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A B S T R A C T   

Purpose: It is vital to develop noninvasive approaches with high accuracy to discriminate the preserved ratio 
impaired spirometry (PRISm) group from the chronic obstructive pulmonary disease (COPD) groups. Radiomics 
has emerged as an image analysis technique. This study aims to develop and confirm the new radiomics-based 
noninvasive approach to discriminate these two groups. 
Methods: Totally 1066 subjects from 4 centers were included in this retrospective research, and classified into 
training, internal validation or external validation sets. The chest computed tomography (CT) images were 
segmented by the fully automated deep learning segmentation algorithm (Unet231) for radiomics feature 
extraction. We established the radiomics signature (Rad-score) using the least absolute shrinkage and selection 
operator algorithm, then conducted ten-fold cross-validation using the training set. Last, we constructed a 
radiomics signature by incorporating independent risk factors using the multivariate logistic regression model. 
Model performance was evaluated by receiver operating characteristic (ROC) curve, calibration curve, and de
cision curve analyses (DCA). 
Results: The Rad-score, including 15 radiomic features in whole-lung region, which was suitable for diffuse lung 
diseases, was demonstrated to be effective for discriminating between PRISm and COPD. Its diagnostic accuracy 
was improved through integrating Rad-score with a clinical model, and the area under the ROC (AUC) were 0.82 
(95 %CI 0.79–0.86), 0.77(95 %CI 0.72–0.83) and 0.841(95 %CI 0.78–0.91) for training, internal validation and 
external validation sets, respectively. As revealed by analysis, radiomics nomogram showed good fit and superior 
clinical utility. 
Conclusions: The present work constructed the new radiomics-based nomogram and verified its reliability for 
discriminating between PRISm and COPD.   

1. Introduction 

Preserved ratio impaired spirometry (PRISm), called the unclassified 
spirometry or restrictive pattern as well, is defined as the FEV1predicted 
< 80 %, even though the ratio of forced expiratory volume in 1 s (FEV1)/ 
forced vital capacity (FVC) ratio (≥0.70) is preserved [1]. The global 
prevalence of PRISm is remarkably high, with estimates ranging from 

5 % to 20 % in various populations [1,2]. PRISm is a precursor state to 
Chronic Obstructive Pulmonary Disease (COPD), a leading cause of 
morbidity and mortality worldwide [3]. Despite the high prevalence of 
PRISm, there is a significant lack of recognition among patients due to 
the non-specific or mild symptoms that are often present in the early 
stages of the condition. This lack of awareness, coupled with the absence 
of routine pulmonary function test, leads to a substantial number of 
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individuals with PRISm remaining undiagnosed. Identifying PRISm is 
crucial for early intervention and prevention strategies, which can 
mitigate the individual and societal impact of this disease. PRISm has 
been assumed as the precursor for COPD, which may be the candidate 
interventional target for preventing to develop COPD [4]. PRISm, that is 
identified, offers an opportunity for interventions that may prevent or 
delay the onset of COPD, thus reducing the significant morbidity and 
mortality associated with this disease [5]. As previously reported, over 
50 % of PRISm patients may progress into COPD in 5 years; but 15 % of 
people return to the normal spirometry [6,7]. As a result, PRISm may be 
seen as the early form of COPD occurrence. The distinction between 
PRISm and COPD is very important. Due to the mild clinical pre
sentations and a lack of routine PFT test, the clinical diagnosis of PRISm 
is often underdiagnosed. In contrast to PFT, the chest CT is more popular 
in the routine physical examinations. Moreover, PRISm is related to the 
airway disease and emphysema based on the imaging research, which 
may influence the progression into COPD [8,9]. According to one 
COPDGene research [10], PRISm patients are more likely to develop 
disease deterioration than mild COPD patients and experience more 
severe disease. Therefore, precise identification can provide valuable 
information for clinical classification and treatment selection, so as to 
help make decision of pretreatment. 

