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Sex-specific Mendelian randomization study of
genetically predicted insulin and cardiovascular
events in the UK Biobank
Jie V. Zhao1, Shan Luo1 & C. Mary Schooling 1,2

Insulin drives growth and reproduction which trade-off against longevity. Genetically pre-

dicted insulin, i.e., insulin proxied by genetic variants, is positively associated with ischemic

heart disease, but sex differences are unclear, despite different disease rates and repro-

ductive strategies by sex. We used Mendelian randomization in 392,010 white British from

the UK Biobank to assess the sex-specific role of genetically predicted insulin in myocardial

infarction (MI) (14,442 cases, 77% men), angina (21,939 cases, 65% men) and heart failure

(5537 cases, 71% men). Genetically predicted insulin was associated with MI (odds ratio

(OR) 4.27 per pmol/L higher insulin, 95% confidence interval (CI) 1.60 to 11.3) and angina

(OR 2.93, 1.27 to 6.73) in men, but not women (MI OR 0.80, 95% CI 0.23 to 2.84, angina OR

1.10, 95% CI 0.38 to 3.18). Patterns were similar for insulin resistance and heart failure.

Mitigating the effects of insulin might address sexual disparities in health.
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Cardiovascular disease (CVD) is the leading cause of global
morbidity and mortality1, accounting for over 30% of all
deaths2. This burden of disease calls for more effective

prevention and treatment strategies. Notably, men have higher
incident rates of ischemic CVD than women, for reasons which
have not been fully explained by traditional cardiovascular risk
factors, such as smoking, lipid profile and blood pressure3.
Clarifying the sex disparity in CVD might provide clues to
identifying new targets as well as addressing sexual disparities in
health.

A novel explanation for the sex difference, from the perspective
of evolutionary biology, is that longevity trades-off against growth
and reproduction, with possibly sex-specific trade-offs for
reproductive investment versus cardiovascular risk4,5. Genetic
evidence consistent with ischemic heart disease (IHD) trading off
against fertility exists6. Genetically predicted gonadotrophin
releasing hormone increases IHD7. Applying this concept to
disease prevention and treatment, factors that downregulate
growth or reproduction might lower the burden of CVD8, dif-
ferentially in men and in women, as drivers of reproduction are
sex specific. Insulin is a key driver of growth and
reproduction9,10, which is responsive to nutritional factors, such
as a high-fat diet11, and to treatment with insulin and insulin
secretagogues12.

Insulin is an invaluable life-saving treatment for type 1 dia-
betes13. Unexpectedly and controversially, use of insulin has long
been suspected to play a role in CVD14, especially in men15.
Genetically predicted insulin and insulin resistance are con-
sistently positively associated with higher risk of IHD16–18,
independent of adiposity18. Patients switching from metformin to
an insulin secretagogue, sulphonylurea, have a higher risk of
myocardial infarction (MI)19. Higher insulin doses are also
associated with an unfavorable cardiovascular risk factor pro-
file20. No large randomized controlled trials (RCTs) have assessed
the role of insulin in CVD, and it may not be ethical to do so. In
these circumstances, Mendelian randomization (MR) taking
advantage of genetic endowment randomly allocated at concep-
tion21, can obtain unconfounded estimates. Here, we used MR to
assess overall and sex-specific effects of insulin, and for com-
pleteness insulin resistance, on MI, angina, heart failure and their
key risk factors (low-density lipoprotein (LDL) cholesterol, apo-
lipoprotein B (ApoB)22, and blood pressure) using individual data
in a large cohort, the UK Biobank23, or the largest available
genome-wide association study (GWAS). Red blood cell attri-
butes have long been suspected to be relevant to cardiovascular
disease24, however, which trait matters is not well established.
The most recent evidence from an MR study suggests the red
blood cell trait, reticulocyte count, may be a causal factor for
IHD25, so we similarly examined the role of insulin and insulin
resistance in reticulocyte count. We also validated the findings for
MI using summary statistics from a large genetic study, CAR-
DIoGRAMplusC4D 1000 Genomes26.

Results
Genetic instruments for insulin and insulin resistance. We
identified 12 single-nucleotide polymorphisms (SNPs) indepen-
dently predicting insulin and 12 SNPs for BMI-adjusted insulin
(extracted from Table 1 of the GWAS of Scott et al.27), as
previously17,28. All reached genome-wide significance (5 × 10−8).
The insulin resistance genetic score was constructed based on 10
SNPs (rs4846565, rs10195252, rs2943645, rs17036328, rs3822072,
rs6822892, rs4865796, rs459193, rs2745353 and rs731839), as in
the previously validated score29.

