogenic environment.20–24 Furthermore, fenestration

of the endothelial layer allows for direct contact between

naı̈ve CD81 T cells and hepatocytes, leading to full activation

of CD81 T cells, even in the absence of CD41 T cells.17,25–27

These unique immunological properties of the liver require a

delicate balance of mechanisms that regulate the onset of

immunity. Moreover, this environment also contributes to

the impaired immune response to pathogens that exclusively

infect hepatocytes, in particular HBV and HCV. Indeed, these

pathogens frequently cannot be cleared, leading to chronic

infections.

In this study, we employed a recently established Tamoxifen

(Tam)-inducible transgenic mouse model28 to investigate

whether the number of antigen-presenting hepatocytes influ-

ences intrahepatic T-cell activation. In this model, the express-

ion of a synthetic intracellular protein encoding immunogenic

ovalbumin (Ova) antigen peptides is restricted to low or high

hepatocyte numbers, resulting in low or high liver antigen load,

respectively. Thus, we mimicked the conditions of T-cell

activation in the early stages of viral infection, in which antigen

presentation is predominantly mediated by hepatocytes.2 We

demonstrate that only T cells exposed to low antigen levels are

capable of eradicating their target cells, whereas a higher anti-

gen load induces severe T-cell exhaustion. The results suggest

that elevated antigen expression levels significantly impair the

formation of a potent intrahepatic immunity and that the level

of antigen in the liver might be the factor that balances success-

ful immunity with tolerance in the liver.

MATERIALS AND METHODS

Ethics statement

All of the animal experiments were performed in accordance

with the German Animal Welfare Law and were approved by

the local government of Lower Saxony.

Mouse experiments

The Ova mice encoded a synthetic fusion protein comprising

an Ova fragment (aa 246-353, including the well-characterized

Kb- and Ad/b-binding epitopes, with an isoleucine to valine

change at position 258). Expression was induced upon

Cre-mediated inversion of the cassette (see Supplementary

Figure S1 and Ref. 28). Importantly, the synthetic Ova peptide

is not secreted or cross-presented by professional antigen-

presenting cells (APCs).28 Mice were bred and maintained

in individually ventilated cages under specific pathogen-free

conditions in an in-house animal facility. All of the experi-

ments were performed in mice aged 5–16 weeks. The Tam

application (50 mg; Ratiopharm, Ulm, Germany), alanine ami-

notransferase (ALT) measurements and OT-I transfer are

described elsewhere.29 For the adoptive transfer experiments,

spleen-derived naı̈ve OT-I CD8 T1 cells were isolated from

OT-I transgenic donor mice (C57Bl/6 background) using a

CD8a1 T-cell isolation kit (Miltenyi Biotec, Bergisch

Gladbach, Germany) according to the manufacturer’s pro-

tocol; however, phosphate-buffered saline (PBS)/1% fetal

bovine serum buffer was used instead of MACS buffer. The

quality and purity of the isolated OT-I cells was assessed by

fluorescence-activated cell sorting analysis (Supplementary

Figure S2a). For pre-activation of the OT-I cells, splenic cells

from OT-I mice were isolated, as described above and cultured

for 48 h in the presence of 3 mg mL21 SIINFEKL-peptide

(Supplementary Figure S2b). Afterwards, OT-I cells were sepa-

rated using a CD8a1 T-cell isolation kit (Miltenyi). Cell num-

bers were determined using a guava easy Cyte Flow Cytometer

(Merck, Millipore, Darmstadt, Germany).

In vivo CTL

Splenocytes from C57Bl/6 mice were pulsed with 10 mg of Ova

peptide for 45 min at 37 uC. Labeling of CFSEhi and CFSElo cells

was achieved by incubation with 3.4 3 1024 mM and 3.4 3

1025 mM carboxyflouresceinsuccinimidyl ester (CFSE) (Cell

Trace Cell Proliferation Kit, Invitrogen, Life Technologies,

Darmstadt, Germany), respectively, for 10 min at 37 uC. The

cells were washed twice with PBS, and 2 3 107 cells of each cell

population were mixed in 100 mL and transferred intravenously

to the recipient mice. The cytotoxicity percentage was calcu-

lated as described elsewhere.30

RNA isolation and qRT-PCR

RNA isolation and qRT-PCR were performed as described

previously.29 Quantification of Ova was performed with pri-

mer pairs 1a (59-CAGGCACTCCTTTCAAGACC-39) and 4a

(59-GCGGTTGAGGACAAACTCTT-39) and normalized to

albumin expression (Forward-primer: 59-GACAAGGAAAGC

TGCCTGAC-39/Reverse-primer: 59-TTCTGCAAAGTCAGC

ATTGG-39).