In clinical practice, PRISm and COPD are diagnosed through pul
monary function test (PFT). However, the conventional approach is 
limited by insensitivity and lack of reproducibility [11,12]. To be spe
cific, PFT is measured in a quite complicated process, and patients can 
difficultly understand or abide by the doctors’ requirements [13]. 
Additionally, PFT is unable to offer the intuitive anatomical details or 
morphological alterations, like bronchial wall thickening and emphy
sema subtype [14,15]. At present, an accurate, and repeatable tool is 
needed to make a differential diagnosis of PRISm and COPD patients 
more comprehensively based on chest computed tomography (CT) ex
amination. Relative to the Global Initiative for Chronic Obstructive Lung 
Disease (GOLD) criteria or additional imaging tools, CT is deemed to 
exhibit the highest effectiveness on COPD characterization and quanti
fication[16]. Experienced radiologists may not always capture the subtle 
changes in lung function that characterize PRISm. Furthermore, these 
methods can be subjective and vary between different radiologists, 
leading to potential misclassification. Radiomics features, which are 
unavailable to human naked-eyes, on the imaging of lung disease are 
considered to be the most updated for clinicians [17]. Nonetheless, a 
critical requirement for radiomics is the precise delineation of the region 
of interest (ROI); however, in COPD, the widespread distribution of 
pathological changes throughout the lungs makes it challenging to 
accurately outline the ROIs. This difficulty in defining ROIs limits the 
application of radiomics in COPD. To address this task, we used an 
automatic whole-lung algorithm for chest CT image segmentation. 
Previous research has demonstrated the predictive validity of fully 
automatic algorithm in COPD [18–20]. 

The present work focused on developing and validating a CT-based 
radiomics model based on the multicenter database to discriminate 
PRISm from COPD to overcome the underdiagnosis of PRISm due to the 
mild symptoms and lack of routine PFT test. 

2. Materials and methods 

2.1. Patients 

The present work gained approval from ethics committees of four 
study centers. No informed consent was needed since this was a retro
spective study (ClinicalTrials.gov registration number 
ChiCTR2300069929, CSD-COPD cohort). During the period between 
February 2013 and December 2022, 1066 patients from 1 center 
received complete PFT and were diagnosed as PRISm or COPD. Medical 
records of all patients were reviewed, which included clinical features, 
and serial chest CT scans. Patients with all the following criteria were 

included: 1) chest CT and PFT in one hospital; 2) chest CT and PFT with 
an interval less than 2 weeks; and 3) those with available thin-slice (<
2 mm) chest CT images. Patients with any of the following criteria were 
excluded: 1) those with additional underlying thoracic disorder (pul
monary atelectasis, pneumonia, lung nodules > 6 mm or masses, pleural 
effusion or asthma); 2) cancers; and 3) those undergoing spine implants 
or with extensive image artifacts. Finally, 1066 patients (789 males, 277 
women; mean age, 65.01±11.64 years) were enrolled and randomized 
as training (n = 651) and internal validation (n = 278) in a 7:3 ratio. 
Patients recruited from the other 3 centers were used assigned to the 
validation (n =137) cohort.(Fig. 1) 

2.2. Acquisition of CT images and PFTs 

The CT acquisition parameters are presented in Supplement. The PFT 
apparatus (Ganshorn Medizin Electronic GmbH; CHEST Multifunction 
Spirometer HI-801, Japan; Masterscreen PFT Pro, Carefusion, 
Netherlands; Carefusion GmbH, Hoechberg, Germany) was used to 
measure pulmonary function parameters (FEV1, FVC). In COPD, the PFT 
diagnostic criteria were shown below: FEV1/FVC < 0.7 and FEV1 in
crease by < 200 ml after bronchodilator use. On the contrary, patients 
with FEV1/FVC ≥ 0.70 and FEV1 < 80 % were deemed as PRISm. Based 
on the above criteria, patients in training, internal validation, and in
dependent external validation sets were further classified as COPD or 
PRISm group. 

2.3. Image segmentation and preprocessing of whole‑lung CT images 

The deep-learning model of open access U-net (R231) (https://gith 
ub.com/JoHof/lungmask) was used to automatically segment CT im
ages. The model is trained with diverse large datasets covering various 
visual variability, and its reliability has been demonstrated [21]. 