Of the 12 SNPs related to insulin, we dropped 5 SNPs due
to pleiotropy, specifically 2 SNPs (rs10195252 in GRB14 and

rs9884482 in TET2) related to alcohol drinking (p value 9.4 × 10
−7 and 2.3 × 10−6, respectively), 2 SNPs (rs1167800 in HIP1 and
rs7903146 in TCF7L2) related to BMI (p value 8.7 × 10−13 and
9.8 × 10−7, respectively), and 1 SNP (rs1421085) in the FTO gene
(a well-established obesity predictor), so 7 SNPs were used
(Table 1 and Supplementary Table 1).

Of the 12 SNPs related to insulin adjusted for BMI, we dropped
3 pleiotropic SNPs, specifically, 2 SNPs (rs974801 in TET2 and
rs10195252 in GRB14) related to alcohol drinking (p value 8.5 ×
10−7 and 9.4 × 10−7, respectively) and 1 SNP (rs6912327 in
C6orf107) related to BMI (p value= 1.6 × 10−14) in the UK
Biobank, leaving 9 SNPs (Table 1).

In sensitivity analysis for insulin resistance in men, we further
dropped 1 SNP (rs3822072 in FAM13A1) associated with BMI in
men (p value= 5.5 × 10−6) but not women. Given the unclear
causal role of alcohol in CVD, we kept the SNPs related to alcohol
drinking in sensitivity analysis. For completeness, we also kept the
SNPs related to BMI (Table 1).

Associations with MI, angina and heart failure. Genetically
predicted insulin, BMI-adjusted insulin and insulin resistance
score were all positively associated with MI overall (Table 2 and
Supplementary Fig. 1) and also in men, but not in women (p
values for sex differences were 0.02, 0.04 and 0.04 respectively)
(Table 2). The overall association was validated in CARDIo-
GRAPMplusC4D 1000 Genomes (Table 2). Insulin and insulin
resistance were also associated with higher risk of angina in men
only (Table 2), with a more obvious sex difference for BMI-
adjusted insulin (p value for sex difference 0.04), than insulin (p
value for sex difference 0.08) (Table 2). The pattern of associa-
tions were generally robust to different analytic methods (Sup-
plementary Table 2), and sensitivity analysis including alcohol-
related SNPs (Supplementary Table 3), all potentially pleiotropic
SNPs (Supplementary Table 4) and excluding rs3822072 for BMI-
adjusted insulin in men (Supplementary Table 5), despite some
associations including the null value due to wider confidence
intervals.

The replication for MI using a different study provides
additional validation, and enabled us to test causality in a cost-
efficient way30. Specifically, the studies for MI with over 56,000
cases, at an approximate R2 of 0.01 (variance in insulin/BMI-
adjusted insulin explained by the genetic predictors), has 0.8
power to detect an odds ratio (OR) of about 1.13 per one standard
deviation increase in the exposure. The UK biobank has 0.8
power to detect an OR of about 1.27 for MI overall, of 1.31 for MI
in men and 1.64 in women; an OR of 1.22 for angina overall, of
1.28 for angina in men and 1.39 in women; an OR of 1.46 for
heart failure overall, of 1.57 for heart failure in men and 2.01 in
women31. The larger number of cases in men than women
enabled us to test a smaller effect size in men, however, there is
sufficient power for both men and women when using the insulin
resistance score on angina. The difference in power does not
explain the sex-disparity in the magnitude of the point estimates
and/or direction of associations.

Associations with CVD risk factors. Insulin and BMI-adjusted
insulin were unrelated to LDL cholesterol, but the latter was
associated with higher ApoB (Fig. 1). We could not test whether
these associations differ by sex, because relevant genetic data is
not publicly available. Insulin and BMI-adjusted insulin were
positively associated with systolic blood pressure and reticulocyte
count in both men and women. The associations of BMI-adjusted
insulin with reticulocyte count appeared to be stronger in men
than in women, although the sex difference was not statistically
significance (p value for sex-difference 0.17).
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Table 1 Genetic predictors for insulin and insulin adjusted for BMI

