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Abstract

A genome wide association study (GWAS) typically results in a few highly significant ‘hits’ and a much larger set of
suggestive signals (‘near-hits’). The latter group are expected to be a mixture of true and false associations. One promising
strategy to help separate these is to use functional annotations for prioritisation of variants for follow-up. A key task is to
determine which annotations might prove most valuable. We address this question by examining the functional
annotations of previously published GWAS hits. We explore three annotation categories: non-synonymous SNPs (nsSNPs),
promoter SNPs and cis expression quantitative trait loci (eQTLs) in open chromatin regions. We demonstrate that GWAS hit
SNPs are enriched for these three functional categories, and that it would be appropriate to provide a higher weighting for
such SNPs when performing Bayesian association analyses. For GWAS studies, our analyses suggest the use of a Bayes
Factor of about 4 for cis eQTL SNPs within regions of open chromatin, 3 for nsSNPs and 2 for promoter SNPs.
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Introduction

New clues about the aetiology of complex genetic diseases have

been provided by genome-wide association studies (GWAS) [1].

Since SNPs across the genome are investigated in GWAS, this

allows such studies to identify causal variants which may never

have been previously suspected to be involved in the trait.

Notwithstanding the advantages of this ‘hypothesis-free’ or

‘hypothesis -neutral’ approach, it has become clear that effect

sizes of many of the common variants involved in complex diseases

are so small that even very large GWAS do not have full power to

detect them [2]. This leads to a situation where, while each GWAS

may result in a small number of genome-wide significant hits

(those for which p-values are low enough to distinguish from false

associations that occur by chance), there are a large number of

true hits hidden within the association signals with p-values that

are suggestive but not conclusive of true association.

Several lines of evidence suggest that these near hits do indeed

contain some real association signals. Firstly, quantile-quantile

plots of GWAS association p-values often show a departure from

null expectation that extends into the ranked SNPs below the

genomewide significance threshold [3]. Secondly, various forms of

pathway analysis have reported significant biological dependency

between near hit SNPs [4]. Thirdly, and most directly, GWAS

meta-analysis often finds new hits that only appeared as near hits

in smaller GWASs [5,6].

Prioritization of near hits for follow-up may be more effective if

functional information is combined with the GWAS p-values.

There is already evidence that causative SNPs for a wide range of

traits are enriched for certain functional categories [7] [8] and an

increasing amount of annotation is available that could be used for

such studies. There are annotations relating to gene structure,

predicted function of nsSNPs, regulatory regions, DNA structure

and many more [9]. Various statistical methods are now available

for the analysis of p-values that have been weighted according to

some user-defined scheme [10,11,12,13,14]. However, a key

aspect of all these studies is that they use subjective weighting

schemes. In this study, we propose empirically derived weightings

within a Bayesian framework.

One way to arrive at an objective, empirically based weighing

scheme is to use the observed preponderance of functional

annotations in established GWAS hits as a guide to weighting of

‘near hit’ GWAS SNPs. GWAS data are more appropriate for this

purpose than candidate gene genotyping data, as the SNPs typed

in the latter type of study are often selected on the basis of

annotation and therefore could produce biased results. Two

recently published databases of GWAS hits ([15] [16], hereafter

referred to as ‘Hindorff’ and ‘Johnson’) have provided the
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necessary resources to carry out such an investigation. Both

contain .2000 SNPs with a low p-value for association in at least

one GWAS, although there are several differences between the

datasets which are discussed below. Both groups performed some

analysis of the data. Hindorff et al analysed hits with a p-value

,561028 whereas Johnson and O’Donnell analysed all the results

in their dataset (p-values ,0.05) [7,16]. Hindorff et al looked at 20

different annotations and established that non-synonymous sites

and 5kb promoter regions are enriched in GWAS hits relative to

regular GWAS panel SNPs. Johnson and O’Donnell demonstrat-

ed that SNPs that are hits in multiple studies are more likely to be

true hits. They also described an over representation of hits in

genes related to cell adhesion functions. More recently Nicolae

et al [17] have established an overrepresentation of expression

QTLs (eQTLs) in the Hindorff database.