After automatic segmentation of both left and right lungs, both lungs 
were integrated into the pooled ROI (Fig. S1). 

Manual segmentation has been frequently recognized as the ground 
truth. Therefore, this study evaluated whether automatic segmentation 
results were consistent with manual segmentation results based on 20 
patients randomly selected from our datasets. CT images from totally 20 
patients were manually segmented with ITK-SNAP software (version 
3.8.0, www.itksnap.org). Next, the Dice index, which helps objectively 
quantify spatial overlap of both contours, was evaluated to explore 
whether fully automatic segmentation results conformed to manual 
counterparts. Afterwards, automatic segmentation was performed in the 
rest patients. 

Before the extraction of radiomic features, image preprocessing was 
completed in three steps. At first, linear interpolation was used for 
resampling images to 1 mm×1 mm×1 mm. Secondly, a bin width of 25 
was used for grayscale discretization to reduce the effect of imaging 
noise. Thirdly, the mixed noise during image digitization was removed 
through log and wavelet image filters, while high- or low-frequency 
features were acquired. 

2.4. Collection and screening of radiomic features 

Using open-source package PyRadiomics (version 3.0.1, https: 
//pyradiomics.readthedocs.io/en/latest/), totally 1218 lung radiomic 
features were obtained in every ROI, including the first-order, gray level 
co-occurrence matrix, gray level size zone matrix, gray level run length 
matrix, gray level dependence matrix, and shape features. Detailed 
radiomics features are supplemented in the supplementary materials. All 
radiomic features obtained using the software were in consistence with 
the image biomarker standardization initiative. Then, the features were 
normalized with the Z-score method. Differences at the numerical scale 
were removed. 

Then, the optimal radiomic features were selected using in steps 
below. Firstly, we eliminated unnecessary features whose correlation 
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coefficient with other features was >0.90. Secondly, unnecessary and 
unrelated features were removed through the minimal redundancy 
maximal relevance algorithm, which has been demonstrated with high 
effectiveness and reliability in selecting radiomic features and contrib
utes to considering feature importance and correlation for selecting the 
optimal feature subset [22,23]. At last, ten-fold cross-validation was 
conducted through penalty parameter adjustment and the least absolute 
shrinkage and selection operator (LASSO) regression algorithm. 
Notably, we chose the optimal feature dataset that had the lowest 
cross-validation binomial deviation, and defined non-zero coefficients as 
weights of chosen features, which represented the association of feature 
with COPD. LASSO has been extensively utilized as an embedding 
approach to select radiomic features from high-dimensional data[21]. 
Eventually, the chosen features were linearly combined with coefficient 
vectors to determine the Rad-score values of all patients, so as to 
construct the radiomic model. 

2.5. Model establishment, radiomic nomogram, and performance 
assessment 

Three models, namely, clinical, radiomic, and combined models 
were established. Risk variables with statistical significance were ob
tained from univariate logistic regression. Later, both clinical and 
combined models were established by multivariate regression. The 
combined model was visualized by producing the radiomic nomogram. 
It was developed by combining the significant variables of the clinical 
factors and the Rad-score. Its prediction performance was determined. 
Area under the curve (AUC), accuracy, sensitivity, specificity, positive 

predictive value (PPV), and negative predictive value (NPV) were used 
to evaluate model performance. AUC of these three models were 
compared by DeLong tests. Afterwards, the combined model was cali
brated based on calibration curves (Hosmer–Lemeshow test) to evaluate 
the goodness-of-fit of the nomogram. Decision curve analysis (DCA) was 
used for assessing its clinical utility. 