Exposures SNPs Gene Effect allele Beta p Value Note

Insulin rs1530559 YSK4 A 0.015 3.4 × 10−8

rs2745353 RSPO3 T 0.014 5.5 × 10−9

rs2820436 LYPLAL1 C 0.015 4.4 × 10−9

rs2972143 IRS1 G 0.014 3.2 × 10−8

rs4865796 ARL15 A 0.015 2.1 × 10−8

rs731839 PEPD G 0.015 1.7 × 10−8

rs983309 PPP1R3B T 0.029 3.8 × 10−14

rs1167800 HIP1 A 0.016 2.6 × 10−9 Dropped in main analysis due to potentially pleiotropic
association with BMI; included in sensitivity analysisrs7903146 TCF7L2 C 0.018 6.1 × 10−11

rs1421085 FTO C 0.020 1.9 × 10−15

rs9884482 TET2 C 0.017 1.4 × 10−11 Dropped in main analysis due to potentially pleiotropic
association with alcohol; included in sensitivity analysisrs10195252 GRB14 T 0.016 4.9 × 10−10

Insulin adjusted
for BMI

rs17036328 PPARG T 0.021 3.6 × 10−12

rs2126259 PPP1R3B T 0.024 3.3 × 10−13

rs2943645 IRS1 T 0.019 2.3 × 10−19

rs3822072 FAM13A1 A 0.012 1.8 × 10−8

rs459193 ANKRD55 G 0.015 1.2 × 10−10

rs4846565 LYPLAL1 G 0.013 1.8 × 10−9

rs4865796 ARL15 A 0.015 2.2 × 10−12

rs6822892 PDGFC A 0.014 2.6 × 10−10

rs731839 PEPD G 0.015 5.1 × 10−12

rs6912327 C6orf107 T 0.017 2.3 × 10−8 Dropped in main analysis due to potentially pleiotropic
association with BMI; included in sensitivity analysis

rs974801 TET2 G 0.014 3.3 × 10−11 Dropped in main analysis due to potentially pleiotropic
association with alcohol; included in sensitivity analysisrs10195252 GRB14 T 0.017 1.3 × 10−16

BMI body mass index

Table 2 Associations of genetically predicted insulin, insulin adjusted for BMI and insulin resistance genetic score with
myocardial infarction, angina, and heart failure

Outcomes Data source Sex No.
of cases

Insulin Insulin adjusted for BMI Insulin resistance
genetic score

OR 95% CI p OR 95% CI p OR 95% CI p

Myocardial
infarction

UK Biobank Overall 14,442 2.87 1.30 to
6.33

0.009 2.63 1.36 to
5.07

0.004 3.23 1.88 to
5.56

2.4 ×
10−5

Men 11,182 4.27 1.60 to
11.3

0.004 3.60 1.46 to
8.83

0.005 4.17 2.24 to
7.77

6.9 ×
10−6

Women 3260 0.80 0.23
to 2.84

0.73 0.96 0.30
to 3.09

0.95 1.41 0.46
to 4.29

0.55

CARDIoGRAMplusC4D
1000 Genomes

Overall 42,561 1.90 1.04 to
3.49

0.04 2.20 1.08 to
4.50

0.03 -- -- --

Meta-analysis Overall 57,003 2.21 1.37 to
3.58

0.001 2.42 1.49 to
3.93

0.0003 -- -- --

Angina UK Biobank Overall 21,939 2.05 0.87
to 4.83

0.10 1.90 0.92
to 3.94

0.08 2.87 1.84 to
4.48

3.7 ×
10−6

Men 14,331 2.93 1.27 to
6.73

0.01 2.74 1.21 to
6.19

0.02 3.56 2.04 to
6.22

8.3 ×
10−6

Women 7608 1.10 0.38
to 3.18

0.87 1.00 0.46
to 2.19

1.00 1.96 0.93
to 4.12

0.08

Heart failure UK Biobank Overall 5537 0.98 0.37
to 2.61

0.97 1.18 0.45
to 3.14

0.74 1.00 0.42
to 2.35

1.00

Men 3935 1.17 0.30
to 4.64

0.82 1.90 0.62
to 5.82

0.26 1.71 0.62
to 4.74

0.30

Women 1602 0.64 0.06
to 7.18

0.72 0.37 0.03
to 4.05

0.41 0.28 0.06
to 1.34

0.11

BMI body mass index, CI confidence interval, OR odds ratio
Inverse variance weighting with random effects was used for insulin and insulin adjusted for BMI; logistic regression was used for insulin resistance genetic score
The bold values denote associations with confidence intervals not including the null
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Discussion
Our Mendelian Randomization study suggests a positive asso-
ciation of insulin and insulin resistance with MI overall and in
men, and with angina in men but not women, with validation for
MI overall in CARDIoGRAPMplusC4D 1000 Genomes. Insulin
and BMI-adjusted insulin increased blood pressure and reticu-
locyte count and BMI-adjusted insulin increased ApoB. We
found no effect of insulin on LDL cholesterol, but sex-specific
analysis for LDL cholesterol and ApoB were not examined thus
sex differences cannot be excluded.

