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Abstract

Nutation is an oscillatory movement that plants display during their development. Despite its

ubiquity among plants movements, the relation between the observed movement and the

underlying biological mechanisms remains unclear. Here we show that the kinematics of the

full organ in 3D give a simple picture of plant nutation, where the orientation of the curvature

along the main axis of the organ aligns with the direction of maximal differential growth.

Within this framework we reexamine the validity of widely used experimental measurements

of the apical tip as markers of growth dynamics. We show that though this relation is correct

under certain conditions, it does not generally hold, and is not sufficient to uncover the spe-

cific role of each mechanism. As an example we re-interpret previously measured experi-

mental observations using our model.

Author Summary

In his writings, Darwin considered nutation, the revolving movement of the apical tip of

plants, as the most widespread plant movement. In spite of its ubiquity, plant nutation has

not received as much attention as other plant movements, and its underlying mechanism

remains unclear. A better understanding of this presumably growth-driven process is

bound to shed light on basic growth processes in plants. In the work presented here we

redefine the problem by describing the kinematics in three dimensions, as opposed to the

typical description restricted to the horizontal plane. Within this framework we reveal a

simple picture of the underlying dynamics, where the orientation of curvature follows the

orientation of maximal differential growth. This parsimonious model recovers the major

classes of nutation patterns, as shown both analytically and numerically. We then discuss

the limitations of classical measurements where only the movement of the apical tip is

tracked, suggesting more adequate measurements.
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Introduction

During their development, plant organs display a large range of movements. These movements

may be broadly divided into two classes; tropisms and nastic movements. Tropisms are the

reorientation towards an external stimulus, e.g. light or gravity [1, 2]. Nastic movements

account for endogenous, autonomous movements and are not directed towards an external

stimulus. Nutation, often called circumnutation, is a particular class of nastic movements, in

which the plant organ successively bends in different directions, resulting in an apparent oscil-

latory swinging motion. Despite its ubiquity among plant movements nutation has not been

studied as extensively as tropisms, and the mechanism responsible for this movement, as well

as its regulation, remain unclear (see [3–5] for a review).

Current theories or concepts of nutational mechanisms generally fall into two categories

[6]. The first suggests the influence of external drivers such as gravity or light, where the move-

ment stems from an overshoot during the straightening of the plant in response to the direc-

tion of gravity (or light). The second assumes an endogenous driver such as an oscillator,

suggested by Darwin [7], possibly related to the growth process itself [3, 8]. Studies have

shown that though gravitropism may influence and modify the observed movements, the two

processes exist independently [3, 9, 10], consistent with symmetry arguments which indicate

that gravitropism alone cannot induce movement outside of the plane defined by the main

axis of the plant and the direction of gravity [11, 12]. Together with the fact that nutation is

observed in the absence of light, this suggests that external cues cannot drive nutation. Inter-

estingly, Brown [3, 5] postulated that since nutation does not present any significant evolution-

ary benefit, it may be the consequence of some fundamental mechanism in the growth

process. Observations of rice coleoptile mutations (lazy) that grow normally yet do not exhibit

nutation [10], suggest that growth alone may not be sufficient to generate nutation [3, 8].

Therefore based on the present literature, the strongest hypothesis remains a growth-driven

endogenous oscillator.

We note that curvature of an elongated organ in three dimensional space can result from

two different growth mechanisms, namely bending and torsion. Bending can result from the

differential growth of the opposite sides of an organ [13, 14], i.e an initially straight organ will

bend towards the direction of minimal growth. Studies have mainly focused on the case where

the organ is curved in the same (vertical) plane as that of the differential growth, restricting

movement to that plane only. However the plane of curvature should change when it is not in

the same plane as that of the differential growth, producing movement in the horizontal (api-

cal) plane. It is instructive to note that lines drawn on the surface of the organ, parallel to its

main axis, will remain parallel to the main axis during its growth regardless of the direction of

curvature, as shown in Fig 1.A. The second mechanism, torsion, is responsible for the move-

ment of twining plants [15, 16], and is due to the helical arrangement of cells around the main

axis of the plant, possibly due to the torsional arrangement of cellulose [17]. In this case parallel

lines drawn on the surface of the organ will take a helical form around the organ during its

growth, as shown in Fig 1, e.g. the cotyledon on top of a hypocotyl will rotate. However this

process can lead to a 3D curved organ only if the organ is already initially curved, and further-

more results in a helical form (see Fig 1.C). Moreover, observations of torsion in nutating

plant organs have been found to be too slow to account for the observed nutation [18, 19].

