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Abstract: Essential oils (EOs) are lipophilic secondary metabolites obtained from plants; terpenoids
represent the main components of them. A lot of studies showed neurotoxic actions of EOs. In insects,
they cause paralysis followed by death. This feature let us consider components of EOs as potential
bioinsecticides. The inhibition of acetylcholinesterase (AChE) is the one of the most investigated
mechanisms of action in EOs. However, EOs are rather weak inhibitors of AChE. Another proposed
mechanism of EO action is a positive allosteric modulation of GABA receptors (GABArs). There are
several papers that prove the potentiation of GABA effect on mammalian receptors induced by EOs.
In contrast, there is lack of any data concerning the binding of EO components in insects GABArs.
In insects, EOs act also via the octopaminergic system. Available data show that EOs can increase
the level of both cAMP and calcium in nervous cells. Moreover, some EO components compete with
octopamine in binding to its receptor. Electrophysiological experiments performed on Periplaneta
americana have shown similarity in the action of EO components and octopamine. This suggests that
EOs can modify neuron activity by octopamine receptors. A multitude of potential targets in the
insect nervous system makes EO components interesting candidates for bio-insecticides.

Keywords: acetylcholinesterase; bioinsecticides; essential oils; GABA receptors; insect nervous
system; octopamine receptor

1. Introduction

Essential oils (EOs) are natural, complex substances extracted from different plant organs, and
terpenoids are the main components of them [1]. People have taken advantage of EOs as well as
their particular components for many centuries. Recently, the historical aspects of use of EOs has
been described in detail [2,3]. Nowadays, we know more than 3000 kinds of EOs, about 300 of which
are currently used. In traditional agriculture, farmers apply EOs to protect stored grain. EOs are
widely utilized as insect repellents, mainly against mosquitoes [3–6]. EOs obtained from lemon and
eucalyptus are used as the active substances in non-toxic repellent products that are recommended for
children. Moreover, several studies demonstrate that EOs do not only repel the insects but also act on
them as neurotoxic compounds [6–18].

It has been proved that EOs from 1500 plant species have insecticidal properties and are efficacious
regarding both forms of insects—adults and larvae. For example, eugenol is toxic to a number of insect
orders: Coleoptera, Hymenoptera, Isoptera; citral to insect species: Ceratitis capitata and Anastrepha
fraterculus; geraniol to Aedes aegypti, Aedes albopictus, Anopheles quadrimaculatus, thymol to Culex
tritaeniorhynchus, Aedes albopictus and Anopheles subpictus. All of them are also toxic to the cockroach
Periplaneta americana [19–28]. Additionally, extensive research has provided evidence that some EO
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components, applied in binary mixture, can exhibit synergistic or antagonistic activity. Such effects
suggest diverse mechanisms of action of EO components [29–31].

Eugenol, α-terpineol and L-carvol cause hyperactivity in insects at first. Stretching the legs and
numbness precede the insect’s death [19–28]. These effects demonstrate the neurotoxic activity of
EOs and motivate the investigation of their molecular targets in insect organisms. Understanding
the spectrum of action of EOs on insect targets could be crucial for the application of EOs in the
development of new, natural insecticides. The aim of this article is to present some identified targets
for EOs and shed some light on their mode of action.

2. Essential Oils—Inhibitors of Acetylcholinesterase

A lot of research demonstrates that EOs inhibit the activity of acetylcholinesterase (AChE)
(Figure 1) (e.g., [32]), which is one of the most important enzymes in neuro-neuronal and
neuromuscular junctions in both insects and mammals [33–35]. Since the insect AChE differs from
the mammalian one by a single residue, known as the insect-specific cysteine residue, AChE can be
an insect-selective target for the newly developed insecticides, safe for non-target vertebrates [36–40].
Essential oils are estimated to be a potential source of insecticides due to their ability to modifying the
insect AChE activity [41–51].
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It has been demonstrated that EOs from the following plants can inhibit AChE: Chamaemelum
nobile, Eriocephalus punctulatus, Ormenis multicaulis, Santolina chamaecyparissus, Cyclotrichium niveum,
Thymus praecox subsp. caucasicus var. caucasicus, Echinacea purpurea, Echinacea pallida, Salvia chionantha,
Anethum graveolens, Salvia lavendulaefolia [41–45]. Moreover, the properties of the isolated components
of EOs have been examined as well (Table 1, Table A1—Appendix A). Forty-eight of 73 examined
substances exhibited an anti-AChE activity. However, the experiments were mainly conducted on
the isolated AChE from the electric eel (Electrophorus electricus) and from some species of mammals.
Only 28 components were tested on insect AChE and 23 of them inhibited the enzyme. The most
efficacious of them were: α-pinene and β-pinene, β-phellandrene, carvacrol, limonene, menthol,
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menthone, 1,8-cineole, cis-ocimene, niloticin [41,47–54]. Most of the EO components displayed
anti-AChE activity in mM concentration. Only one study proved the inhibitory effect of EOs component
(carvacrol) on AChE in µM concentration [48].