It is not clear how dataset-specific these previous findings might

be. In this paper, we compare and contrast two GWAS hit datasets

and perform sensitivity analysis to gauge the robustness of

annotation enrichment under different conditions. We focus on

three annotations from three different categories, non-synonymous

SNPs (nsSNPs), promoter SNPs and cis expression QTLs (eQTLs)

lying in open chromatin regions, representing three major classes

of annotation information: protein changes, gene regulation and

gene expression. We determine if these annotations are enriched

across both datasets carrying out some additional analysis to verify

the robustness of the findings. We find that Hindorff’s results in

relation to nsSNPs and promoter SNPs and Nicolae’s results

relating to eQTLs are broadly repeated across both datasets. We

show how these findings can be built into a Bayesian analysis of

association results.

Methods

GWAS hit SNPs
We used two published GWAS datasets: ‘Hindorff’ ([15]) and

‘Johnson’ ([16]). Both datasets were compiled using literature

searches of Pubmed and other sources. The Hindorff dataset has a

p-value cut-off of 1025 (although Hindorff et al [7] only performed

analyses on SNPs with a p-value less than 1028), while the Johnson

dataset uses a p-value cut-off of 0.05. The Hindorff dataset is

continually updated whereas the Johnson one is not. The latter

includes all GWAS published up until 1st March 2008. We

downloaded the Hindorff dataset on the 21st May 2010, at which

point it contained 2727 unique SNPs with results for single marker

analyses. The Johnson dataset contained 52546 SNPs, but we

performed most of our analyses on data with p-values less than

1025 (4086 SNPs). After noting a large excess of SNPs in the major

histo-compatibility (MHC) region in the Johnson dataset we

filtered out SNPs from this region (chr6:25809985-33486934) in

both datasets, as results from this region could be unrepresentative

of results throughout the rest of the genome due to the high density

of genes and extensive long range linkage disequilibrium. This left

2115 unique SNPs from 425 studies in the Hindorff dataset and

2695 from 96 studies in the Johnson dataset (constrained to

p,1025). We also filtered out hit SNPs that were not on the

original GWAS panels as they are often selected on the basis of

annotation to support the replication. Except where otherwise

stated all results presented relate to this subset of the data.

GWAS panel SNPs
We adopted a sensitivity analysis approach in which we

contrasted results obtained under two very different scenarios,

representing two extreme possible endpoints of average GWAS

panel SNP composition. In one we assumed all GWASs had used

the Affymetrix Mapping 500K panel (hereafter ‘Affy500’) and in

the other that all GWASs had used the Illumina HumanHap

550K panel (hereafter ‘Illu550’). Both panels have been widely

used in GWASs to date, but reflect different strategies for marker

selection. Illumina selected tagging SNPs whereas Affymetrix

selected SNPs based on assay availability and minor allele

frequency. The proportion of SNPs with a MAF less than 0.1

on the Illu550 is 22% whereas the proportion on the Affy500 is

34%. In addition to these two extreme approaches, we considered

a compromise GWAS panel set comprising the union of these two

panels (hereafter ‘Affy500+Illu550’).

Annotation
We chose three annotation categories; non-synonymous SNPs

(nsSNPs), expression quantitative trait loci (eQTLs) and promoter

region SNPs. Non-synonymous SNPs alter the amino acid

sequence of a gene product, we downloaded these from the

UCSC browser selecting nonsense (premature termination codons)

and missense mutations from the dbSNP version 130 table.

eQTLs are excellent candidates for GWAS hits as they are

thought to be causally involved in complex traits and may be more

closely correlated to the genotype than the complex trait itself. We

defined and selected eQTLs from a study of global gene expression

in lymphoblast cell lines (LCLs) [18]. Some 55,000 transcripts

representing 21,000 genes were investigated and approximately

15,000 transcripts (from 7,000 genes) demonstrated heritability.

These transcripts were tested as a GWAS and all SNP-transcript

pairs with regression p-values ,0.001 were retained. We defined

eQTLs based on the rank of this p-value. In one set of analyses we

used a stringent cut-off, defining eQTLs as only those that had a p-

value in the top 20,000. For the other set of analysis we used p-

values in the top 100,000. We performed analysis on all eQTLs

and also on cis-eQTLs (those within 200 kb of the transcript they

are associated with). These selection criteria allowed us to explore

a number of approaches to defining eQTLs. We also identified

eQTLs within open chromatin regions as these are much more

likely to be involved in regulation of expression. We used evidence

of open chromatin in multiple cell lines from the Duke/UNC/

UT-Austin/EBI ENCODE group made available on UCSC.