Our findings, together with previous MR studies, provide
support for a potential role of insulin in IHD14,32,33. Our novel
study also adds to the very limited evidence on the sex-specific
effects of insulin and insulin resistance, by showing a stronger
effect for men than women. Nevertheless, our study has limita-
tions. First, MR is based on three stringent assumptions, i.e., the
genetic variants are strongly related to the exposure, are not
related to the exposure-outcome confounders, and the genetic
variants are related to the outcomes only via influencing the
exposure34,35. To satisfy the first assumption, we used genetic
variants strongly associated with insulin and insulin resistance
from a large GWAS27,29, as previously16,17. To satisfy the second
assumption, we checked for associations with known exposure-
outcome confounders, including socioeconomic position and
lifestyle in the UK Biobank, where there was no association with
these potential confounders. In addition, the sample for genetic
variants on insulin has no overlap with the UK Biobank. Two-
sample MR is usually less biased than one-sample MR36, because
any relation of the genetic variants with unmeasured confounders
is not expected to exist coincidently in both the sample providing
genetic associations with insulin or insulin resistance and the
sample providing genetic associations with the outcomes, due to
the different data structures37. If bias did occur due to weak
instruments, it is often towards the null, whereas in one-sample
MR the bias is towards the direction of the conventional obser-
vational studies36. Population stratification might affect genetic
distribution and cardiovascular risk, however, we only used
participants of European ancestry, with genetic control. To test
the assumption of pleiotropy, we checked for the known potential
pleiotropy in three comprehensive curated databases. We also
tested and corrected for pleiotropic effects using MR-PRESSO.
Second, although we used the largest available source of genetic
associations with heart failure, the number of cases was relatively

low, which may explain the wide confidence intervals for heart
failure. Third, our MR study assessing the role of endogenous
insulin and insulin resistance might not be applicable to the
exogenous use of insulin. MR examining a lifetime effect of an
exposure may also not be comparable to exogenous treatment.
However, serum insulin is responsive to exogenous supple-
mentation, diet, and treatment12. The association for MI is also
consistent with the higher cardiovascular risk when switching to
sulphonylurea, an insulin secretagogue19. Fourth, our study could
be affected by selection bias from selecting survivors of their
genetic make-up38, and of competing risk of other specific causes
of death that share risk factors. Specifically, the estimates for a
potentially harmful exposure might be biased towards being less
harmful if people with higher levels of exposures were already
dead and not selected into the study, as in the obesity paradox39.
Fifth, misclassification of the outcomes might exist. Measurement
error in the outcomes might arise, but likely non-differential and
so biases towards the null. Sixth, the associations in Europeans
may not apply to other populations, such as Asians. However,
causal effects should be consistent across settings, although their
relevance may vary by population. Specifically, our findings may
be particularly relevant to Asians who tend to have higher serum
insulin than people of European descent40. Seventh, some of the
participants may have comorbidities such as type 2 diabetes and
may be taking medications for these comorbidities. Co-
morbidities and their treatment may affect the cardiovascular
outcomes, but should not affect the genetic predictors of expo-
sures, so they are not confounders but their inclusion could
improve the precision of the estimates. However, co-morbidities
could also be consequences of insulin and insulin resistance so
their consideration in the model would give the direct effects of
insulin rather than the total effect sought, i.e., might create bias.
As such, we did not account for co-morbidities or their treatment
by adjustment or restriction, so as to obtain an unbiased, though
possibly less precise, estimates. Eighth, reverse causality may
occur if people with cardiovascular events change their lifestyle
thereby affecting insulin or insulin resistance. However, these
changes would not affect genetically predicted insulin or insulin
resistance. None of the genetic variants are genome-wide sig-
nificant (p < 5 × 10−8) for cardiovascular events, so it is unlikely
that they predict insulin or insulin resistance by affecting cardi-
ovascular events. Finally, the genetic variants in the sex-specific
analysis were from both sexes rather than specifically for men and