Table 1. The effects of the essential oil components on the acetylcholinesterase activity in insects.

No. Essential Oils
Components AChE Source IC50 (mM) Ki (mM) Reference

1 Anisaldehyde BxACE-1 from Bursaphelenchus xylophilus 4.95 [46]
BxACE-2 from Bursaphelenchus xylophilus 8.53 [46]
BxACE-3 from Bursaphelenchus xylophilus >50 [46]

2 Camphene Blatella germanica N.A. [47]

3 Camphor Blatella germanica N.A. [47]

4 3-Carene BxACE-1 from Bursaphelenchus xylophilus 0.37 [46]
BxACE-2 from Bursaphelenchus xylophilus 8.18 [46]
BxACE-3 from Bursaphelenchus xylophilus >50 [46]

5 Carvacrol Musca domestica 0.0012 [48]
Dermacentor variabilis 0.0018 [48]
Periplaneta americana 0.0004 [48]

Aedes aegypti 0.0012 [48]
Drosophila suzukii N.A. [49]
Sitophilus oryzae 0.05 [50]

6 Caryophyllene
(humulene) Blatella germanica N.A. [47]

7 1,8-Cineole Pediculus humanus capitis 77 [51]
Sitophilus oryzae 0.084 [50]

8 Coniferyl alcohol BxACE-1 from Bursaphelenchus xylophilus 1.06 [46]
BxACE-2 from Bursaphelenchus xylophilus 1.41 [46]
BxACE-3 from Bursaphelenchus xylophilus 1.13 [46]

9 Cymene Sitophilus oryzae 0.05 [50]
Drosophila suzukii N.A. [49]

10 Estragole
(Allylanisole) Blatella germanica N.A. [47]

11 Eugenol Sitophilus oryzae 0.096 [50]

12 Isoeugenol Sitophilus oryzae 0.11 [50]

13 Isosafrole Sitophilus oryzae 0.71 [50]

14 Limonene Sitophilus oryzae 0.73 [50]
Reticulitermes speratus Kolbe 0.95 [41]

15 Linalool Sitophilus oryzae N.A. [50]

16 Methyleugenol Sitophilus oryzae 0.051 [50]

17 Menthol Sitophilus oryzae 0.048 [50]
Drosophila suzukii N.A. [49]

18 Menthone Sitophilus oryzae 0.39 [50]
Drosophila suzukii N.A. [49]

19 Nerolidol BxACE-1 from Bursaphelenchus xylophilus 9.98 [46]
BxACE-2 from Bursaphelenchus xylophilus 15.28 [46]
BxACE-3 from Bursaphelenchus xylophilus 19.06 [46]

20 Nootkatone Musca domestica >30 [48]
Dermacentor variabilis >30 [48]
Periplaneta americana >30 [48]

Aedes aegypti >30 [48]

21 Ocimene Japanese termite 0.96 [52]
Blatella germanica N.A. [47]

22 Perilla aldehyde Drosophila suzukii 3.06 [49]
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Table 1. Cont.

No. Essential Oils
Components AChE Source IC50 (mM) Ki (mM) Reference

23 Phellandrene Reticulitermes speratus Kolbe 4.92 [41]
Blatella germanica 2.2 [47]

24 α-Pinene Sitophilus oryzae 0.44 [50]
BxACE-1 from Bursaphelenchus xylophilus 0.24 [46]
BxACE-2 from Bursaphelenchus xylophilus 0.64 [46]
BxACE-3 from Bursaphelenchus xylophilus 0.68 [46]

Reticulitermes speratus Kolbe 3 [41]

25 β-Pinene BxACE-1 from Bursaphelenchus xylophilus 3.39 [46]
BxACE-2 from Bursaphelenchus xylophilus 18.03 [46]
BxACE-3 from Bursaphelenchus xylophilus >50 [46]

Reticulitermes speratus Kolbe 3.08 [41]
Sitophilus oryzae 0.0028 [50]

26 α-Terpinene Sitophilus oryzae 0.14 [50]
27 α-Terpineol Sitophilus oryzae 3.94 [50]

28 β-Thujone Blatella germanica N.A. [47]

29 Thymol Sitophilus oryzae 0.57 [50]
Drosophila suzukii 4.26 [49]

N.A.—the compound is not active or the inhibition is lower than 50%; IC50—Concentration of component that
cause 50% inhibition of enzyme; Ki—inhibitory constant. BxACE-1, BxACE-2 and BxACE-3 are three different
acetylcholinesterases found in Bursaphelenchus xylophilus. Values in mg/mL were recalculated by the authors of
this paper.