Flow cytometry

To gate the OT-I cells, the isolated immune cells were stained

with fluorescently labeled monoclonal anti-mouse antibodies:

anti-CD8-PerCPCy5.5 and anti-Thy1.1-PE or APC. The

CD81/Thy1.1 double positive cells were further analyzed by

staining with anti-PD-1-PE or FITC; anti-Lag-3-PE; anti-

CD44-APC and anti-CD62L-PeCy7 or APC (eBioscience,

Frankfurt a.M., Germany). Antibodies were diluted in 2% fetal

calf serum (FCS) in PBS. Prior to staining, blocking of the Fc-

receptor (CD16/CD32) was performed. To investigate the

effector cytokine expression levels, the cells were adjusted to

a concentration of 1 3 106 cells mL21 if they were isolated from

the liver or to a concentration of 5 3 106 cells mL21 if they were
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isolated from the spleen. Cells were cultured in RPMI (5% FCS,

1% glutamine, and 1% Pen-Strep) at 37 uC in the presence of

2.5 mg mL21 SIINFEKL peptide for 7 h. Two hours after

the initial culture, cytokine secretion was impaired by adding

3 mg mL21 Brefeldin A to the assay to block secretion of the

Golgi apparatus. Following the cell surface staining, the cells

were fixed with a Cytofix/Cytoperm kit (BD Biosciences,

Heidelberg, Germany) and stained with anti-TNFa-APC and

anti-IFNc-FITC. The effector cytokine expression of the

CD81/Thy1.11 cells was analyzed and compared with

CD81 single positive cells. Flow cytometry was performed

using an LSR II (Becton Dickinson, Heidelberg, Germany),

and the analysis was conducted with Flow Jo software

(TreeStar Inc., Oregon, USA).

Statistical analysis

The data are represented as the mean of the biological replicates

from the mouse groups that are specified in the figure legends.

The standard deviations are indicated. The Mann–Whitney U

test was used for all comparisons of two data sets. Significant

differences between the sets were considered for the following

p-values unless indicated otherwise: *p f 0.05; **p f 0.01;

***p f 0.001; and ****p f 0.0001.

RESULTS

CD81 T-cell-mediated clearance depends on the antigen

load in the liver

To study the CD81 T-cell-mediated immune responses in the

liver toward different antigen loads in the absence of infection,

we employed a transgenic mouse model, Ova 3 CreERT2.29

Ova 3 CreERT2 mice carry a single copy of a loxP-flanked,

inversely oriented cassette that encodes an antigenic Ova frag-

ment fused to GFP under control of the ubiquitously active

Rosa26 promoter. CreERT2 is expressed from the endogenous

albumin promoter.31 A single application of Tam results in

transient Cre activation in hepatocytes and reversible inversion

of the antigen-expressing cassette. Upon clearance of Tam, a

fraction of the cells displays continuous antigen expression,

whereas the remaining cells are devoid of antigen presentation

(Figure S1 and Ref. 28). This was confirmed with single cell

luminescence microscopy that was based on the Luc X CreERT2

mouse model displaying a homologous cassette design (Supple-

mentary Figure S1b). Ova qRT-PCR was used to specifically

quantify the functional sense mRNA expression in the livers

of the Ova 3 CreERT2 mice. Cre-deficient Ova single transgenic

control mice displayed no ova expression (Supplementary

Figure S1a). In the Ova 3 CreERT2 mice, low expression of

ova sense mRNA was observed in the absence of Tam, which

corresponded to a small fraction of hepatocytes expressing the

antigen and appeared to result from basal Cre activity

(Supplementary Figure S1b and Ref. 29). We further deter-

mined the level of sense mRNA expression in the Ova 3

CreERT2 mice. We applied a single dose of Tam and waited

21 days until Tam was cleared, resulting in a fixed state of the

antigen encoding cassette. A five-fold increase in the sense

mRNA levels were detected compared with the non-treated

mice (Supplementary Figure S1c). In the following, we refer

to the basal antigen expression in the Ova 3 CreERT2 mice as

a ‘low antigen expression’ level and the Tam-induced state as

‘high antigen expression’.