These observations hint that the dominant growth mechanism underlying nutation is differen-

tial growth under the action of an internal oscillator [19]. This internal oscillator could then be

related to the auxin dynamics or the sensitivity of the membrane to auxin. Indeed a relation

has been found between oscillations in ion fluxes and nutation [20, 21]. Moreover there are

some reports of relationships between nutation and biological rhythms [22, 23], demonstrating
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genetically that the circadian clock controls nutation speed [24]. Together, these results suggest

that genetically regulated rhythmical membrane transport processes are central to plant nuta-

tion, and may play the role of an internal oscillator [5].

In this study we consider nutation as a growth-driven process, in line with previous work

on tropisms and differential growth [11–14] where mechanical effects such as buckling and

instabilities are disregarded. We then focus on the relation between internal oscillatory growth

patterns and the observed movement.

Attempts have already been made to develop a mathematical model of nutation, but the full

three-dimensional geometry of the organ has been neglected, resulting in an incomplete kine-

matic description [25]. The existing models account only for the kinematics of the apical tip,

and this has been shown to be insufficient to understand the underlying mechanisms, since

geometrical and local effects are neglected [1, 13].

A similar problem exists in the experimental measurement of nutation, where the full

dynamics of plants in three-dimensional space and time are rarely taken into account. It is

common, instead, to track the projection of the apical part of the organ in the plane orthogonal

to the gravitational field (defined here as the horizontal plane Pa) [18, 26]. Such measurements

carried out on different species and organs [7, 26] exhibit disorganized patterns (zig-zag

shaped), and organized patterns (for instance, elliptical patterns, and the limits of these pat-

terns, e.g. a circle or a line) [8, 18, 22, 27, 28]. The interpretation of these measurements

remains unclear, since the relation between the differential growth pattern and the kinematics

in space and time is not clearly defined.

Here we will state a growth-driven parsimonious model couched within a three-dimen-

sional geometrical framework, accounting for observed classes of movement patterns. The

Fig 1. A cylinder is used as a simplified representation of an organ. Lines parallel to the median line of the organ are drawn on the surface. A. The

organ can be curved in different direction of space without material torsion: parallel lines on the surface remain parallel. B. Material torsion of increasing

intensity are applied on the organ (from left to right). The torsion does not change the shape of a straight cylinder. However parallel lines at the surface of

the organ are no longer parallel to the median line, but are tilted. C. Material torsion of increasing intensity (from left to right) is applied to a curved organ.

The organ does not lie in a plane anymore but the curvature takes different direction in the 3D space. The organ displays a helical shape.

doi:10.1371/journal.pcbi.1005238.g001

The Kinematics of Plant Nutation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005238 December 6, 2016 3 / 20



analysis is done both analytically and through numerical simulations. The model’s limitations

are also discussed. Lastly, the model is applied to existing experimental observations, and the

relevance of apical (horizontal) measurements is discussed. The details of all calculations are

given in the appendix. In addition, an interactive simulator is available online [29]. Predefined

solutions are accessible through the numerical key of the keyboard and are referenced

throughout the manuscript.

Models

Geometrical Description

The geometric framework used to describe the kinematics of tropisms [11, 12, 14] is only suffi-

cient to describe growing elongated organs in a single plane and is therefore inadequate here.

Unlike the movements observed for example in gravitropism where the curve is constrained to

a unique plane, in nutation the organ is curved along different planes in 3D space (Fig 1.A).

We start by introducing a few assumptions and definitions which will be essential for the

construction of our three dimensional model (Fig 1). The organ is assumed to be cylindrical

with a constant radius R along the organ. It is assumed that no shear growth is observed, so the

cross section remains in plane. The organ is described by the curvilinear abscissa s along the

median line. Each point at the surface of the organ is then defined via cylindrical coordinates

(s, ϕ) where s is its position along the abscissa, and ϕ is the angle of the point on the cross sec-

tion, relative to an arbitrarily chosen direction. This description is depicted in Fig 2.A and in

S1 Video. In order to fully describe the curvature of an organ curved in an arbitrary direction

in space, it is first necessary to define two vectors: t, the tangent to the median line, and c, the

normal (perpendicular) to the median line, as shown in Fig 2.B. The orientation of the latter in

the cross section, ψc(t), is in the same plane as the principal direction of curvature (see Fig 3).