Open chromatin regions were identified using two independent

and complementary methods: DNaseI hypersensitivity (HS)

and Formaldehyde-Assisted Isolation of Regulatory Elements

(FAIRE), combined with chromatin immunoprecipitation (ChIP)

for selected regulatory proteins. Each method was verified by two

detection platforms: Illumina (formerly Solexa) sequencing by

synthesis, and high-resolution 1% ENCODE tiled microarrays

supplied by NimbleGen.

We used the First exon finder (firstEF) program to identify

putative promoter regions, defined as the 570 bp immediately

upstream of the first exon [19]. Many genes have completely non-

coding first exons (i.e. fall entirely within the 5’ UTR). It is

therefore important to check that the reported first exon for a gene

does not have an upstream splice donor as this would suggest that

the true first exon (and promoter region) has not been correctly

identified. FirstEF identifies splice donor sites and uses discrim-

inant functions to identify true first exons and their promoters

regions. We ran FirstEF on the hg18 (build 36) table within the

UCSC genome browser, it identified 74737 promoters (many

more than the number of putative genes because many genes have

alternative promoters and alternative first exons).

Our approach to testing for annotation enrichment was to

compare the proportion of annotated SNPs in the GWAS hit SNP

sets with the GWAS panel SNP sets. We determined standard

error bars and statistical significance based on expected binomial

Annotation of GWAS Hits
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variation in the GWAS hits (as the number of SNPs in different

annotation classes in the GWAS panel sets was large enough to

result in negligible error by comparison).

Linkage disequilibrium (LD) proxies
GWAS panels do not include every SNP in the genome, and it is

expected that many GWAS hits will only be markers for true

causal variants, lying outside the GWAS panel, that are associated

via linkage disequilibrium or ‘tagging’. We address this issue by

annotating our GWAS SNPs (both ‘hits’ and ‘nulls’) via LD-proxy.

A SNP was defined to be LD-proxy-annotated if it was in linkage

disequilibrium with an annotated SNP with r2. = 0.8. We used

the SNAP web-tool [20] to determine the LD proxies for all

GWAS SNPs, based on the HapMap Phase 2 CEU reference

population [21]. This population was chosen because most GWAS

studies in both datasets are largely made up of Caucasian

individuals.

We note that eQTL annotations already have an element of

linkage disequilibrium ‘built in’, as any SNP labelled an eQTL

may itself be only tagging a nearby causal SNP. However, our

eQTL dataset derives from a smaller GWAS panel (Illumina

300k), making further extension via LD-proxy necessary.

Bayes Factors for Bayesian analysis
Bayesian analysis provides the most suitable framework for

combining annotation information with evidence from an

association study [22]. The posterior odds (Opost) of true

association (meaning a direct or indirect causal effect) for the trait

of interest at a given SNP are defined as the ratio of the

conditional probability of causality, given the annotation and

association data, to the conditional probability of non-causality:

Opost~
Pr(CausalDAnnotData,AssocData)

Pr(NotCausalDAnnotData,AssocData)

This quantity can be found as the product of the following ratios

(given that the annotation data and association data are

independent once conditioned on causality):

Opost~OpriorxBFannotxBFassoc

Where Oprior are the prior odds before seeing any data, thus

Oprior = Pr(Causal)/Pr(Not Causal); BFannot is the Bayes Factor

for the annotation data, thus BFannot = Pr(Annot Data | Causal)/

Pr (Annot Data | Not Causal); and BFassoc is the Bayes Factor for

the association data, thus BFassoc = Pr(Assoc Data | Causal)/Pr

(Assoc Data | Not Causal).

Note that our definition of ‘true association’ includes the

possibility of indirect association via linkage disequilibrium. To

account for this, we import annotation data from other SNPs in

LD, as we describe above. We also note that BFassoc will typically

refer to a hypothesis of causality for a specific phenotype, whereas

the BFannot values that we consider below refer to a hypothesis of

causality for any phenotype that has been tested in a GWAS. Our

method is therefore motivated by the idea that the BFannot values

obtained under a general-phenotype definition of causality are a

reasonable guide to the BFannot values one would obtain for the

specific phenotype in question.

The prior odds, Oprior, are set in advance, and are usually set to

reflect a low prior belief that any one given SNP in the human

genome is causally related to the phenotype in question (as indeed

reflected by the small number of GWAS hits found so far for most

complex traits). For example, Oprior = 1025 was used by the

Welcome Trust Case Control Consortium [2]. In cases where only

the relative ranking of SNPs is of interest (for example, where a

fixed number of SNPs to be taken forward for follow-up), then the

value of Oprior is unimportant as it will not affect the relative

rankings of Opost.