2.6. Statistical analysis 

In study work, statistical analysis was carried out with R software 
(version 4.2.2; http://www.Rproj ect.org) and IBM SPSS Statistics 
(version 26.0; IBM Corp., New York, USA). Measurement data were 
indicated by mean ± standard deviation. Continuous data consistent 
with normal distribution were compared by Student’s unpaired t-test, 
while those with non-normal distribution were explored by Man
n–Whitney U test. Chi-square test was used for comparing categorical 
variables between groups. To obtain independent predicting factors, 
multivariate regression was carried out. P < 0.05 represented significant 
difference. “glmnet” package was utilized for LASSO regression. More
over, “rms” package was used to draw calibration plots and conduct 
multivariate logistic regression. The receiver operating characteristic 
(ROC) curves were drawn with the ROC package, while DCA was carried 
out with “rmda” package. 

Fig. 1. Patient recruitment process at four centers.  
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3. Results 

3.1. Evaluation of the consistency between fully-automatic and manual 
segmentation 

The Dice index, which objectively measures spatial overlap of two 
regions, was used to evaluate segmentation results. Therefore, the 
average Dice index was (0.97 ± 0.06) between automatic and manual 
segmentation (Fig. S2). 

3.2. Clinical features comparison between COPD and PRISm 

Table 1 and Table S2 display patient characteristics in training and 
validation sets. There were 651, 278 and 137 in training, internal vali
dation and external validation sets, respectively. Age between PRISm 
and COPD groups was of significant difference (p>0.05) among three 
sets. However, no significant difference was observed in height among 
three sets. Weight and body mass index (BMI) differed significantly 
between two groups of training and internal validation sets. Gender was 
significantly different between two groups only in the training set. In 
addition, the smoking status also only exhibited statistically significant 
difference in internal validation set. 

3.3. Feature screening and radiomics signature establishment 

There were 1218 features obtained on segmented chest CT images 
from each of the 1,066 subjects. Following the aforementioned 
screening methods, an optimized feature subset was selected based on 
LASSO, and the model was established after appropriate processing. 
When selecting the best radiomics features, LASSO method with 10-fold 
cross validation is applied to process the results, as shown in Fig. 2A, B. 
When the feature number was determined, we chose the feature subset 
with greatest prediction ability and assessed the associated coefficients. 
At last, 15 radiomics features with high importance were chosen, and 
the radiomics signature was established (Fig. 2C). The chosen features 
were then weighted by the corresponding coefficients, and the weights 
were added up to obtain the Rad-score. The formula used to calculate 
Rad-score can be obtained from the Supplementary Results. According 
to our results, AUCs of our constructed radiomics signature were 0.82 
(95 % CI: 0.79–0.85), 0.77 (95 % CI: 0.71–0.82) and 0.80 (95 % CI: 
0.72–0.87) in training, internal validation and external validation sets 
separately (Fig. 3). 

3.4. Establishment and validation of the clinical model 

According to univariate regression of clinical features, age, weight, 
BMI, smoking status and gender were dramatically associated with 
COPD. Based on multivariate regression, age, weight, and gender 

independently predicted COPD (Table 2). Finally, logistic regression was 
adopted for constructing the clinical model by incorporating factors 
including age, weight, and gender. Based on our findings, AUCs were 
0.68 (95 % CI: 0.64–0.72), 0.62 (95 % CI: 0.56–0.69) and 0.73 (95 % CI: 
0.65–0.82) in training, internal validation and external validation sets, 
respectively. 