This means that for each element of the curve, the curvature is maximal in the plane defined

by the vectors t and c (see Fig 2.B). Fig 2.C shows a cross section of the shoot, by definition in

the plane orthogonal to t, defining the orientation ψc of the principal direction of curvature c.

Model

Slaving of the principal direction of curvature to direction of maximal growth. Given

the geometrical framework presented here, we now bring a parsimonious model describing

nutation kinematics based on basic mechanic and geometric arguments. We recall that for

simplicity we assume an organ with constant radius R. We consider the elongation strain rate

_�ð�; s; tÞ defined at each point (ϕ, s) along the surface of the organ, describing a compatible

transformation of a cylindrical organ of radius R and curvature C(s, t) in the direction ψc(s, t)
into a cylinder of radius R and curvature C0(s, t) in the direction c

0

cðs; tÞ. We now proceed to

represent the strain rate _�ð�; s; tÞ as a function of the the variation of curvature
dCðs;tÞ

dt and the

variation of the principal direction of curvature
dccðs;tÞ

dt , in turn leading to equations of motion.

We start with an infinitesimal cylindrical element where the curvature C(s, t) = C and its

principal direction ψc(s, t) = ψc are assumed to be constant along the median line of length L0

(Fig 2.D). Since we are discussing an infinitesimal element, we drop the dependence on s, the

position along the median line of the whole organ. We also drop the temporal dependence t
for simplicity. The length of a segment running along the surface of the infinitesimal curved

cylinder, parallel to the median line, depends on its angle ϕ relative to the principal direction

of curvature ψc:

Lsð�Þ ¼ L0 1 � CR cos � � ccð Þð Þ: ð1Þ
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We note that for a line in the principal direction of curvature, i.e. at the inner part of the curve,

the length is minimal, Ls(ϕ = ψc) = L0(1 − CR), while it is maximal for a line in the outer part of

the curve Ls(ϕ = ψc + π) = L0(1 + CR). A similar relation holds for the cylinder after deforma-

tion, namely L0sð�Þ ¼ L0
0
ð1 � C0R cos ð� � c

0

cÞÞ.

We note that the elongation strain �(ϕ) at a specific point along the cylinder is defined as

the ratio between the elongation length L0sð�Þ � Lsð�Þ and the original length Ls(ϕ)

�ð�Þ ¼ L0sð�Þ=Lsð�Þ � 1 ð2Þ

Similarly the average elongation strain rate defined as

E ¼
1

2p

Z p

� p

d��ð�Þ ð3Þ

Fig 2. A. A plant organ in 3D, described in cylindrical coordinates. The parameter s runs along the

abscissa of the organ, with the base at s = 0 and apex at s = L. A cross-section of of the organ is shown, with a

point, in orange, on its circumference defined by the pair (s, ϕ). Here s states where the cross-section is along

the organ, and ϕ determines the orientation from an arbitrarily chosen starting point. B. An element of the

organ shown in A, delimited by two grey cross-sections, projected onto the plane defined by the vectors t (the

tangent, in green), and c (the normal in the principal direction of curvature, in red). In orange, a segment

parallel to the median line is defined by ϕ C. The cross section of the organ shown in A in the plane

perpendicular to t. Again, an element on the circumference of the organ is defined by the angle ϕ. The

direction of the vector normal in the principal direction of curvature, c in red, is defined by the angle ϕ = ψc. The

principal direction of the differential growth, defined by the vector g in blue, is defined by the angle ϕ =ψg.Due

to the cylindrical symmetry considered for the organ, the direction given by ϕ = 0 is defined arbitrarily but

continuously on the whole organ. When the organ is not curved, the direction given by any ϕ defines a straight

line along the organ parallel to the main axis of the plant. D. An element cylinder curved in the 3D space, here

in the directionψc = 0. Its median length is given by L0, while a segment on the surface has a length Ls(ϕ).

After a strain �(ϕ) is applied so that the length of each segment on the surface is now L0sð�Þ. The cylinder is

now curved in a different direction, c
0

c, while the curvature is also modified, C0. Finally the length of the median

line is given by L0
0
. See S1 Video.

doi:10.1371/journal.pcbi.1005238.g002
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is related to the ratio of the median lengths. Substituting L0
0
¼ L0ðE þ 1Þ, the relation for the

cylinder after deformation reads:

L0sð�Þ ¼ ð1þ EÞL0 1 � C0R cos � � c
0

c

� �� �
: ð4Þ

Substituting eqs 1 and 4 into Eq 2 yields an expression for the elongation strain �(ϕ):