To understand the effectiveness of EOs in AChE inhibition we need to consider their exact
mode of action and also to recognize the type of inhibition. First of all, knowledge concerning the
modification of enzyme kinetics is necessary. In the majority of papers there is no data related to
the changes in the AChE kinetics after the EOs’ administration. The available research shows that
some of the EO constituents function as competitive inhibitors and others as uncompetitive inhibitors
(Table 2) [55–60]. It is also difficult to explain the EOs’ mode of action because the activity of EOs
as complex compounds differs from the activity of their single components. For example, EO from
the tea tree (Melaleuca alternifolia) is an uncompetitive inhibitor, while its particular components are
competitive inhibitors [57]. Such competitive inhibitors attach to the active sites in AChE and prevent
the binding of ACh. It causes the decrease in the binding of the neurotransmitter but the maximal
activity of the enzyme remains unchanged. On the other hand, the uncompetitive inhibitors bind
to other sites of AChE and allosterically alter the action of the enzyme. They bind rather to the
enzyme-substrate complex than to the enzyme itself and thus prevent product formation. As a result,
the maximum activity of the enzyme decreases. Therefore, different inhibitory action of EOs on the
AChE suggests the existence of diverse binding sites in the enzyme molecule.

Table 2. The EO components acting as the competitive and the noncompetitive inhibitors of AChE.

Competitive AChE Inhibitors Reference Noncompetitive AChE Inhibitors Reference

Pulegon [55] Gossypol [55]
Citral [55] Carvone [60]

Linalool [55] Camphor [60]
(−)-Bornyl acetate [55]

1,8-Cineol [55,57,58]
Terpinen-4-ol [57]

Fenchone [60]
γ-Terpinene [60]
Menthone [50]
Menthol [50]
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The AChE enzyme has a deep “active-site gorge” with two target sites: “catalytic” at the bottom
and “peripheral” at the entrance [61]. “Dual binding site” inhibitors interact with the AChE at both
the catalytic and the peripheral site [62]. Thus, they can act both as competitive and uncompetitive
inhibitors. EO components can act as dual inhibitors if they form a blend. López et al. [60] analyzed the
kinetics of the inhibition and the spatial size of terpenoids on their binding capability. They conclude
that two monoterpenoids can bind to one AChE molecule at a time. The binding of the first EO
component favors the attachment of the second one. Moreover, by using a molecular docking, they
demonstrated that some components (carvone and fenchone) can bind to several binding sites in the
AChE. In contrast, they found only one binding site for terpinene and camphor.

The data described above may suggest a synergistic action of the EO components. In fact, the
majority of essential oils exhibit greater activity than their single components. However, we have
found only a few papers where the synergistic action of the EO components was estimated using
statistical analysis of interaction. Savalev et al. [63] have proposed synergism between 1,8-cineole
and α-pinene. They obtained similar results for 1,8-cineole and caryophyllene oxide. On the other
hand, an antagonistic interaction was found between 1,8-cineole and camphor. Miyazawa et al. [64]
also observed antagonism between some EO components. They compared the inhibitory effect of the
natural EOs extracted from the plant with the sum of the inhibitory effectiveness of the major single
components and with the “artificial” mixture of them. EOs exhibited the highest inhibition (46%), the
sum of the inhibitory action of the EO components was lower (29.5%) and the “artificial” mixture of
the EO components inhibited the AChE only by 19%. On the other hand, the study by Jukic et al. [65]
showed that thyme EO exhibited less activity than its single components. Certainly, the positive or the
negative interaction between the EO components depends on their relative quantity.

The structure-activity relationships for EOs are also unclear. It is difficult to define which chemical
type of EO compounds is more active. Lee et al. [50] have suggested that monoterpenoid ketones are
more active than alcohols or aldehydes. However, among 6 inactive compounds, two were ketones.
In the same study, menthone (ketone) has a lower inhibitory activity than others. Moreover, among
active compounds, two were phenolic alcohols. Certainly, it would be necessary to identify other
features of chemical structure (e.g., double bond in phenolic ring) to determine the activity of the EO
constituents. López et al. [60] have found a correlation between the size of the tested components
and their inhibitory activity on the AChE. The substance with higher spatial size exhibited higher
activity. Reegan et al. [53] performed a molecular docking of niloticin (large spatial size terpenoid)
to the AChE of Aedes aegypti. They showed a high binding affinity of niloticin to the AChE and
determined the binding residues as THR’58 and HIS’62. However, Dambolena et al. [66] provided
mathematical analysis of factors affecting insecticidal activity of EO components and they discovered
that compounds with lower molar volume and fewer rings are more active.