The Bayes Factor for association, BFassoc, is calculable from

GWAS data either via direct computation of the relevant integral

[2] or via an approximation which removes the need for

integration [23].

The Bayes Factor for annotation, BFannot is estimated

empirically from the GWAS hit data. The estimated value is the

proportion of a given annotation class seen in the set of hit SNPs

divided by the proportion seen in the set of non-hit SNPs. Since hit

SNPs make up a small fraction of all SNPs, we shall use the

annotation proportion seen in unselected GWAS panel sets for this

latter quantity.

Application to real data
Application of our method to real data would require the

following steps: (1) decide on prior odds (if absolute rather than

relative Opost values are required); (2) calculate BFassoc from

GWAS data; (3) calculate BFannot from GWAS hit database data;

(4) calculate posterior odds using the formula given above. To

facilitate our method, we have made available software for

calculating BFassoc from PLINK output files, and have created a

file containing BFannot values for all the SNPs on the Affy500 and

the Illu550 panels, indicating their annotation status for the three

categories under study as well as BFannot in the range that we

recommend using. These resources are available from our website:

http://www.kcl.ac.uk/schools/medicine/research/genetics/research/

clusters/bse/weale/software.

We tested our method on a real dataset. We compared the rank

of the BFassoc with the rank of the product of the BFassoc and the

BFannot in the WTCCC1 Crohn’s data[2]. We determined the

changes in rank of the 48 loci that have been recently determined

to be involved in the trait only 9 of which were demonstrated to be

strongly associated with the trait in the WTCCC1 study [24].

(Only 48 of the recently published 71 were used because the others

were neither present nor represented by proxies on the Affy500 or

Illu550 panels.) We also determined the rank change for 100 sets

of 48 randomly selected SNPs. We used the Wakefield method to

derive the BFassoc [23].

Results

General annotation enrichment and sensitivity analyses
A higher proportion of SNPs have functional annotation in the

GWAS hit datasets compared to the GWAS panel SNPs (Figure 1

and Table 1). The p-values for all these differences were less than

2.861025 which is equivalent to a level of 0.001 after Bonferroni

adjustment for multiple testing.

We observed that the Hindorff dataset had 13.6% of SNPs with

MAF,0.1, while the Johnson dataset had 29.8% of SNPs with

MAF,0.1, a similar figure was seen in the Affy500+Illu550 panel

(27.9%). This bias may be due to the fact that the Hindorff dataset

often only contains the most significant SNP in a region. It is likely

that such SNPs will have a relatively high MAF compared to

others in the region as it is hard for SNPs with very low MAF to

attain small p-values. To test the results for robustness against the

differences in MAF distributions, the proportion of annotation was

compared for SNPs with MAF ,0.1 and SNPs with MAF = .0.1

(Figure 2, panel A). The proportion of annotation was again found

to be lower in the Affy500+Illu550 panel than in either GWAS hit

datasets for all annotations. As the pattern with respect to the

Annotation of GWAS Hits
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GWAS panel SNPs was generally consistent across the MAF

range, we performed further analyses on the complete datasets

irrespective of MAF.

To establish whether the results from the three categories were

independent, we removed all SNPs that had a multiple annotation

or were a proxy for any SNP in another annotation category. The

patterns remained consistent (Figure 2, panel B). The remaining

analyses were performed on all SNPs, including those with

multiple annotations.

To investigate whether the results were specific to the chosen

‘null’ GWAS panel set, we compared the annotation proportions

seen in the Affy500-only and Illu550-only GWAS panels. Since

different SNP selection strategies were adopted by Affymetrix and

Illumina in constructing their panels, and in particular in the SNP

tagging approach used by Illumina, splitting the GWAS panel

dataset in this way allowed us to perform a sensitivity analysis with

respect to the different SNP selection strategies and their effect on

GWAS panel composition. We found consistently lower propor-

tions of annotation in all three GWAS panel sets, compared to

either GWAS hit sets (Figure 2, panel C). We therefore performed

further analyses using the combined Affy500+Illu550 set.

Estimating Bayes Factors
We suggest the use of Bayes Factors of 0.93 for SNPs without

annotation and within the range of 3.1–4.7 for cis eQTLs in open

chromatin, 2.9–3.5 for nsSNPs, 1.8–2.5 for promoter SNPs. These

ranges take into account the results from both datasets when

proxies of the annotated SNPs with r2s of . = 0.8 are included.