�ð�Þ ¼ ð1þ EÞ
1 � C0R cos ð� � c

0

cÞ

1 � CR cos ð� � ccÞ
� 1: ð5Þ

We now introduce time by considering an infinitesimal time step dt and substituting the first

order differentials �ð�Þ ¼ _�ð�Þdt, Eð�Þ ¼ _Eð�Þdt, C0 = C + dC, and c
0

c ¼ cc þ dcc, assuming

that terms with second order infinitesimals are negligible, and noting that cos(ϕ − (ψc + dψc))

= cos(ϕ − ψc) + sin(ϕ − ψc)dψc. We use the common dot notation for strain rates. Rearranging

and reintroducing the explicit dependence on t into the notation, Eq 5 now reads:

_�ð�; tÞ ¼ _EðtÞ þ
sin � � ccðtÞð Þ

dccðtÞ
dt CðtÞRþ R cos � � ccðtÞð Þ

dCðtÞR
dt

1 � CðtÞR cos � � ccðtÞð Þ
: ð6Þ

This equation relates the elongation rate of a fiber, or a segment running along the organ

surface, to the rate of change in curvature magnitude
dCðtÞ

dt and direction
dcc
dt .

We recall that this relation does not exhibit an explicit dependence on s since the argument

was for an infinitesimal cylindrical element. The full organ is then made up of consecutive

deforming (elongating) infinitesimal elements, each with dynamics described by Eq 6. We

note that one cannot just yet reintroduce the dependence on s, the position along the median

of the organ relative to the base, since as the organ deforms and elongates the positions of the

constituting elements move along the organ. The variable s is relative to the base only, and not

to the material elements. Therefore when considering the whole organ we introduce the mate-

rial derivative, co-moving with each element of the organ [1, 13, 14] (see Fig 4 for a description

of the material derivative):

D
Dt
¼
@

@t
þ vðs; tÞ

@

@s
ð7Þ

Fig 3. A. A curve in 3D space (x, y, z). Here, a generalized spiral has been chosen as it provides a nice and simple

illustration of an organ curved in different planes in 3D. The curve is described at each point by two vectors, as defined in

Fig 2: the tangent and normal to the curve in the plane of the principal direction of curvature, t and c (shown in green and

red respectively). The vectors are orthogonal to each others. B. and C. present the projections of the curve onto the (x, z)

and (y, z) planes respectively. See S1 Video.

doi:10.1371/journal.pcbi.1005238.g003
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where v(s, t) is the velocity of the average growth-induced displacement of each element at s at

time t, and is defined as the integral of the average elongation rate on the median line _Eðs; tÞ
defined in Eq 3:

vðs; tÞ ¼
Z s

0

ds0 _Eðs0; tÞ: ð8Þ

Eq 6 can be modified to account for a cylindrical organ of constant radius, that is elongating

and where the curvature at each point along the median line of the organ s is modified in

intensity and direction. We now rewrite Eq 6 to account for the elongation strain rate along

the whole organ by replacing time derivatives with the material derivative in Eq 7, and reintro-

ducing the explicit dependence on s:

_�ð�; s; tÞ ¼ _Eðs; tÞ þ
sin � � ccðs; tÞð Þ

Dccðs; tÞ
Dt Cðs; tÞRþ cos � � ccðs; tÞð Þ

DCðs; tÞR
Dt

1 � Cðs; tÞR cos � � ccðs; tÞð Þ
: ð9Þ

Let us note that Eq 9 has two main contributions that dominate in orthogonal planes. In

the plane parallel to the principal direction of curvature, i.e ϕ = ψc or ϕ = ψc + π, we have

sin(ϕ − ψc(s, t)) = 0 and cos(ϕ − ψc(s, t)) = ±1, therefore the elongation strain rate is only

affected by the change in curvature
DCðs; tÞ

Dt . In the orthogonal plane, i.e ϕ = ψc ± π/2, the

Fig 4. An illustration of the material derivative. As a simplification, a plant organ can be seen as a

succession of elongating elements. Their position along the curvilinear abscissa is given by the lowest

position of the element si, and its length defined by the position of the subsequent element; Li = si+1 − si. For

example the 5th element, in orange, starts at point s5, and its length is defined by L5 = s6 − s5. For simplicity

we assume that at time t, all elements have identical length of Li = L0, and an elongation rate _Eðs; tÞ is applied

to each element of the organ during a time dt. The elongation of each element is then L0i ¼ Lið1þ _Eðs; tÞdtÞ.
The difference in length for each element is then L0i � Li ¼ Li _Eðs; tÞdt. In the example of the first element (in

green), the position is not modified, i.e. s0
0
¼ s0, since this is the basal point which is fixed. However the

increase in the element’s length shifts the positions of all other elements, e.g. the next element originally at

position s1 is now at a position s0
1
¼ s1 þ L0

_Eðs0; tÞ. The second element is pushed by the elongation of both

the basal element at s0 and the next element at position s1. Following this argument, the displacement of any

element is then given by the sum of the elongations of all previous elements, s0n � sn ¼
Pn

k¼0
L0

_Eðsk ; tÞdt. The

velocity of an element is then given by the displacement of this element s0n � sn divided by the time interval dt.