3.5. Radiomics nomogram development and validation 

Multivariate logistic regression was performed to construct the 
nomogram model by incorporating age, weight, gender, and radiomics 
signature (Fig. 4A). Using patients from the three sets, our constructed 
nomogram exhibited high calibration performance, and Hosmer- 
Lemeshow test did not reveal any obvious difference in training versus 
two validation sets (P>0.05), suggesting no deviation from the fit 
(Fig. 4B-D). The prediction performance in the discrimination between 
PRISm and COPD of our nomogram for training and two validation sets 
were 75 %, 70 % and 73 %, separately, the sensitivities were 68 %, 73 % 
and 90 %, while specificities were 83 %, 68 % and 56 %, separately. 
Besides, nomogram model demonstrated AUCs of 0.82, 0.77, and 0.84 in 
three datasets for distinguishing between PRISm and COPD patients 
(Table 3, Fig. 3). The Delong test indicated that both nomogram and 
radiomics models outperformed the clinical model in the training set 
with significant differences (Z=7.42 and 6.53, p<0.001), while their 
diagnostic performances were comparable (Z=0.86, p=0.39). Similarly, 
in the internal validation set, nomogram and radiomics models sur
passed the clinical model with significant differences (Z=5.09 and 4.34, 
p<0.001), yet showed no significant difference from each other 
(Z=0.89, p=0.37). In the external validation set, nomogram model was 
superior to both the clinical and radiomics models with statistical sig
nificance (Z=4.63 and 2.96, p<0.001 and p=0.003), though the radio
mics model’s performance was not significantly different from the 
clinical model (Z=1.30, p=0.19). In conclusion, nomogram model out
performs the clinical model. The Decision Curve Analysis (DCA) is a 
novel and clinically practical method used for evaluating and comparing 
diagnostic models. It provides a quantitative approach to assess the 
clinical utility of a prediction model by integrating the predicted prob
abilities with the decision thresholds that matter to patients or physi
cians. According to DCA results, our constructed nomogram model 
produced greater net benefits than clinical model for training set within 
the probability range of 0.1–1 (Fig. 4F). It provides actionable infor
mation that can be used to tailor medical interventions to individual 
patients, thus enhancing the clinical practicality of the nomogram 
model. An example of the nomogram in use is shown in Fig. 5. Similar to 
the points scoring system, we assigned points for each predictor and then 
equated these predictors with the risk of PRISm. We can read the top 
score scale upward from the predictors to determine the points score 
associated with patient age, gender, weight, and the Rad-score. Once a 

Table 1 
Clinical Factors of PRISm and COPD Patients in the Training, Internal validation and External validation Sets.  

Clinical 
Factors  

Training Set (n ¼651) Internal validation Set (n ¼278) External validation Set (n ¼137)   

PRISm (n ¼
338) 

COPD (n ¼
313) 

P value PRISm (n ¼
142) 

COPD (n ¼
136) 

P 
value 

PRISm (n ¼
69) 

COPD (n ¼
68) 

P value 

Age  63.6±11.3 67.5±9.7  <0.001 63.6±13.6 67.4±10.1  0.008 55.9±1.9 68.2±1.0  <0.001 
Gender Male 222 (65.7) 258 (82.4)  <0.001 108 (76.1) 109 (80.1)  0.497 44(63.8) 48(70.6)  0.722  

Female 116 (34.3) 55 (17.6)   34 (23.9) 27 (19.9)   25(36.2) 20(29.4)   
Height  162.9±8 163.2±7.5  0.606 174.4±126.2 163.6±7.7  0.320 164.5±0.9 162.9±0.9  0.293 
Weight  67.1±13.4 64±11.3  0.002 67.9±11.9 62.8±11.1  0.0002 67.4±2.0 61.8±1.2  0.067 
BMI  25.2±4.4 24±3.6  <0.001 25.1±4.5 23.4±3.4  0.0003 24.7±0.6 23.3±0.4  0.081 
Smoking 

status 
Current 
Smoker 

77 (22.8) 85 (27.2)  <0.001 34 (23.9) 39 (28.7)  0.666 42(60.9) 10(14.7)  <0.001  

Former 
Smoker 

38 (11.2) 71 (22.7)   24 (16.9) 21 (15.4)   10(14.5) 18(26.5)    

Non-smoker 223 (66.0) 157 (50.2)   84 (59.2) 76 (55.9)   17(24.6) 40(58.8)    
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score has been assigned to each predictor, an overall score is calculated. 
Then, the total score is converted to the probability of COPD by reading 
the associated probability of COPD from the total point scale. 

4. Discussion 

The present retrospective work applied the U-net-based deep 
learning (DL) model to segment the whole lung image and constructed 
the radiomics nomogram for differentiating PRISm from COPD subjects. 