Figure 3 shows that when more stringent p-value thresholds are

used to define GWAS hits, the Bayes Factors increase. This

provides further evidence that annotation enrichment is not due to

some artefact, as this pattern is consistent with the proportion of

true GWAS hits increasing as p-value stringency increases. We

consider Bayes Factors calculated at the p-value cut-off of 1026 to

be the most appropriate for use. This p-value cut-off balances the

requirement for stringency that will enrich for selection of true hits

and lenience to ensure enough SNPs are included to allow a

reasonably accurate measure of the Bayes Factor.

Linkage disequilibrium proxies
We use ‘LD-proxy-annotations’ (see Methods) to address the

issue that many GWAS hits will not be directly causal, but will

only tag an off-panel causal variant by linkage disequilibrium.

However, our method relies on an arbitrary threshold (r2. = 0.8).

We therefore performed sensitivity analyses on the effect of LD

proxy threshold.

We performed most analysis using proxies with an r2 of . = 0.8

and tested the effect of this cut-off by performing analysis using

proxies with an r2 of 1, and analyses with no proxies at all. The

variation in threshold did not have much of an impact on the

results (Figure 4). There is some variation in Bayes Factors, but

there is no evidence that those calculated using LD proxies are

systematically biased.

eQTL definition
In our preliminary analysis we investigated cis eQTLs in open

chromatin only selecting the SNPs that had a p-value ranked in

the most significant 100,000. However we also calculated Bayes

Factors for both cis and trans eQTLs and for eQTLs with a p-value

ranked in the most significant 20,000. For each category we also

calculated Bayes Factors for all SNPs as well as only for those

SNPs in open chromatin (Figure 5).

In each direct comparison the SNPs in open chromatin had the

greater Bayes Factor. The most highly significant cis eQTL category

had the greatest Bayes Factor. The increase in stringency and

selection of only cis eQTLs both increase the Bayes Factor but it is

important to note that these are not independent selection criteria.

When the top 20,000 eQTLs are selected 74.9% of these are cis,

when the top 100,000 are selected only 30.3% of these are cis.

Application to real data
The rank of the BFassoc * BFannot was on average 10322 higher

than the rank of the BFassoc for the Crohn’s hits and 205 lower for

the null hits. Furthermore 21 of the Crohn’s hits moved up in rank

while the average number that moved up in the null set was only 4.

Discussion

Our study confirms the hypothesis that there are differences in

the proportion of functional annotation between GWAS hits and

Figure 1. Annotation proportions in the Hindorff and Johnson
GWAS hit datasets and a GWAS panel set. The proportion of
annotation is shown for three different categories (cis eQTL in open
chromatin, nsSNPs and promoter SNPs). ‘‘***’’ indicates p-values
,2.861025 ( = 0.001/36); ‘‘**’’ indicates p-values ,2.861024 ( = 0.01/
36); ‘‘*’’ indicates p-values ,1.461023 ( = 0.05/36). These thresholds
were chosen to reflect a Bonferroni correction of the 36 comparison
tests implicit in Figures 1 and 2. The error bars represent the standard
error of the estimated proportions (normal approximation to binomial
distribution). The GWAS panel set is comprised of a union of Affymetrix
500k and Illumina 550k panels.
doi:10.1371/journal.pone.0014808.g001

Table 1. GWAS SNP set annotation counts (with percentage
of total in brackets).

Hindorff Johnson Affy500+Illu550

Total (hit SNPs: P,1026) 1219 1576 961605

cis eQTLs in Open Chromatin 46 (3.8) 39 (2.5) 7791 (0.8)

ns SNPs 166 (13.6) 181 (11.5) 37856 (3.9)

promoter SNPs 97 (8) 89 (5.6) 30516 (3.2)

No annotation 1853 (87.6) 2380 (88.3) 908537(94.5)

For the GWAS hit SNP datasets, the number of SNPs with p-values ,1026 that
fall into each annotation categories is presented. SNPs in each annotation
categories include annotated SNPs and their linkage disequlibrium proxies.
doi:10.1371/journal.pone.0014808.t001

Annotation of GWAS Hits
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the background of GWAS panel SNPs. This trend is robust to

differences in GWAS panel SNP sets, different GWAS hit lists and

SNP allele frequency. The patterns are also independently seen in

each annotation category. This provides us with reassurance, given

the problems experienced both with accurately capturing all

GWAS hits and with defining a fully appropriate comparative

GWAS panel set. Our study highlights three categories of

functional annotation that appear to provide reliable enrichment

in GWAS data that can be used to empirically estimate Bayes

Factors for Bayesian analysis. Furthermore when applied to real

data our technique increases the rank of SNPs that have later been

shown to be hits.