In the continuous limit, L0! ds, this velocity is given by vðs; tÞ ¼
R s

0
ds0 _Eðs0; tÞ. It is important to note that even

if locally no elongation occurs, for example for the last element shown in pink with _Eðsn; tÞ ¼ 0, the element is

still displaced due to the displacement of previous elements. The change of curvature along the organ can be

understood in a similar fashion (see Figure 1 in [14]).

doi:10.1371/journal.pcbi.1005238.g004
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elongation strain rate is only affected by the change in the orientation of the curvature plane

Dcc
Dt . It is instructive to consider this in terms of differential growth, generally defined as the

difference between elongation strain rates at opposite sides of the organ, divided by the

average strain rate:

Dð�; s; tÞ �
_�ð�; s; tÞ � _�ð�þ p; s; tÞ

2 _Eðs; tÞ
ð10Þ

Note that Δ(ϕ, s, t) = 0 implies that growth is the same on either side in this plane, while Δ
(ϕ, s, t) = ±1 means that all of the growth occurs on one side of the organ or the other. We

can now define the differential growth in the plane parallel to the principal direction of cur-

vature ψc:

Dkðs; tÞ � Dðcc; s; tÞ ¼
_�ðccðs; tÞ; s; tÞ � _�ðccðs; tÞ þ p; s; tÞ

_Eðs; tÞ
; ð11Þ

and in the orthogonal plane:

D?ðs; tÞ � Dðcc þ p=2; s; tÞ ¼
_�ðccðs; tÞ þ p=2; s; tÞ � _�ðccðs; tÞ þ 3p=2; s; tÞ

_Eðs; tÞ
: ð12Þ

Substituting Eq 9 and rewriting, leads to an equivalent set of equations:

DCðs; tÞR
Dt

¼ Dkðs; tÞ _Eðs; tÞð1 � Cðs; tÞ2R2Þ � Dkðs; tÞ _Eðs; tÞ ð13Þ

Dccðs; tÞ
Dt

¼
1

Cðs; tÞR
D?ðs; tÞ _Eðs; tÞ ð14Þ

Assuming the radius of curvature 1/C(s, t) remains large compared to the radius R of the

organ, i.e. C(s, t)R� 1, the quadratic prefactor in Eq 13, C(s, t)2 R2, can be neglected [14].

Eq 13 expresses the variation of curvature as a function of Δk alone, the differential growth

in the plane of the principal direction of curvature, and is identical to the equation found in

the case of in-plane curvature [13, 14]. In absence of compression, _Eðs; tÞ � 0, the curvature is

controlled by Δk, and the elongation rate only modulates the intensity of the reaction.

Out of plane curvature is then fully described by the addition of Eq 14, which, similary to

Eq 13, expresses the variation of the principal direction of curvature as a function of Δ?, the

differential growth in the orthogonal plane. However here the intensity of the reaction is mod-

ulated by the inverse of the curvature C(s, t)−1 R−1. If the curvature of the organ is small, a

small variation of differential growth in the orthogonal plane can have strong effects on the

orientation of the organ. However when the organ is more curved, the differential growth in

the orthogonal plane would have to push the organ more to modify its orientation.

Moreover we see that only three quantities govern the relation between growth and the

resulting nutation movement: the average elongation rate on the median line _Eðs; tÞ, the differ-

ential growth in the plane of curvature Δk(s, t), which expresses the curvature variation via Eq

13, and finally the differential growth in the orthogonal plane Δ?(s, t), which expresses the

change of orientation of the plane of curvature via Eq 14.