Fig. 2. Screening of radiomics features by the least absolute shrinkage regression and the histogram showing Rad-score of those selected features. A. 10-fold cross- 
validation conducted to select tuning parameter (λ) in LASSO model on the basis of minimum criteria. Binomial deviance obtained through cross-validation by LASSO 
regression was plotted with log (λ). The best λ value was chosen to be 0.007. B. 10-fold cross-validation was performed to select the value in a for drawing the black 
vertical line. The 15 obtained features with nonzero coefficients were shown in the plot. C. The x- and y-axes stand for radiomics coefficients and those 15 selected 
radiomics features separately. 

Fig. 3. AUC of Rad-score, clinical model, and combined model for training, internal validation, and external validation sets. The combined model outperformed 
clinical model and Rad-score in predictive performance for three sets. 
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The results showed that our constructed radiomics nomogram that 
incorporated clinical factors and radiomics signature exhibited the 
highest prediction performance in three sets, and the AUCs were 0.82, 
0.77 and 0.84, separately. This radiomics nomogram can be the non- 
invasive, user-friendly, and individualized approach for differentiating 
PRISm from COPD sets with high performance. 

Univariate and multivariate logistic regression identified age, gender 
and weight as independent predictive factors that discriminated PRISm 
from COPD. The findings suggest that older, less-weight male patients 
are more likely to be diagnosed with COPD, indicating a cause for 
concern in this demographic. In turn, young female patient with greater 
weight is associated with increased risk of PRISm. One study [24] found 
that PRISm patients are young, and have an increased risk of diabetes 
and BMI compared to COPD patients, conforming to our findings on age 
trajectories. The increases in body mass and adiposity have been 
recognized to affect lung volume and spirometry measurements[25–27]. 
Proportionate reduction of FEV1 and FVC and the resulting unchanged 
FEV1/FVC ratio can be detected among patients with obesity and 
overnight. Nonetheless, decreases in FEV1 and FVC levels can be quite 
small even though they reach the statistical significance level, and, their 
levels often remain in the normal range, even in extremely obese pa
tients [26,27]. In an additional study of 2229 patients (including 141 
PRISm patients and 1743 COPD patients), Sang[28] reported that the 
elderly and male patients accounted for greater percentages among 
COPD patients, conforming to prior results [29]. 

Firstly, CT scanning is widely available in clinical practice and can 
provide a wealth of high-resolution data that captures the complex 
structural changes within the lungs. Secondly, the prevalence of CT 
scans far exceeds that of PFT, particularly in the context of lung cancer 
screening. More importantly, CT image-based radiomics can objectively, 
reliably and quantitatively assess images, without being affected by 
inter-reader variability. The application of radiomics, especially whole 
lung radiomics, in COPD has been proven to be feasible [30], not only in 
the diagnosis of COPD, but also predicting comorbidities of COPD and 
severity evaluation of COPD [31,32]. Among 1,218 radiomics features 
collected on CT images, fourteen radiomics features extracted on Lap
lacian of Gaussian (LoG) and wavelet transformed images, and one 
shape radiomics feature were obtained to be significant elements for 
constructing a radiomics model, and the AUCs were 0.82, 0.77, and 0.80 
for three sets, separately. Texture features contribute to quantifying data 
that can hardly be perceived intuitively, like tissue distribution and 
texture patterns [33]. To extract radiomic features, LoG was utilized to 
preprocess images. The LoG filter is capable of smoothing images by 
diverse parameter scale settings, thus contributing to decreasing the 
noise interference. Besides, it helps provide more textural details, 
thereby increasing the phenotypic feature capturing effectiveness for 
mapping to heterogeneity [34]. Additionally, when original images are 
turned to diverse frequency domains, wavelet transform helps obtain 
multiscale image and multifrequency domain information [35]. For 
disorders that can hardly be depicted using simple visual features, the 
wavelet transformed images-extracted high-dimensional abstract fea
tures usually offers diverse perspectives for capturing the concealed 
information not easy to be seen under visual evaluation. 