To sum up, the study on EOs as AChE inhibitors showed that monoterpenoids appeared to be
weak AChE inhibitors. The inhibition of AChE requires mM concentrations of EOs [48] while usually
neurotoxic symptoms of EOs are visible at their concentrations smaller by 3 orders of magnitude.
Additionally, the inhibition of the AChE is always fast reversible [67,68]. Moreover, the chemicals
(e.g., carvone) in one study caused the inhibition of AChE but in another study, using the same AChE,
no activity was shown, so the results are not reproducible. Thus, AChE inhibition does not seem to be
the primary neurotoxic action of EOs, however, some of the large sized EO chemicals can be consider
as AChE inhibitors.

3. Essential Oils—Modifiers of GABA Receptors

3.1. Mammalian GABAA Receptors

Gamma-amminobutyric acid (GABA) is the major inhibitory neurotransmitter in the nervous
system and the muscles in both mammals and insects (however in some cases it can play a role of
excitatory neurotransmitter). It binds to specific receptors (GABArs) in synaptic or extrasynaptic
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membranes [69–72]. In mammals there are two types of GABA receptors: ionotropic (GABAArs) and
metabotropic (GABABrs) [73,74].

Many papers report essential oils action on the GABArs, primarily belonging to the ionotropic
receptor group [75]. Studies that proved the influence of essential oils on the GABArs were conducted
mainly on mammals. According to a great deal of data, EOs and their components are mostly positive
modulators of the GABAA receptors (Figure 2). Menthol, thymol and other components increase
the Cl− current induced by the GABA neurotransmitter (Table 3) [76–82]. Such a situation occurs
in low (µM) concentrations of EOs. Additionally, some of the EO constituents induce a weak Cl−

current themselves when applied at a concentration near 1 mM [75,76,78,80]. Higher concentrations of
previously mentioned EOs do not exert any effects on GABAArs probably because of the desensitization
of the receptors [82]. There are also EO components that do not induce any effect on the GABAArs Cl−

current, for example: camphor, carvone, menthon [76], linalool and α-terpineol [83].
The effect of the EO components on the GABA receptors depends on their chemical structure.

Different EO stereoisomers vary in their potency to modulate the GABA receptors: (+)-menthol and
(+)-borneol have higher activity than (−)-menthol and (−)-borneol [83,84]. The presence of a functional
group is important as well. Alcohols have a stronger modulatory effect on the GABAArs (e.g., thymol,
menthol, borneol)—than ketones—(linalool, α-terpineol) [76,83].
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Table 3. The intensification of the GABA-induced Cl− current by EOs.

EO Components Concentration of EOs
Component (mM)

Change of
GABA Current

Type of Receptor or Source of
Receptor Literature

(−)-Borneol 0.3 350% α1β2γ2s GABAA [76]
Camphor 0.3 40% (inhibition) α1β2γ2s GABAA [76]
Carvone 0.3 115% α1β2γ2s GABAA [76]

cis-Jasmone 1 250% Bovine GABAA [79]
Geraniol 1 500% α1β1GABAA [79]

(+)-Isomenthol 1 327% α1β2γ2s GABAA [78]
(+)-Isopulegol 0.3 380% α1β2γ2s GABAA [78]

Linalool 1 350% α1β1GABAA [79]
Nerolidol 1 150% α1β1GABAA [79]
Menthol 0.32 200% α1β2γ2s GABAA [78]

(+)-Menthol 0.1 596% α1β2γ2s GABAA [76]
(−)-Menthol 0.3 600% α1β2γ2s GABAA [76]

(−)-Menthone 0.3 150% α1β2γ2s GABAA [76]
Methyleugenol 0.03 280% hippocampal neurons [80]

Methyl jasmonate 1 230% Bovine GABAA [79]
α-Terpineol 1 299% α1β2γ2s GABAA [78]
α/β-Thujone 0.3 40% (inhibition) α1β2γ2s GABAA [76]

0.1 715% Drosophila melanogaster [76]
homomeric RDLac GABAr

α-Thujone 0.00066 208% Rat GABAA [81]
0.003 70% (inhibition) rat dorsal root ganglion neurons [82]

Thymol 0.1 416% α1β3γ2s GABAA [75]
0.01 150% α1β1γ2s GABAA [75]

Values in mg/mL were recalculated by the authors of this paper.

Many studies have been performed to define the binding sites for the EO components in
the GABArs [76,78,85]. However, such experiments are rather difficult to carry out in natural,
neuronal membranes, because EOs are lipophilic substances and they can nonspecifically affect
cellular membranes: they can increase the membrane permeability or cause damage [86]. The majority
of data concerning EOs binding to the GABAArs was obtained using competitive studies with already
known GABAArs ligands. Such experiments can only provide indirect evidences for the existence of
binding sites for the EO components in the GABArs and should be complemented by more direct
methods. Recent knowledge concerning the EO binding sites in the GABArs is presented below.