Previous characterization of the model confirmed that the

Ova antigen is presented via MHC class I molecules and is

recognized by OT-I cells.28,29 Importantly, no OT-I cell activa-

tion was observed upon in vitro co-culture with non-parenchy-

mal cells (Supplementary Figure S3a). Furthermore, early

T-cell activation was restricted to the liver (Supplementary

Figure S3b). Additionally, no change in the CD41 T-cell num-

bers was observed upon treatment of the Ova 3 CreERT2 mice

with Tam (data not shown). Together, these data exclude aber-

rant antigen expression or the accidental release of antigen that

might cause (cross-)presentation in other organs before the

induction of CD81 T-cell-mediated immunity. To investigate

the CD81 T-cell-mediated immune response to low and high

antigen levels, 5 3 106 naı̈ve antigen-specific OT-I cells were

adoptively transferred into untreated and Tam-treated Ova 3

CreERT2 mice at day 21 upon initial Tam application. The

CreERT2-deficient Ova mice, which were devoid of antigen

presentation, were used as controls. Serum ALT levels were

analyzed to monitor hepatocyte damage over time. After

adoptive transfer, the serum ALT levels increased in both the

Tam-treated and untreated Ova 3 CreERT2 mice. The liver

damage in both groups peaked at day 3 and decreased to

physiological levels by day 6 (Figure 1a). Interestingly, the liver

damage was significantly higher in mice-presenting low anti-

gen levels (Figure 1a).

We investigated whether the difference in the extent of

acute hepatitis (as indicated by the ALT levels) was reflected

by a different capacity of cells to clear the Ova antigen. To

this end, the antigen expression levels in the liver were deter-

mined on day 13 by qRT-PCR. Interestingly, the Ova level

within the liver was unaltered in the high antigen-expressing

mice upon adoptive transfer. In contrast, adoptive transfer of

OT-I cells into Ova 3 CreERT2 mice with low antigen

expression resulted in complete elimination of Ova-expres-

sing hepatocytes (Figure 1b). Notably, clearance of high anti-

gen load was also not achieved upon repeated (53) transfer

of 5 3 106 cells, suggesting that the lack of clearance was not

a result of limiting the T-cell numbers (data not shown). We

further tested OT-I cells that were pre-activated in vitro prior

to adoptive transfer. However, under these conditions, the

specific T cells also failed to clear the high antigen load

(Supplementary Figure S4), excluding the possibility that

the lack of cytotoxic activity was a result of inefficient prim-

ing by hepatocytes.

High antigen expression within the liver is accompanied

with low CD81 T-cell numbers and severe exhaustion

To explore the mechanisms that control the T-cell response

outcomes in high and low antigen conditions, we investigated

the fate of antigen-specific T cells upon intrahepatic activation.

For this purpose, we determined the number of intrahepatic T

cells. On day 3, i.e., at a time point when differences in acute
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hepatitis were observed, the total non-parenchymal cell num-

bers within the liver and lymphocytes in the spleen were not

significantly different between the high and low antigen-

expressing mice, whereas the intrahepatic OT-I cells in the high

antigen-expressing mice were slightly elevated (Figure 2a and

Supplementary Figure S5a). However, analysis of the intrahe-

patic cell numbers at day 13, i.e., a time point at which clear-

ance of low levels of antigens was observed, revealed

significantly increased liver-resident non-parenchymal cell

(NPC) numbers in the low but not high antigen-expressing

mice (Figure 2a). This was accompanied by increased anti-

gen-specific CD81 cells, as determined by examination of

the Thy1.11 OT-I cells. These cells were present in the liver

of low antigen-expressing mice, whereas the corresponding

numbers in the high antigen-expressing mice were significantly

reduced (Figure 2b). At the same time, in the spleens of the high

antigen-expressing mice, comparable total lymphocyte counts

were observed, but significantly lower numbers of OT-I cells

were detected (Supplementary Figure S5b).