LDL
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Fig. 1 Associations of genetically predicted insulin and BMI-adjusted insulin with cardiovascular disease risk factors overall and by sex. ApoB
apolipoprotein, BMI body mass index, DBP diastolic blood pressure, LDL low-density lipoprotein, SBP systolic blood pressure. Beta coefficients and 95%
confidence intervals (CI) for the associations of insulin and BMI-adjusted insulin with CVD risk factors have been depicted. Gray denotes the 95% CI
included the null, purple denotes the 95% CI did not include the null. n= 188,577 for LDL cholesterol, n= 24,925 for ApoB, n≤ 361,194 for blood pressure
and reticulocyte count
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women. As such, the sex-specific associations are less precise may
be conservative. However, the directions of the associations
should be unchanged. Validation of the sex-specific associations
in another cohort is warranted.

Our study, together with previous evidence41,42, suggests that
insulin and insulin resistance have symbiotic roles that may both
ultimately play a role in CVD. Our study adds to the current
evidence by showing a sex-disparity in these associations. Insulin
resistance has previously been proposed as a mechanism under-
lying the metabolic syndrome and hence susceptibility to CVD,
i.e., Reaven’s hypothesis43. However, before the advent of MR,
Reaven’s hypothesis was difficult to test conclusively, and inclu-
ded cholesterol, when ApoB, rather than LDL cholesterol, may be
driven by insulin and correspond better to the target of lipid-
modifying treatment22. Insulin modulates human ApoB mRNA
translation44. Verification in RCTs would be worthwhile. Insulin
might operate via increasing growth or sex hormones, such as
androgens45, which may increase the risk of MI46. Coagulation
factors, which were not examined in this study, may also be a
mechanism. Hyperinsulinemia promotes a procoagulant state47,
increasing in several coagulation factors, such as thrombin gen-
eration47, and plasminogen activator inhibitor type 148, which
have been identified as potential causes of IHD and MI49,50.

Our study suggests that a lifestyle, which lowers serum insulin,
might lower cardiovascular risk. Conversely, less limited living
conditions that enable higher levels of insulin, with corresponding
effects acting on MI and angina via male reproductive factors may
explain the higher rates of CVD in men than women that emerge
with economic development51. Insulin causing MI may also
partly explain the unexpected off-target effects of insulin raising
treatments, such as sulfonylureas19. Similarly, insulin therapy has
a relatively higher risk of MI than insulin sensitization therapy48.
Several medications for type 2 diabetes, such as metformin,
thiazolidinediones, sodium-glucose transport inhibitors, and
glucagon-like peptide 1 agonists may reduce the need for insu-
lin52. From the perspective of clinical and public health practice,
our findings suggest that medications or dietary factors that
operate other than by increasing insulin might prevent and treat
CVD. Our findings also draw attention to the possibility that
insulin may operate via red blood cell attributes, such as reticu-
locyte count. Clarifying these pathways, especially as regards any
sex-differences in the response to insulin, would be valuable, with
relevance to the re-positioning of existing drugs and new drug
development. Replication in other cohorts is needed.

Methods
We used a two sample MR study design. Specifically, we obtained genetic predictors
for insulin and insulin resistance from the largest available GWAS27, and examined
their overall and sex-specific associations with MI, angina and heart failure in the
UK Biobank, and with LDL cholesterol, ApoB, blood pressure, and reticulocyte
count in the largest available GWAS. For MI, we conducted a validation using
CARDIoGRAMplusC4D 1000 Genomes. All the data sources were shown in Fig. 2.

Genetic associations with insulin and insulin resistance. The exposures were
genetically predicted insulin and insulin resistance. As previous MR study on
insulin resistance28, we used insulin adjusted for body mass index (BMI) as an
indicator of insulin resistance. We also validated the known insulin resistance
findings using a validated genetic score for insulin resistance29. Genetic associa-
tions with all exposures were taken from a large meta-analysis of GWAS, con-
ducted in adults (n= 108,557; mean age, 50.6 years; ~53% men) of European
ancestry, without diabetes, adjusted for age, sex, study site and geographic cov-
ariates using an additive genetic model27. We did not use a genetic instrument for
insulin resistance encompassing a lipid phenotype so as to focus more on insulin53.