It is instructive to note that, without loss of generality, it is possible to express Δk(s, t) and

Δ?(s, t) as a projections of the principal direction of differential growth Δ(ψg(s, t)), i.e. where

The Kinematics of Plant Nutation
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the differential growth is maximal:

Dkðs; tÞ ¼ D cgðs; tÞ
� �

cos ðcgðs; tÞ � ccðs; tÞÞ; ð15Þ

D?ðs; tÞ ¼ D cgðs; tÞ
� �

sin ðcgðs; tÞ � ccðs; tÞÞ: ð16Þ

In summary, the model presented here suggests that nutation results from the slaving of the

direction of maximal curvature, ψc(s, t), to the direction of maximal growth ψg(s, t).
The effects of growth. In linear organs growth is often limited to a zone below the apex

[13, 14]. Two cases are usually considered: i. when the length L of the organ is smaller than the

length of the growth zone L< Lgz, the organ elongates along its entire length, ii. when L> Lgz

the growth is localized to a subapical zone.

The effects of growth on the variation of curvature, restricted to the plane of curvature, Eq

13, have been discussed in [14]. Two main destabilizing effects of the growth process have

been described: i. A passive orientation drift, where the organ elongates in absence of differen-

tial growth, _Eðs; tÞ > 0 and Δk(s, t) = 0, so the curvature of the organ remains the same while

the length of the organ is modified. The angle of the organ, relative to the vertical, passively

drifts within the plane of curvature during growth. ii. A fixed curvature; when an element

close to the base leaves the growth zone, _Eðs; tÞ ¼ 0, the curvature cannot be modified there

anymore. It has been shown experimentally that these effects are negligible due to regulation

governed by proprioception [14].

Similar effects are expected to take place when the variation of the direction of curvature is

considered, as in Eq 14. i. In the absence of regulation, Δ(ϕ) = 0, the direction of curvature can-

not be modified anymore. If the organ is curved in a single plane, no modification will be

observed of the shape or movement. However if an organ is curved in multiple planes, display-

ing a helical shape, the radius of the helix will increase. ii. As elements leave the growth zone,

the direction of curvature will remain fixed. If the direction of curvature is oscillating, this will

result in a helical shape of the fixed part of the plants. However those destabilizing effect does

not hold the same role in the postural control of the plant, the ability of the organ to reach the

vertical position and align with the direction of gravity [11, 30].

As a priori there is no preferred direction of curvature, only the magnitude of curvature

should be regulated, and not its direction. This regulation depends mainly on proprioception.

The effects of elongation can be studied as a perturbation [14], and it is therefore proposed

first to neglect the elongation of the stem on the resulting pattern, so that _E and the length of

the organ L = L0 are constant. Once the movement is clearly defined without growth, it will be

simple to discuss the perturbation due to growth.

Measurements of the apical tip in the horizontal plane. As mentioned earlier, it is com-

mon to measure nutation by tracking the projection of the apical part of the organ in the hori-

zontal plane [18, 26]. However the kinematics described in this paper show that it might be

difficult to understand these measurements without a measure of the whole shape and kine-

matics of the plants, i.e. many shapes can result in a similar position of the apical tip. In order

to relate this measurement to inner mechanism of plants, a unique relation between the shape

of the organ and the position of the apical tip needs to be assumed. Constraints on the shape

need to be stated explicitly so that only one 3D shape of an organ can be mapped to a single

position of the apical tip in the horizontal plane. The following set of constraints is proposed:

The organ is assumed to be curved inside a single plane with constant curvature all along

the organ. The variation of curvature and of the principal direction of curvature are also con-

sidered to be the same all along the length of the organ that undergoes transformation. Lastly,
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if the elongation is not measured, the effects due to the change of length of the organ are

disregarded.

The entire organ is then considered as a whole. The associated curvature and differential

growth considered are give by their respective combined effects on all parts of the organ. This

set of constraints is not unique but has been chosen for the small set of constraints that need to

be assumed.

Variation of the principal direction of the differential growth ψg(s, t) as an internal

oscillator. The variation of the principal direction of the differential growth ψg(s, t) provides

a natural way to implement an endogenous oscillator, since it is the only known growth driven

process occurring parallel to the horizontal plane. To date there are no exact experimental

observations of the temporal variation of ψg(t), however the existence of a linear oscillator

seems consistent with measurements made on opposite sides of an organ [19, 31], where the

differential growth oscillates periodically from one side to the other.