To determine whether the observed hepatitis was due to T-

cell activation, we investigated the phenotype of the OT-I cells

during the acute phase of early activation. The marker CD69 is

one of the earliest de novo synthesized molecules upon T-cell

activation.32,33 Upon adoptive transfer on day 3, CD69 was up-

regulated when T cells were exposed to both high and low

antigen levels. In line with the more pronounced liver damage,

CD69 was expressed to a greater extent in liver-localized OT-I

cells from low antigen-expressing mice, whereas no differences

were detected in the spleen (Figure 2c and Supplementary

Figure S5c). On day 13, when the low amount of antigen was

cleared, CD69 not only was still expressed on the OT-I cells

from the low antigen-expressing mice but also was significantly

increased on localized liver cells that were exposed to high

antigen levels (Figure 2c). This suggested that ongoing trigger-

ing of T cells in response to high antigen levels was occuring.

Notably, the splenic OT-I cell CD69 expression levels were not

different. These results suggest that the fate of antigen-specific

CD81 T cells is determined and fixed at early time points after

antigen exposure.

To elucidate why the activated T cells could not overcome a

high antigen load, we characterized the cells for exhaustion

markers. T-cell exhaustion correlates with the enhanced

expression and high abundance of the surface markers PD-1

and Lag-3.34–36 Importantly, PD-1 and Lag-3 up-regulation

was found on liver-localized OT-I cells in high antigen-expres-

sing mice, whereas the OT-I cells that were primed under low

antigen conditions showed that the expression levels of both

markers were comparable to the Ova single transgenic, non-

expressing control mice (Figure 2d–e). This was in contrast to

the day 3 results, when both markers were expressed at com-

parable levels in the liver and the spleen (Figures 2d and S5d–e).

Evaluation of the splenocytes on day 13 revealed that the OT-I

cells that were primed in the high antigen level-expressing mice

showed an up-regulation of both exhaustion markers, whereas

the OT-I cells in the low antigen-expressing and Ova single

transgenic control mice were low for PD-1 and Lag-3 express-

ion (Figures 2d–e and S5d–e). These results suggest that a high

antigen load in the liver induces systemic exhaustion of anti-

gen-specific CD81 T cells.

Low antigen load in the liver induces effector T cells

We asked to what extent the activated OT-I cells produced

effector cytokines. We re-isolated adoptively transferred OT-I

cells from the livers of high and low antigen-expressing mice on

days 3 and 13 and stimulated them with Kb/Ova 257-264 pep-

tide to induce cytokine expression. Quantification of effector

cytokine release by liver resident OT-I cells at day 3 clearly

showed significantly reduced secretion of IFNc and TNFa
from the intrahepatic and splenic OT-I cells when compared

with the low antigen-primed cells or even non-activated cells
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Figure 3 T-cell effector function upon adoptive transfer. (a) On day 3 after adoptive transfer, the OT-I cells were isolated from the liver and
stimulated in vitro with Ova peptide to induce effector cytokine expression. Seven hours after stimulation, the cells were stained for the effector
cytokines IFNc (upper panel) and TNFa (lower panel). The expression levels were compared with those of Ova single transgenic control mice. (b)
Quantification of IFNc/TNFa double positive OT-I cells isolated from the livers and spleens of Ova 3 CreERT2 mice on day 3. (c) Investigation of
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from the Ova single transgenic control mice (Figure 3a and

Supplementary Figure S6). This suggested an impairment in

the high antigen-primed OT-I cells. Of the cytokine-producing

cells, 2% of the intrahepatic and 4% of the splenic OT-I cells

were double positive for IFNc and TNFa at day 3 (Figure 3b).

This phenotype was confirmed on day 13, because the OT-I

cells from the low antigen-expressing mice had a higher cap-

ability of producing IFNc and TNFa than the OT-I cells of the

high antigen-expressing mice (Figure 3c). Moreover, approxi-

mately 10% of the liver resident and 20% of the splenic OT-I

cells were double positive for TNFa and IFNc when they were

primed under low antigen conditions, indicating a polyfunc-

tional phenotype. In contrast, the cells that were primed with a

high antigen load did not show this phenotype (Figure 3d).

These results indicate that the fate of intrahepatic CD81 T cells

is determined at early time points by the antigen load, because

it not only influences the survival of antigen-specific T cells, but

also influences their capability to produce effector cytokines.