Although EOs do not compete with the GABA site antagonists [80], in mM concentrations EOs
can cause weak Cl− currents inhibited by bicuculline (a competitive antagonist of the GABAArs) [84].

The EO components do not bind to the benzodiazepine site despite the fact that the action of EOs
is similar to the action of the benzodiazepines. Watt et al. [78] and Granger et al. [84] have shown
that flumazenil (a benzodiazepine site antagonist) did not eliminate the potentiation of a Cl− current
induced by menthol and borneol. However, Sánchez-Borzone et al. [87] have observed that carvone
can allosterically modify the flunitrazepam binding to the benzodiazepine site.

Moreover, the EO components do not bind to the picrotoxin site. If they did bind to the picrotoxin
site, they would have induced the inhibition of the GABA-induced current—but such an effect was
not observed. Additionally, picrotoxin completely inhibits the GABA-induced currents modulated by
borneol [80,84]. EOs are also not competitive for the radioligand [3H]-TBOB (non-competitive channel
blocker), in contrast to all ligands of the picrotoxin site [83].

It was proposed that EOs bind to the GABAArs anesthetic site. The EO components (e.g., menthol,
borneol or geraniol) are structurally similar to a known ligand of the anesthetic site—propofol.
Both propofol and menthol are cyclic molecules containing the hydroxyl group. Borneol and geraniol
have a similar structure to propofol as well. Moreover, the action of EOs and propofol is similar—they
potentiate the GABA induced Cl− current. Propofol itself (in µM concentration) can also cause
currents via the GABAArs. In contrast, such a current was observed only after much higher (mM)
concentrations of menthol. However, menthol competed with propofol and significantly decreased the
propofol-induced current [78]. It was proposed that propofol binds to the GABAArs between β+-β−
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and β+-α− subunits [88]. Additionally, propofol can bind to another β subunits combination but only
at a 10× higher concentration [89]. Amino acid residues crucial for the propofol binding are located in
positions: 265, 236, 296, 286, 444. These residues are also proposed as amino-acid residues participating
in EOs binding [78,88–90].

To summarise, the EO components most probably share a binding site with propofol in the GABArs
of mammals. A similar action of these compounds was proved in behavioral experiments. Both EOs
and propofol cause sedation of a mouse (Mus musculus) [91] and a silver catfish (Rhamdia quelen) [92].

3.2. Insect GABA Receptors

The insect GABArs are related to vertebrate ionotropic GABArs. Similarly to vertebrates, in the
insect nervous system GABArs mainly mediate the inhibitory effect on neurotransmission. However,
there are several structural and pharmacological differences between the mammalian and the insect
GABArs and thus the insect GABArs can be a very promising target for the development of new
insecticides. The insect GABArs display features of both mammalian GABAA and GABAC receptors.
The level of similarity between the insect and the mammalian GABArs is the same as between the insect
GABArs and the insect nicotinic receptors. The insect GABArs are similar (85–99%) in different orders
of insects. Three kinds of subunits were identified in the insect GABArs: RDL (resistant to dieldrin),
GRD (GABA and glycine-like receptor of Drosophila) and LCCH3 (ligand gated chloride channel
homologue 3). Among the insect GABArs subunits LCCH3 is the most similar to the mammalian
GABArs—precisely to the β3 subunit of the GABAArs. The resemblance in the amino acid sequence
between the LCCH3 and the GABAA β3 subunit amounts to 50% [93]. However, the presence of
the LCCH3 subunit in insects is time- and tissue-limited. Experiments on Drosophila melanogaster
showed that LCCH3 is located in cell bodies of the embryonic nerve cord and brain, in neuronal cell
bodies surrounding the adult brain and in the olfactory system [94,95]. In contrast to the mammalian
GABAArs, the majority of the insect GABArs is insensitive to bicuculline and, differently than the
subclass GABACrs, they can be allostericaly modified by benzodiazepines and barbiturates [69].

Homomeric GABA receptors composed of the RDL subunits are accepted as a model to study the
physiology and pharmacology of the insect GABArs because they are blocked by picrotoxin and they
are insensitive to bicuculline [96,97]. The insect GABArs are targets for several chemical insecticides
such as dieldrin, fipronil, insane, BIDN (bicyclic dinitrile convulsant). All of them act as antagonists of
the GABArs and induce inhibition or overexcitation of the insect nervous system [96–100].

The efficacy of essential oils as insecticides was presented in many publications [101–103]
although, the data concerning the effects of EOs on the insect GABArs are very limited. The research
on RDL receptors has shown that thymol caused strong potentiation of the Cl− current evoked
by GABA. Moreover, thymol alone can induce a small current as well [75]. In addition, thymol,
carvacrol and pulegone enhanced the binding of [3H]-TBOB to membranes of the insect’s neuronal
cells. These monoterpenoids also increased the GABA-induced Cl− uptake in the insect membrane
preparations. It was proposed that these EO components are positive allosteric modulators of the
insect GABA receptors [83]. It is supported by research by Waliwitiya et al. [104], who observed thymol
induced reduction of flight muscle frequency at Phaenicia sericata, which was comparable to GABA
effect. Anyway, EO action on the insect GABArs needs further studies.