Moreover, the model allows to extract ψg(s, t) and DðcgðtÞ; tÞ _EðtÞðs; tÞ from 3D experimen-

tal data of the curvature C(s, t) (and therefore also R and ψc(s, t)). Substituting eqs 13 and 14 in

eqs 15 and 16 leads to the following relations:

cgðs; tÞ � ccðs; tÞ ¼ arctan
Cðs; tÞRDccðs; tÞ

Dt
DCðs; tÞR

Dt

0

@

1

A ð17Þ

and

D cgðs; tÞ; s; t
� �

_Eðs; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DCðs; tÞR
Dt

� �2

þ Cðs; tÞR
Dccðs; tÞ

Dt

� �2
s

: ð18Þ

Considering Eqs 13 and 14 we note that for an oscillatory movement such as nutation, the

direction of curvature changes over time, i.e.
Dccðs;tÞ

Dt 6¼ 0. In absence of compression the median

elongation rate _Eðs; tÞ is always positive, and cannot control the direction of ψc(s, t) [14].

Therefore the oscillatory movement can only be governed by Δk(s, t).
We now consider two basic cases for the functional form of ψg(s, t), and analyze the ensuing

organ movement. The simplest case is given when the direction of the differential growth is

fixed, ψg(s, t) = ψg. The orientation of the organ is modified so that the principal direction of cur-

vature ψc(s, t) aligns with the direction of the differential growth ψc(s, t) (see Appendix section

1.1). Despite its triviality, this result sheds light on the behavior of the out-of-plane curvature

driven by differential growth. The organ tries to align, following the main direction of the differ-

ential growth, i.e. ψc(s, t)! ψg(s, t). As can be seen from eqs 13 and 14, once an organ is aligned,

i.e. ψc(s, t) = ψg(s, t), there is no movement outside of this plane and only vertical bending is

observed. This is also confirmed numerically (shown in S2 Video), where simulations use a an

initial curvature and principal direction constant along the organ, C(s, 0) = C0 and ψc(s, 0) = ψ0

(see [29]—key 2). The details of the simulations can be found in the caption of S1 Video.

We now consider a more complex case, where the orientation of the differential growth

rotates periodically with a constant angular frequency ω. The direction of the differential

growth is then given by

cgðs; tÞ ¼ ot: ð19Þ

In this case an analytical stability analysis can be performed. The movement of a single element

displays a periodic movement, the periodicity of which is given by the direction of the differen-

tial growth ψg(t) (see S1 Text section 1.2 and Fig A therein). Furthermore the stability and
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periodicity are independent of the initial conditions. This means that even when the rotation

is not centered around the base of the organ, the pattern remains stable and the periodicity is

still given by the internal oscillator (simulations giving rise to a circular pattern are shown in

S3 Video).

As mentioned earlier, existing experimental observations concerning nutation measure

the movement of the apical tip in the horizontal (x, y) plane, in the form of a parametric curve

P(t) = (xa(t), ya(t)). In order to interpret existing data, we analyze the projected movement in

the context of our suggested model. Under the hypotheses H1–H3 measurements in the hori-

zontal plane should give direct information on the dynamics of the plant if its shape is known.

According to H1, the simplest case is considered, where the dynamics do not depend on the

local position along the organ, the curvature is the same along the organ, C(s, t) = C(t) and the

entire organ is curved inside the same plane, ψc(s, t) = ψc(t). Therefore there is no dependence

on space, and the material derivative D
Dt, in Eq 7, is equivalent to the partial derivative @

@t. The

projection of the apical tip in the horizontal plane (xa(t), ya(t)), or (ρ(t), θ(t)) in polar coordi-

nates (Fig 5), is then a direct approximation of ψc(t) and C(t) since by definition ψc(t) = θ(t)
(Fig 5) and C(t) = ρ(t) (see S1 Text section 3). A direct estimate of the principal direction of the

differential growth ψg(t) can be obtained from the coordinates (xa(t), ya(t)) of the projection of

the apical tip in the horizontal plane (see S1 Text section 4):

cgðtÞ ¼ arctan
dxaðtÞ
dyaðtÞ

� �

; ð20Þ

as well as an estimate of the differential growth term (see S1 Text 4):

DðcgðtÞ; tÞ _EðtÞ ¼
2R
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dxaðtÞ
dt

� �2

þ
dyaðtÞ

dt

� �2
s

; ð21Þ

where L is the length of the organ. In most of the published data, L is not available, meaning

that values of DðcgðtÞ; tÞ _EðtÞmeasured from the horizontal plane can only be compared

Fig 5. A. The trajectory of the apical tip projected onto the (x, y) plane produces a parametric curve P(t) = (xa(t), ya(t)). Under the

assumptions H1–H3, the position of the apical projection P(t), gives information on the amplitude and the direction of the plane of curvature, in

polar coordinates (ρ(t), θ(t0)). B. At a given time t0 the organ is considered to be curved with a constant curvature C(t0) along the organ in a

single plane defined by the angleψ(t0) = θ(t0). The measurement of θ(t), the angle of the projected apical curve, is then equivalent toψc(t) C.