We investigated whether the OT-I cells that were formed

upon exposure to low antigen were protective and reactive

against Ova-presenting target cells in the periphery, by employ-

ing an in vivo cytotoxic T lymphocyte (CTL) assay. After adopt-

ive transfer of the naı̈ve OT-I cells to either the low- or high

antigen-expressing Ova 3 CreERT2 mice, the remaining OT-I

cells were challenged by transfer of Kb/Ova 257-264 peptide-

pulsed splenocytes. In accordance with the previous data, a

significantly enhanced percentage of target cell killing was

observed exclusively in mice with low antigen levels, when

challenged at days 13 and 27 (Figure 3e and Supplementary

Figure S7).

T cells that are activated by low antigen expression are

depleted upon subsequent exposure to high antigen levels

in the liver

We next asked whether T cells that acquired a functional cyto-

toxic phenotype by low antigen conditions were also able to act

efficiently once exposed to high levels of antigen. Thus, the OT-

I cells were adoptively transferred into Ova 3 CreERT2 mice

with low antigen expression (day -13, Figure 4a). When the low

antigen expression was cleared (day 0), we induced high anti-

gen expression by Tam administration and followed the liver

damage by monitoring the ALT levels (Figure 4a). Importantly,

the increased serum ALT level was not detectable 3 days after

Tam application (Figure 4b). We evaluated the clearance effi-

ciency by determining the Ova expression level. In agreement

with the absence of hepatitis, the antigen expression levels

remained unchanged and were comparable to those of the

Tam-treated mice in the absence of T cells (Figure 4c). This

indicated that OT-I cells that had been primed in low antigen

conditions and that had successfully cleared low numbers of

antigen presenting hepatocytes were not able to clear elevated

numbers of antigen-presenting hepatocytes, although the

intrahepatic OT-I cells were present in significantly in-

creased numbers (Figure 4d). Phenotypic characterization of

these cells showed a significantly higher expression of the

exhaustion marker PD-1, suggesting that the induction of high
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intrahepatic antigen expression drives T-cell exhaustion in

these conditions (Supplementary Figure S8). Moreover, chal-

lenging the mice with the Ova peptide-pulsed target cells on

day 14 upon Tam administration led to efficient killing in the

mice that did not receive Tam (Supplementary Figure S9).

Thus, the high antigen load could not be reduced even if the

OT-I cells that were successfully primed in vivo.

Together, these results indicate that high antigen levels in the

liver downmodulate intrahepatic immunity.

DISCUSSION

It is well accepted that the tolerogenic milieu of the liver has a

severe impact on the outcome of T-cell responses. Different

reports have described the fate of T cells upon priming in the

liver and have demonstrated poor effector functions and the

subsequent deletion of effector T cells,15,37,38 a phenomenon

that is attributed to the tolerogenic environment of the liver.

Once T cells are activated and mediate killing of an antigen-

presenting hepatocyte, the antigens are subsequently exposed

via cross-presentation by professional APCs, such as Kupffer

cells and liver sinusoidal endothelial cells (LSECs), which can

efficiently activate T cells.

In this study, we elucidated the impact of an intrahepatic

antigen, by employing a recently established mouse model

Ova 3 CreERT2 for mosaic induction of hepatocyte-specific

antigen expression, thereby mimicking the early events of

infection. In this respect, it is of note that in our mouse model,

the level of Ova expression is relatively low; indeed, OVA

expression is 80–100-fold less than actin.29

In the non-induced state, only low numbers of hepatocytes

expressed the antigen. Tam-mediated activation of CreERT2

activated transgene expression in a higher number of hepato-

cytes compared with the non-induced state. Thereby, we estab-

lished a highly controlled setting in which CD81 T cells were

challenged with different antigen concentrations in the absence

of innate inflammation. Indeed, these settings mimic aspects of

early HBV infection events, which are characterized by the

absence of an innate defense.39,40

We observed that the outcome of the CD81 T-cell response

is critically dependent on the antigen expression level in liver.

Adoptive transfer of OT-I cells to both the low and high anti-

gen-expressing Ova 3 CreERT2 mice was accompanied by liver

pathology, as demonstrated by increased serum ALT levels.