4. Essential Oils—Ligands of Octopamine Receptors

Octopamine (OA) is an invertebrate multifunctional molecule, structurally and physiologically
related to vertebrates noradrenaline. It has been found that it can act as a neurotransmitter,
as a neurohormone and as a neuromodulator [105–107]. OA is present in the nervous system,
neuroendocrine cells and hemolymph [108]. It is involved in the regulation of different forms of
insect activity e.g., arousal level. It also plays an essential role in the insect stress response, aggressive
behavior and social behavior [109–111]. Modern molecular biology techniques have made it possible
to follow in detail the role of OA in the insect organism. OA binds to specific G protein-coupled
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membrane receptors (OAr). The binding of OA to these receptors leads (via G protein) to the activation
of the enzyme adenylyl cyclase. It transforms ATP to cAMP and causes an increase in the cAMP
level, which is a signaling molecule, activating the protein kinase A (PKA). G protein also activates
phospholipase C. It leads to the release of calcium from deposits in the endoplasmic reticulum and
to the elevation of its intracellular level as well as to the activation of the calcium-dependent protein
kinase C (PKC). Protein kinases phosphorylate a number of enzymes and receptors, which, lead to the
modulation of their activity. This results in important changes in cell functions [112].

Three subclasses of OAr have been distinguished—depending on the kind of the G
protein-coupled. Moreover, there are two kinds of receptors for which tyramine (TA—a precursor of
OA) is a ligand [113]:

• α-adrenergic-like—the binding of OA to these receptors increases the level of the intracellular
calcium; the secondary effect is an increase of the cAMP level;

• β-adrenergic-like—the binding of OA to these receptors increases the level of cAMP;
• octopamine/tyramine—the receptors are similar to α2—an adrenergic receptor in mammals. It is

sensitive both to OA and TA. TA binding to this receptor causes a decrease in the cAMP level.
In contrast, OA binding to the receptor causes an increase in the cAMP level;

• two classes of receptors for TA only: the activation of TyrR II causes an increase of the intracellular
calcium level, the activation of TyrR III induces the increase of the calcium level and the decrease
of the cAMP level [114–116].

In several papers the authors have demonstrated that EOs act in a similar way to OA (Figure 3).
Eugenol, α-terpineol and their mixture with cinnamyl alcohol induced an increase in the cAMP level.
However, at higher concentrations geraniol and citral decreased the cAMP level. The same EOs
reduced the binding of [3H]-OA to receptors [117]. Interestingly, cinnamic alcohol itself increased
OA level over 20 times in Blatella germanica [118]. Price and Berry [28] have examined the effect of
EOs on the bioelectrical activity of the cockroach (Periplaneta americana) ventral nerve cord and the
functions of DUM neurons (dorsal unpaired median neurons) in the terminal abdominal ganglion.
Geraniol and citral at low concentrations (µM) increased the spontaneous firing rate in the DUM
neurons and in the nerve cord. Similar effects were observed after the OA application. However,
in higher concentrations (mM) these compounds decreased the activity of the DUM neurons and
the nerve cord as well. Eugenol reduced the activity of the DUM neurons and the nerve cord.
The depressive effects of high concentrations of EOs may be explained by the destructive influence of
EOs on neuronal membranes. A study performed by Enan [117] demonstrated that eugenol, cinnamyl
alcohol, 2-phenethyl propionate and trans-anethole exert their toxic effects via OArs. EO components
(eugenol, trans-anethole and 2-phenethyl propionate) increased Ca2+ concentrations in HEK-293 cells
expressing OArs from cockroach P. americana and D. melanogaster. However, trans-anethole increased
and eugenol decreased the cAMP level in these cells. All three of these EO components significantly
decreased the binding of [3H]-yohimbine (ligand of OArs). Kostyukovsky et al. [119] have shown that
the EO component SEM-76 caused an increase in the cAMP level, in a similar way to OA. In addition,
phentolamine (OArs antagonist) abolished SEM-76-induced changes in the concentration of cAMP.

The effect of EOs was also tested on P. americana tyramine receptors (TArs). Thymol, carvacrol and
terpineol inhibited the binding of [3H]-TA to membranes of S2 cells expressing TArs. Moreover, these
EOs changed the cAMP level in S2 cells. The effects of EOs were observed in the µM concentrations
corresponding to the physiological ligands activity [120].