In this work, our constructed clinical model achieved low diagnostic 
accuracy of 0.64, 0.58, and 0.67 for three sets, separately. While our 
developed nomogram outperformed this clinical model in all the three 
sets, and its AUCs were 0.82, 0.77, and 0.73, while its diagnostic accu
racy was 0.75, 0.70, and 0.73, separately, in three sets. 

Relative to prior reports, this work shows the following strengths. 
Firstly, based on the previous study [36], a discrimination model was 
established to diagnose and evaluate the PRISm according to CT quan
titative parameters from inspiratory/expiratory CT images. The AUC of 
quantitative model for differentiating between mild-to-moderate COPD 
and PRISm was 0.852. We believe that the acquisition and analysis of 
paired inspiratory/expiratory CT images provide more valid informa
tion. However, expiratory scans are needed, which are usually not 
available in clinic and induce more radiation exposure to patients, has 
limited the generalizability of the technique. According to our results, 
our radiomics nomogram on the basis of an inspiration CT scan showed 
similar performance in differentiating between PRISm and COPD (AUC 
= 0.824). Secondly, nodule ROI segmentation accounts for a key process 
when extracting radiomics features. The U-net-based DL model was 
adopted to segment the whole lung CT images for improving segmen
tation accuracy and reliability. Typically, the whole lung segmentation 
results based on U-net-based DL model was consistent with manual 
segmentation. Thirdly, unlike conventional statistical models that pre
sent outcomes through numerical equations, our constructed radiomics 
nomogram, which can generate individual probabilities of COPD 
occurrence by integrating Rad-score and easily available deterministic 
clinical variables, was particularly valuable in situations that demand 
quick, reliable results and where the ability to visualize and interpret 
complex data was important. It outperformed the clinical model, and 
AUCs between the two models were significantly different in all the 
three sets (Delong test: p < 0.001, p < 0.001, and p < 0.001, separately). 

Nonetheless, certain limitations should be noted in this work. Firstly, 
there was a risk of selection bias in this retrospective research. Although 
selection bias is inevitable, we still adopt various methods (eg, data 
standardization or normalization and regularization) to avoid it as much 
as possible. However, retrospective studies can leverage the existing 
data to provide valuable insights for distinguishing COPD from PRISm, 
laying the foundation for future prospective studies. Secondly, we just 
assessed CT radiomics features, but not the commonly used CT quali
tative and quantitative parameters useful for assessing COPD. At last, 
there might be certain side effects of CT images obtained using diverse 
scanners, while image resampling and data preprocessing might reduce 
rather than remove the biases. In our opinion, radiomic features facili
tates to discriminate between these two diseases through the repro
ductive and quantitative use of several parameters, thus improving 
routine diagnosis and supporting clinical decision-making in a cost- 
effective manner. We suggest that future studies consider adapting our 
method to different patient populations, which may exhibit unique 
clinical characteristics that could influence the outcomes. This could 
include patients with comorbidities, or those from diverse geographical 
regions. More advanced AI algorithms, such as deep learning, regarding 
radiomics, especially those focusing on chest CT follow-up and radio
mics feature alterations, are needed. Additionally, to increase the 

Table 2 
Univariate and Multivariate Analysis in Relation to Risk Factors in the Training Set.  

Clinical Risk Factors Univariate Analysis Multivariate Analysis 
(Clinical model parameters) 

Multivariate Analysis 
(Combined model parameters) 

OR (95 % CI) p Value OR (95 % CI) p Value OR (95 % CI) p Value 

Age 1.04(1.02–1.05)  <0.001 1.03(1.01–1.05) <0.001 1.02(1.01–1.04) 0.01 
Weight 0.98(0.97–0.99)  0.002 0.97(0.96–0.98) <0.001 0.99(0.98–1.01) 0.45 
Height 1.00(0.99–1.0)  0.508 - - - - 
BMI 0.92(0.89–0.96)  <0.001 - - - - 
Smoking 0.75(0.63–0.91)  0.003 - - - - 
Gender 0.41(0.28–0.59)  <0.001 0.34(0.23–0.51) <0.001 0.93(0.58–1.48) 0.75 
Radscore 3.14(2.59–3.80)  <0.001 - - 3.01(2.46–3.70) <0.001  
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generalizability of findings, we suggest that future studies use our 
method in more multicenter trials. This approach would help validate its 
applicability across different healthcare settings and potentially identify 
regional variations in treatment efficacy. 