In order to produce hit SNPs sets with reasonably large

numbers of SNPs, our definition of a GWAS ‘hit’ includes SNPs

with p-values greater than what is typically considered to be

genomewide significant. We accept that this increases the

proportion of false positives in our hit sets. However, our

sensitivity analyses show that annotation enrichment is still

noticeable in hit SNP sets with a lower p-value threshold

definition. We also note that the overall effect of false positives

Figure 2. Annotation proportions of subsets the hit datasets and a selection of GWAS panel sets. The proportion of annotation is shown
for three different categories (cis eQTL in open chromatin, nsSNPs and promoter SNPs). Significance levels and error bars are defined as in Figure 1.
Panel A is stratified by minor allele frequency, panel B contains only SNPs with unique annotations and panel C compares different GWAS panels.
doi:10.1371/journal.pone.0014808.g002

Annotation of GWAS Hits
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in the set of GWAS hits will be to shrink BFannot values towards 1,

so it will have a conservative effect on the use of annotation

information in combination with association data.

The robustness of these results across the datasets and indeed

the different ways of defining annotations and GWAS hits is

striking, particularly in relation to the eQTLs. The eQTLs in our

study and Nicolae et al’s [17] were both defined from lymphoblast

cell lines, but the eQTL dataset we used was defined in families

ascertained on the basis of a proband with asthma [18] whereas

Nicolae et al defined eQTLs using HapMap individuals. Nicolae

et al used a p-value cut-off which led them to define 40% of the

Hindorff dataset as eQTLs whereas we used a ranking system that

identified 2.5% of the Hindorff dataset as eQTLs. Furthermore

Nicolae et al controlled for MAF by sampling null SNPs with

matching MAF rather than comparing annotation within different

bins. Despite these differences in data and study design eQTL

enrichment is evident across both studies.

While the patterns of enrichment are broadly consistent, our

study also reveals some differences. The annotation proportions,

and derived Bayes Factors, from the Hindorff dataset are almost

always higher than from the Johnson dataset. There is also a

difference in the ranking of the three categories, in the Hindorff

dataset cis eQTLs always have the highest Bayes Factor and

promoter SNPs the lowest. This is the case in most but not all of

the analysis on the Johnson dataset. This reflects ascertainment

differences between the two datasets. One notable difference is the

number of SNPs included per study, with Johnson including 28 on

average and Hindorff only 5. This can be linked to a number of

factors. When Hindorff et al began collating their dataset they only

included one SNP in each associated region whereas the Johnson

dataset include all of them. The Johnson dataset also included

more hits where the information came from supplementary tables

and/or was derived from an alternate statistical test. The Bayes

Factors are also affected to some extent by the choice of reference

GWAS panel, by the inclusion or exclusion of LD proxies, and by

the choice of p-value threshold used to define GWAS hits.

It is not straightforward to arrive at an appropriate ‘null’ set of

GWAS SNPs, against which the annotation properties of a hit set

can be compared. For example, consider combining the results of

Figure 3. Bayes Factors estimated from GWAS hit sets defined
using a range of p-value cut-offs. The Bayes Factors are shown for
three different categories (cis eQTL in open chromatin, nsSNPs and
promoter SNPs). Panel A shows results derived using the Hindorff
dataset and Panel B results from the Johnson dataset. The GWAS panel
set is comprised of a union of Affymetrix 500k and Illumina 550k panels.
doi:10.1371/journal.pone.0014808.g003

Figure 4. Bayes Factors estimated with and without linkage
disequilibrium proxies for annotated SNPs. The Bayes Factors are
shown for three different categories (cis eQTL in open chromatin,
nsSNPs and promoter SNPs). Panel A shows results derived using the
Hindorff dataset and Panel B results from the Johnson dataset. The
GWAS panel set is comprised of a union of Affymetrix 500k and Illumina
550k panels.
doi:10.1371/journal.pone.0014808.g004