All the presented data provides convincing arguments that the EO components interact with
OA and TA receptors. They act mainly as agonists of these receptors. Importantly, EOs can be
considered as agonists of all types of OArs and TArs. They cause an increase in both the cAMP level
and in the intracellular Ca2+ level. Thus, they can induce the activation of kinases PKA and PKC and
phosphorylation of many proteins (including ion channels, enzymes and receptors) [121]. The presence
of OA in mammals is minor and no OArs was found in mammals (nevertheless, it should be taken into
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account that OA is prohibited in sport owing to its stimulating properties) [112]. The effects of essential
oils components on octopamine receptors specific to insects lead to the conclusion that essential oils
represent a very interesting source of molecules for designing the insect pest control.
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Figure 3. The EO components activate the octopamine receptors. EOs—essential oil components,
OAr—octopamine receptor, G—protein G, cAMP—cyclic adenosine monophosphate, Ca2+—calcium
ions, ↑—increase in the molecule level.

5. Conclusions

Studies of neurotoxic effects of essential oils allowed their molecular targets to be determined:
acetylcholinesterase enzymes, ionotropic GABA receptors and metabotropic octopamine receptors.
The most evident proof concerns the effect of EOs on octopamine receptors, which are specific for
invertebrates including insects. This fact strongly motivates future studies on EOs as bioinsecticides.
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Appendix A

Table A1. The effects of the essential oil components on the acetylcholinesterase activity in organisms
other than insects.

No. Essential Oil Components AChE Source IC50 (mM) Ki (mM) Reference

1 Anisaldehyde Electric eel N.A. [122]

2 Anisole Human erythrocyte N.A. [123]

3 Anethole Electric eel N.A. [124]
Electric eel [67]
Electric eel 0.88 [125]
Electric eel 8.9 [126]

Bovine erythrocyte 0.2 [127]
Electric eel N.A. [122]
Electric eel N.A. [128]
Electric eel 0.87 [126]
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Table A1. Cont.

No. Essential Oil Components AChE Source IC50 (mM) Ki (mM) Reference

4 Borneol Bovine erythrocyte N.A. [64]
Human erythrocyte N.A. [68]
Bovine erythrocyte N.A. [63]

Electric eel N.A. [122]
Human erythrocyte N.A. [123]

Electric eel N.A. [124]

5 Bornyl acetate Electric eel 21.3 [55]
Human erythrocyte N.A. [68]
Bovine erythrocyte N.A. [63]

6 Camphene Electric eel N.A. [122]

7 Camphor Electric eel 0.05 [67]
Electric eel N.A [124]
Electric eel 11.2 [60]

Human erythrocyte N.A. [68]
Bovine erythrocyte N.A. [63]

Electric eel N.A. [122]
Human erythrocyte N.A. [123]

8 2-Carene Bovine erythrocyte 0.9 [58]

9 3-Carene Human erythrocyte 0.2 [68]
Bovine erythrocyte 0.2 [58]

Electric eel 0.26 [126]

10 Carvacrol Electric eel 0.41 [65]
Electric eel 0.61 [126]
Electric eel 0.21 [122]
Electric eel 0.76 [128]

11 Carvone Electric eel 0.3 [67]
Bovine erythrocyte N.A. [64]

Electric eel N.A. [122]
Electric eel 5.5 [60]

12 Caryophyllene (humulene) Human erythrocyte N.A. [68]
Bovine erythrocyte 0.13 [68]

Electric eel N.A. [124]
Human erythrocyte N.A. [68]

Electric eel N.A. [129]

13 Caryophyllene oxide Human erythrocyte N.A. [68]
Bovine erythrocyte N.A. [63]

14 1,8-Cineole Electric eel 0.025 [55]
Electric eel 0.1 [124]
Electric eel 0.71 [126]

Bovine erythrocyte 0.26 [64]
Electric eel 0.6 [51]
Electric eel 0.84 [122]

Human erythrocyte 0.4 [68]
Electric eel 0.04 0.03 [57]

Bovine erythrocyte 0.29 0.1 [58]
Bovine erythrocyte 0.39 [63]
Human erythrocyte 0.67 [130]

15 Cinnamaldehyde Electric eel N.A. [122]

16 Cinnamyl alcohol Electric eel N.A. [122]

17 Citral Electric eel 7 [55]
Electric eel N.A. [124]
Electric eel N.A. [122]
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Table A1. Cont.