5. Conclusion 

The radiomics nomogram is developed in this study for differenti
ating PRISm from COPD groups, which may be used as the virtual 
approach for clinical radiologists. Furthermore, based on the results of 
our study and future validation using larger samples, maybe we will 

Fig. 4. The radiomics nomogram performance and DCA of diverse models. (A) Representation of radiomics nomogram constructed by incorporating clinical factors 
and radiomics signature. Calibration curves for radiomics nomogram of (B) training, (C) internal validation and (D) external validation sets, respectively. (E) DCA of 
diverse models. 
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translate the nomogram into a visual and operational application, which 
can be used for real-time discriminating of PRISm and COPD without 
PFT. 

Ethics approval and consent to participate 

Informed consent: Written informed consent was waived by the 
Institutional Review Board. 

Ethical approval: Institutional Review Board approval was obtained. 
ClinicalTrials.gov registration number ChiCTR2300069929, CSD- 

COPD cohort 
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2022YFC2010002 and 2022YFC2010005), the Medical Imaging Data
base Construction Program of National Health Commission 
(YXFSC2022JJSJ002), the Clinical Innovative Project of Shanghai 
Changzheng Hospital (2020YLCYJ-Y24), the Program of Science and 
Technology Commission of Shanghai Municipality (21DZ2202600), and 
the Shanghai Sailing Program (20YF1449000). 

Table 3 
Diagnostic performances of the three models in three sets.  

Model  Accuracy Accuracy 
Lower 

Accuracy 
Upper 

Sensitivity Specificity PPV NPV AUC (95 %CI) p-value of DeLong-Test 

vs Radiomics vs Nomogram 

Clinics Training set  0.64  0.60  0.68  0.57  0.71  0.64  0.64 0.68(0.64–0.72) <0.001 <0.001  
Internal validation set  0.58  0.52  0.63  0.55  0.60  0.57  0.58 0.62(0.56–0.69) <0.001 <0.001  
External validation set  0.66  0.58  0.74  0.54  0.78  0.71  0.64 0.73(0.65–0.83) 0.19 <0.001 

Radiomics Training set  0.76  0.72  0.79  0.68  0.83  0.79  0.74 0.82(0.79–0.85) - 0.39  
Internal validation set  0.70  0.64  0.75  0.63  0.77  0.72  0.68 0.77(0.71–0.82) - 0.37  
External validation set  0.73  0.65  0.80  0.57  0.88  0.83  0.68 0.80(0.72–0.87) - - 

Nomogram Training set  0.75  0.72  0.79  0.68  0.83  0.78  0.73 0.82(0.79–0.86) - -  
Internal validation set  0.70  0.64  0.75  0.73  0.68  0.63  0.78 0.77(0.72–0.83) - -  
External validation set  0.73  0.65  0.80  0.90  0.56  0.67  0.84 0.84(0.78–0.91) 0.003 -  

Fig. 5. The risk scores of COPD in two patients were calculated by using the nomogram. A. Thin‑slice chest CT images of PRISm in a 51‑year‑old woman with height 
163 cm, non‑smoker, Radscore ‑3.06. C. The nomogram shows that the total score was 174 points, corresponding to the probability of developing COPD is 
approximately 2.25 %. B. Thin‑slice chest CT image of COPD in a 72‑year‑old male subject. He is 162 cm tall, former smoker, and has a Radscore of 4.68. D. The total 
score of the nomogram was 254, corresponding to the probability of developing COPD of approximately 99.6 %. PRISm Preserved Ratio Impaired Spirometry, COPD 
chronic obstructive pulmonary disease, CT computed tomography, FEV1/FVC ratio of forced expiratory volume in 1 s to forced vital capacity. 
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