To meet the three key assumptions of instrumental variable analysis, i.e.,
relevance, independence and exclusions-restriction34, we used genetic variants
strongly and independently (r2 < 0.01) predicting the exposures. We used LD-Link
(https://ldlink.nci.nih.gov/) based on Europeans to check for correlations (linkage
disequilibrium) between genetic variants. We checked whether these genetic
variants were independent of potential confounders from their association with
Townsend index, smoking, alcohol drinking, physical activity and BMI in the UK

Biobank. We dropped single nucleotide polymorphisms (SNPs) associated with any
of these potential confounders at Bonferroni corrected significance (p < 0.05/2000
(number of phenotypes in the UK Biobank)= 2.5 × 10−5). We checked for known
direct effects of the exposures on the outcomes (violation of the exclusion-
restriction assumption) in three comprehensive curated genotype to phenotype
cross-references, i.e., Ensembl (http://www.ensembl.org/index.html), the GWAS
catalog (https://www.ebi.ac.uk/gwas/) and PhenoScanner (www.phenoscanner.
medschl.cam.ac.uk).

Genetic associations with MI, angina and heart failure. Genetic associations
with MI, angina and heart failure were obtained using individual-level data in the
UK Biobank (under application #42468), with validation for MI using summary
statistics from CARDIoGRAPMplusC4D 1000 Genomes26.

The UK Biobank is an ongoing large prospective cohort study23. The UK
Biobank recruited 502,713 people aged 40–69 years, mean age 56.5 years, from
Great Britain between 2006 and 2010, with 94% self-reported European ancestry,
45.6% men and median follow-up time currently 11.1 years. Disease outcomes were
obtained from a nurse-led interview at recruitment, with ongoing follow-up via
record linkage to all health service encounters and deaths54. Genotyping was
assessed using two very similar arrays, i.e., the UK BiLEVE array and UK Biobank
Axiom array. To control for population stratification, we restricted our analysis to
participants with self-reported and genetically validated white British ancestry. For
quality control, we also excluded participants with (1) excess relatedness (more
than 10 putative third-degree relatives) or (2) mismatched information on sex
between genotyping and self-report, or (3) sex-chromosomes not XX or XY, or (4)
poor-quality genotyping based on heterozygosity and missing rates >1.5%. After
quality control, we identified 392,010 white British in the UK Biobank, with 14,442
cases of MI (77% men), 21,939 cases of angina (65% men), and 5,537 cases of heart
failure (71% men). Genetic associations with MI, angina and heart failure were
obtained using logistic regression controlling for age, assay array and 10 principal
components in sex-specific analysis and additionally adjusted for sex in the overall
analysis, as the adjustment in our previous MR study in the UK Biobank46.

Data on coronary artery disease/MI have been contributed by
CARDIoGRAMplusC4D investigators and have been downloaded from www.
cardiogramplusc4d.org. CARDIoGRAMplusC4D 1000 Genomes is a large genetic
study (IHD cases n= 60,801, others= 123,504), with ~70% of the cases MI. The
participants are mainly of European descent (77%) with phenotyping based on
medical records, clinical diagnosis, as well as medications, or indicative symptoms
or procedures, such as revascularization, and/or angiographic evidence of
stenosis26.

Genetic association with CVD risk factors
Genetic association with LDL cholesterol and ApoB. Genetic associations with LDL
cholesterol (inverse normal transformed effect sizes), adjusted for age, age2 and sex,
were obtained from the Global Lipids Genetics Consortium Results summary
statistics including 188,577 participants of European descent and 7,898 participants
of non-European descent, mean age 55.2 years55. Genetic associations with ApoB
(inverse normal transformed effect sizes), adjusted for age, sex, time from last meal,
if applicable, and first ten principal components, were obtained from a meta-
analysis GWAS of metabolomics in 24,925 Europeans (45% men)56. In both
GWAS, genomic control was applied to each sample and the meta-analysis results,
to correct for inflated test statistics due to potential population stratification.

Genetic associations with blood pressure and reticulocyte count. We obtained overall
and sex-specific genetic associations with blood pressure and reticulocyte count
using summary statistics from the UK Biobank, provided by Neale Lab (http://
www.nealelab.is/uk-biobank/), in 361,194 white British (167,020, 46% men). The
study adjusted for age, age2, and 20 principal components in sex-specific analysis
and additionally adjusted for sex and interactions of sex with age and age2 in the
overall analysis.