However, the extent of tissue damage inversely correlated with

the antigen expression level (Figure 1a). Importantly, efficient

clearance was achieved only in mice expressing antigen at low

levels. The T cells in the high antigen-expressing mice

developed an exhausted phenotype, as indicated by increased

PD-1 and Lag-3 expression levels, which are markers that have

previously been correlated with T-cell exhaustion during

chronic infections.7,34,36,41 Exhaustion of antigen-specific T

cells is characterized by the progressive loss of effector cytokine

production and, in severe cases, by the deletion of antigen-

specific cells.6,8,9 These characteristics were observed only if T

cells were exposed to high levels of antigen-presenting

hepatocytes (Figures 2 and 3). Importantly, in low antigen

conditions, the OT-I cells were activated and functional in

the liver milieu, as demonstrated by the capacity of the T cells

to release effector cytokines and perform targeted cell killing

(Figure 3 and Supplementary Figures S6 and S7). This indi-

cated that the CD81 T-cell response in the liver of low antigen-

expressing mice supports the development of a functional

effector T-cell population. However, this capacity was lost

when the T cells were subsequently challenged with a high

antigen load (Figure 4). The functional T-cell phenotype that

developed in low antigen conditions reverted completely upon

increasing the amount of antigen-presenting hepatocytes to the

high levels (compared with Supplementary Figure S8).

Thus, we conclude that elevated levels of antigen expression

impair a functional T-cell response in the liver. Furthermore,

adoptive transfer of in vitro pre-activated OT-I cells was

accompanied by failure of antigen clearance, indicating severe

exhaustion and depletion of antigen-specific T cells

(Supplementary Figure S4). It is worth mentioning that this

result does not exclude the presence of tolerance mechanisms

in vivo; however, it indicates that it is antigen quantity that

predominantly governs the outcome of immune responses

within the liver. To investigate whether the immunity out-

comes depended on the quantity of antigen-specific CD81 T

cells, we increased the number of adoptively transferred OT-I

cells five-fold. Notably, even under these conditions, antigen

clearance was not efficient when high antigen levels were

expressed (data not shown). This suggests that the lack of anti-

gen clearance in the Tam-induced mice was not just a result of

limited specific T-cell numbers. Rather, it seems that the T cells

were specifically impaired under these conditions. Still, in a less

physiological Ova 3 CreERT2 3 OT-I mouse model, which

provides endogenous OT-I cells, the induction of intrahepatic

immunity and the subsequent clearance of the high antigen

levels can be achieved.29 This proves that the clearance of

the induced hepatocyte fraction expressing the Ova antigen is

indeed possible under certain conditions. However, the Ova 3

CreERT2 3 OT-I mice are characterized by the continuous

production of large numbers of naı̈ve OT-I cells, a setting

that does not reflect natural conditions and might override

regulatory mechanisms. Although our experiments show no

cross-presentation of the antigen by other APCs prior to the

T-cell-mediated killing, we cannot formally exclude this pos-

sibility. Still, this does not alter our conclusions concerning

the dose-dependent impairment of T cells.

Upon adenoviral infection, Tay et al. have recently demon-

strated that the efficiency of antigen clearance by CD81 T cells

inversely correlates with the amount of infected hepatocytes.

They further have demonstrated that this mechanism is also

active in the absence of cross-presentation.27 Here, we show

that the antigen quantity governs the outcome of T-cell res-

ponses in the liver, even in ‘sterile’ conditions, i.e., in the

absence of infection-mediated pro-inflammatory conditions.

This particularly rules out that the described dose effect

critically depends on infection-associated effects, such as

inflammation.
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The induction of T-cell exhaustion upon encountering high

concentrations of antigen suggests that the host immune sys-

tem possesses a self-regulatory mechanism that protects against

excessive responses that might be associated with severe and

life-threatening liver destruction. This may also contribute to

the lack of an efficient immune response in HBV- or HCV-

infected patients who cannot clear viral infections. It remains to

be elucidated whether the amount of antigen is the only factor

that triggers the subsequent fate of antigen-specific CD81 T

cells or whether other components of the immune system con-

tribute to the regulation of the immune response upon initial

liver damage and ongoing infection.

Some recent studies have demonstrated that antigen-specific

CD81 T-cell exhaustion can occur as a consequence of

elevated antigen-presenting dendritic cell numbers.13,14 Addi-

tionally, the contribution of LSECs in T-cell activation remains

controversial: on the one hand, LSECs have been demonstrated

to perform cross-presentation of hepatocyte-derived antigen.

However, on the other hand, they are able to dampen the

response of previously activated T cells.42

Our findings might reflect a general concept for the develop-

ment of chronic infections. Here, we demonstrate a significant

impact of the antigen level itself, which might help in the design

or improvement of therapeutic and preventive vaccination

strategies.
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