Figure 5. Estimated Bayes Factors for alternative eQTL
definitions. The GWAS panel set is comprised of a union of Affymetrix
500k and Illumina 550k panels.
doi:10.1371/journal.pone.0014808.g005
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one GWAS that used the Affymetrix GeneChip Human Mapping

500K panel with another that used the Illumina HumanHap

550K panel. These panels share about 15% of SNPs. Should the

annotation information for these SNPs held in common be

counted twice (summation approach) or only once (union

approach)? Our null hypothesis is not that all these GWAS hits

are false (we assume in fact that most are true), but rather that

their location is independent of any annotation information that

may be attached to them. The summation approach is appropriate

if we assume that the GWAS hits in the second study are

independent of the first study (e.g. unconnected diseases, no

common causal genetic mechanisms), while the union approach is

appropriate if the same hits are to be expected (e.g. same or very

similar disease, with both studies well powered). Given that both

datasets contain several GWASs on the same or similar

phenotypes, and given the growing evidence for some causal

effects spanning many diseases, the best situation would lie

somewhere between the two approaches. In addition to this

theoretical uncertainly, there is also considerable practical

uncertainty in ascertaining exactly which panels were used in

each study, especially in studies where more than one panel was

used. Even if the panels are known, the set of SNPs remaining after

QC may not be. The panel composition of each GWAS study is

important because there are between-panel differences in the

selection strategies for panel membership, based on features such

as minor allele frequency, linkage disequilibrium and location (e.g.

genic vs inter-genic), and all of these may impact on the

annotation proportions. Again the consistency of results accross

panels demonstrates the validity of the approach despite these

problems.

We accept that it will be difficult to determine exact values for

empirically derived Bayes Factors. However, there is sufficient

consistency in our study for us to suggest the use of Bayes Factors

within the range of 3.1–4.7 for cis eQTLs in open chromatin, 2.9–

3.5 for nsSNPs and 1.8–2.5 for promoter SNPs. If an investigator

chooses to increase weightings on the annotations they would use

the weight at the top of the range, if they wanted to limit the

influence of the annotation they would use a weight from the

bottom of the range. In those cases where more than one

annotation is attached to a SNP, either directly or via LD proxy,

our datasets are not large enough to present direct empirical

answers. We propose conservatively that the annotation with the

largest Bayes Factor be used in such cases, on the assumption that

a second observed annotation may increase but never decrease the

Bayes Factor of the first annotation.

We allowed GWAS panel and GWAS hit SNPs to acquire

‘‘annotation-via-LD-proxy’’, primarily because GWAS panel are

designed to detect association signals via tagging. In addition to

this the use of proxies increases the size of the datasets that we are

working with. An alternate approach would have been to amplify

the set of SNPs to include all LD proxies of all GWAS panel SNPs,

and indentify ‘‘hits-by-proxy’’ and ‘‘nulls-by-proxy’’. However,

under this approach is is not clear what to do with SNPs which are

simultaneously ‘‘hits-by-proxy’’ and ‘‘nulls-by-proxy’’, a problem

which is avoided by our approach.

In this study we have not differentiated GWAS hits by

phenotype, both because we are interested in general determinants

of causality and because stratifying the GWAS hits in this way

decreases the power to identify differences in the distributions of

the annotation between the datasets. However, we note that using

their alternative approach of defining eQTLs, Nicolae et al [17]

found that the enrichment was present across a number of

different phenotype classes, even those in which you would not

expect expression in the lymphoblast cell lines to play a role in the

disorder.

Due to advances in next generation sequencing technology [25],

large amounts of sequence variant data are now becoming

available, particularly focused on the discovery of rare pathogenic

variants. Bayes Factors can also be used to prioritise hits from such

datasets for follow up. In time, Bayes Factors will need to be

derived on the basis of the results of sequencing experiments as

these become public. In the interim, we note that MAF does not

appear to have a large influence on our estimated Bayes Factors

from GWAS data (Figure 2), which presents the possibility of using

the same Bayes Factors estimated here from GWAS data in

sequence analysis, until such time as enough relevant sequence

data becomes available.

The enrichment signal found in this study for different

functional annotation categories in GWAS hits is sufficiently

consistent, and the size of the enrichment sufficiently large, to

justify its use in Bayesian association analyses. More work is

needed to define the size of the signals in other annotation

categories, and to refine how rare variants identified by next

generation sequencing differ from common variants identified in

GWAS data.
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