Statistics and reproducibility. We obtained MR estimates for the associations of
genetically predicted insulin with MI, angina, heart failure and cardiovascular risk
factors from two-sample instrumental variable analysis. Specifically, we obtained
SNP-specific Wald estimates (quotient of genetic association on outcome and
genetic association on insulin) and then meta-analyzed them using inverse variance
weighting (IVW) with multiplicative random effects. We validated the findings for
MI using summary statistics from a large genetic study, CARDIoGRAMplusC4D
1000 Genomes (IHD cases n= 60,801, others= 123,504), with ~70% of the cases
MI26. A consistent direction in both studies gives more confidence. As sex-specific
summary statistics were not available in CARDIoGRAMplusC4D 1000 Genomes,
we only used overall statistics to replicate overall associations with MI. For insulin
resistance genetic score, logistic regression was used to obtain the associations of
the genetic score with MI, angina and heart failure controlling for age, assay array
and 10 principal components in sex-specific analysis and additionally adjusted for
sex in the overall analysis, as previously46. Power calculations were conducted
overall and by sex. MR studies require larger sample sizes than conventional
observational studies, because the sample size needed for MR is the sample size for
the conventional observational study divided by the variance in the exposure
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explained by the genetic predictors31. Specifically, for cardiovascular events which
are the binary outcomes, the sample size was calculated based on the effect size (log
OR here), the ratio of cases to non-cases in the study, and the variance explained by
the genetic predictors57.

In sensitivity analysis, we conducted sex-specific analysis for all outcomes
except LDL cholesterol and ApoB for which sex-specific information is not
available. To examine whether effect sizes were larger in men than women, we
assessed differences by sex using a z-test for the difference in sex-specific estimates
(log OR or beta-coefficients) using a one-tailed p value58.

Given potential bias from invalid instruments when using multiple genetic
variants, we also conducted a sensitivity analysis using different statistical methods
with different assumptions, i.e., a weighted median59, a mode-based estimate60 and
Mendelian Randomization Pleiotropy Residual Sum and Outlier (MR-PRESSO)
with 100,000 simulations59. Specifically, a weighted median is robust to invalid
instruments and able to provide consistent estimation even when up to 50% of the
weight is from invalid SNPs59. The mode-based estimate is based on the
assumption that a plurality of genetic variants are valid instruments; i.e., there is no
larger subset of invalid instruments estimating the same causal parameter than the
subset of valid instruments60. MR-PRESSO can detect and as necessary correct for
potentially pleiotropic outliers61. Given the limited number of SNPs, we did not use
MR Egger because it is based on the Instrument Strength Independent of Direct
Effect (InSIDE) assumption and thereby is more sensitive to outliers and less
efficient than other methods such as the weighted median, the mode-based
estimate and MR-PRESSO used here62.

All statistical analyses were conducted using R version 3.4.4 (R Foundation for
Statistical Computing, Vienna, Austria) and the R package
“MendelianRandomization”63.

Ethical approval. The UK Biobank has already received ethical approval from the
Research Ethics Committee and participants provided written informed consent.
The analysis of other publicly available data or summary statistics does not require
additional ethical approval.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The main outcomes are from the UK Biobank under application (#42468). The data is
available from the UK Biobank upon request. Data on coronary artery disease/
myocardial infarction have also been contributed by CARDIoGRAMplusC4D
investigators and have been downloaded from www.CARDIOGRAMPLUSC4D.ORG.
Genetic associations with lipids were obtained from the Global Lipids Genetics

Consortium Results, downloaded from http://csg.sph.umich.edu//abecasis/public/
lipids2013/. Genetic associations with apolipoprotein B were obtained from the GWAS of
Kettunen et al.56, downloaded from http://www.computationalmedicine.fi/
data#NMR_GWAS. Genetic associations with blood pressure and reticulocyte count
were from the UK biobank GWAS results, downloaded from http://www.nealelab.is/uk-
biobank/, the results of the GWAS and heritability analyses conducted by the Neale Lab.
All the data sources were shown in Fig. 2. The summary data are publicly available.

Code availability
“ukbmd5”, “ukbunpack”, “ukbconv” and “ukbgene” were used for data validation,
unpacking, format conversion and obtaining genetic data. They are available for the
approved UK Biobank application (#42468), in the online system (https://bbams.ndph.
ox.ac.uk/ams/). Software code in R for implementing the Mendelian Randomization
analysis, is publicly available (https://cran.r-project.org/web/packages/
MendelianRandomization/MendelianRandomization.pdf) without restriction63.
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