No. Essential Oil Components AChE Source IC50 (mM) Ki (mM) Reference

18 Citronellal Electric eel N.A. [122]

19 Citronellol Electric eel N.A. [122]

20 Copaene Human erythrocyte N.A. [68]

21 Cymene Bovine erythrocyte N.A. [58]

22 Elemol Bovine erythrocyte 0.16 [64]

23 Estragole (Allylanisole) Electric eel 0.15 [67]
Electric eel 12.6 [60]
Electric eel N.A. [124]
Electric eel N.A. [122]

24 Eugenol Electric eel 2.9 [124]
Electric eel N.A. [122]

Human erythrocyte N.A. [123]

25 Fenchone Electric eel 0.4 [67]
Electric eel 7 [60]

26 Geraniol Electric eel 0.1 [67]
Electric eel 15 [60]
Electric eel N.A. [122]

27 Globulol Human erythrocyte N.A. [68]

28 Gossypol Electric eel 1.5 [55]

29 Guaiol Human erythrocyte N.A. [68]

30 Isoeugenol Electric eel N.A. [122]

31 Limonene Electric eel N.A. [124]
Human erythrocyte N.A. [68]

Electric eel 1.61 [125]
Electric eel 4.33 [126]
Electric eel N.A. [122]

Bovine erythrocyte N.A. [64]

32 Linalool Electric eel 0.3 [67]
Electric eel 5.5 [55]
Electric eel N.A. [124]
Electric eel 15.6 [60]
Electric eel N.A. [122]

Human erythrocyte N.A. [68]
Bovine erythrocyte N.A. [63]
Bovine erythrocyte N.A. [64]

33 Linalyl acetate Bovine erythrocyte N.A. [64]
Electric eel N.A. [129]

34 Manool Human erythrocyte N.A. [68]

35 Methylcinnamate Electric eel N.A. [122]

36 Methyleugenol Electric eel N.A. [122]
Electric eel N.A. [124]

37 Menthofuran Bovine erythrocyte N.A. [64]

38 Menthol Bovine erythrocyte N.A. [64]

39 Menthone Bovine erythrocyte N.A. [64]
Electric eel N.A. [122]

40 Methol Human erythrocyte N.A. [123]

41 Methoxycinnamaldehyde Electric eel N.A. [124]
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Table A1. Cont.

No. Essential Oil Components AChE Source IC50 (mM) Ki (mM) Reference

42 Methyl acetate Bovine erythrocyte N.A. [64]

43 Myrcene Electric eel N.A. [122]

44 Myrtenal Electric eel 0.17 [122]

45 Nerol Electric eel N.A. [122]

46 Nerolidol Electric eel N.A. [122]

47 Neryl acetate Human erythrocyte N.A. [68]

48 Phellandrene Electric eel 0.88 [129]

49 Phenylethanol Electric eel N.A. [122]

50 α-Pinene Electric eel 0.16 [124]
Electric eel 10.5 [130]

Human erythrocyte 0.7 [68]
Human erythrocyte 0.63 [131]
Bovine erythrocytes 0.66 [63]

Electric eel N.A. [122]
Bovine erythrocytes 0.4 [58]

51 β-Pinene Electric eel N.A. [124]
Human erythrocyte 1.5 [68]
Bovine erythrocyte 1.5 [63]

Electric eel N.A. [122]

52 Piperitenone oxide Bovine erythrocyte 0.38 [64]

53 Piperitenone Bovine erythrocyte 0.72 [64]
Bovine erythrocyte 0.83 [64]

54 Pulegone Electric eel 0.85 [55]
Bovine erythrocyte 0.89 [64]

55 Sabinene Human erythrocyte N.A. [68]
Electric eel 1.25 [125]

56 Sclareol Human erythrocyte N.A. [68]

57 α-Terpinene Bovine erythrocyte N.A. [58]

58 γ-Terpinene Electric eel 0.2 [67]
Electric eel N.A. [124]
Electric eel 5.8 [60]

Bovine erythrocyte N.A. [58]

59 α-Terpineol Electric eel 8.43 [124]
Human erythrocyte N.A. [68]

60 Terpinen-4-ol Electric eel 20.7 [124]
Electric eel 10.30 4.7 [57]

Bovine erythrocyte N.A. 2 [58]
Electric eel N.A. [129]
Electric eel N.A. [122]

61 Terpinolene Electric eel 1.1 [129]

62 α-Thujone Human erythrocyte N.A. [68]
Electric eel N.A. [122]

63 Thymohydroquinone Electric eel 0.24 [65]

64 Thymol Electric eel 4.9 [65]
Electric eel 1.39 [126]
Electric eel N.A. [122]



Molecules 2018, 23, 34 14 of 20

Table A1. Cont.

No. Essential Oil Components AChE Source IC50 (mM) Ki (mM) Reference

65 Thymoquinone Electric eel 0.85 [65]

66 Viridiflorol Bovine erythrocyte 0.11 [64]

67 Verbenone Electric eel 2.66 [122]
Electric eel 0.73 [128]

N.A.—the compound is not active or the inhibition is lower than 50%; IC50—Concentration of component that cause
50% inhibition of enzyme; Ki—inhibitory constant. Values in mg/mL were recalculated by the authors of this paper.
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