Inside the plane perpendicular to the horizontal plane that contains the organ, the curvature can be measured directly as the value of ρ(t0) (see

S1 Text section 2–4 for a mathematical justification and a description of the approximations).

doi:10.1371/journal.pcbi.1005238.g005
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qualitatively up to a prefactor. On the other hand Eq 20 is independent of L, and the principal

direction of growth ψg(t) can be measured quantitatively from the observed pattern.

Results

In what follows we re-examine existing experimental observations in the context of our model.

We analyze different classes of movements recorded in the horizontal plane, examining possi-

ble underlying mechanisms. We first consider the simulated apical trajectories of the most

common observed patterns, the circle and the ellipse. Fig 6 presents the underlying form of the

variation of the principal direction of growth
dcg ðtÞ

dt and its differential growth DðcgðtÞ; tÞ _EðtÞ,
as imposed by the model via eqs 20 and 21. In the case when the apical tip draws a circle in the

horizontal plane, it follows that
dcg ðtÞ

dt and DðcgðtÞ; tÞ _EðtÞ are constant in time (shown in Fig

6A). In the case of an ellipse, there are two possible mechanisms: (i) a periodic
dcg ðtÞ

dt with max-

ima at some c
0

g and c
0

g þ p (Fig 6B), meaning that the direction of differential growth changes

faster on opposite sides of the organ, giving less time for the organ to curve out in those direc-

tions, resulting in a smaller radius at those ends. (ii) a periodic DðcgðtÞ; tÞ _EðtÞ (Fig 6C) with

maxima at some c
0

g þ p=2 and c
0

g þ p=2, meaning that the differential growth is larger at

opposite sides of the organ, resulting in a greater curvature and therefore also larger radius at

those ends (simulations giving rise to these patterns are given in S3, S4 and S5 Videos).

For the sake of intuition, Fig 6 presents limit cases where either
dcg ðtÞ

dt or DðcgðtÞ; tÞ _EðtÞ are

periodic while the other is constant, however in reality both may be periodic, and their relative

magnitude and shift in phase will dictate the final apical pattern. We also note that taking the

average value of
dcg ðtÞ

dt yields the time it takes for the direction of differential growth to make a

full rotation of the organ, i.e.

Tr ¼ 2p=h
dcgðtÞ

dt
i: ð22Þ

If
dcg ðtÞ

dt itself exhibits periodicity, we expect the time between two maxima to coincide with this

period, since consecutive maxima are expected to be an angle of π apart. Moreover, we note

that
dcg ðtÞ

dt and DðcgðtÞ; tÞ _EðtÞ are plotted here as a function of ψg, assuming the organ does not

exhibit torsion, i.e. the rotation of the cotyledon on top of the organ’s movement, in which

case the behavior would be shifted leading to erroneous conclusions. On the other hand a peri-

odic or constant behavior would still be observed when plotting these values as a function of

time. Lastly, as the sign of DðcgðtÞ; tÞ _EðtÞ does not change, one cannot distinguish between

variation of the median elongation, which is supposed to be positive, and variation of the dif-

ferential growth term.

Let us now consider the effect of elongation on the observed patterns. In the case where the

whole organ is growing, L< Lgz, the curvature does not change as the organ grows, but the

increasing length of the organ results in a spiral (Fig 7.A). The time to make a full turn remains

unchanged, as Eq 22 is independent of the length of the organ (see [29]—key 4). In the case

where L> Lgz, the pattern remains circular, however the part of the organ outside of the

growth zone is fixed in a helical pattern, and the organ is curved in different directions. The

observed circular pattern will exhibit a drift. If this helix is small, CLgz� R/Lgz, it may not be

noticeable experimentally (see [29]—key 5).

No experimental account of this kind of helical pattern has been reported, suggesting a

strong regulation of the curvature. Following the case of gravitropism [14], proprioception is a
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good candidate for curvature regulation. A proprioceptive term can easily be added to Eq 13:

Dkðs; tÞ ¼ � gC þ D cgðs; tÞ
� �

sin ðcgðs; tÞ � ccðs; tÞÞ ð23Þ

Fig 6. A. Mechanism underlying a circular pattern: A1. A circular pattern in the plane of the apical tip defined by (xa(t),

ya(t)). This is realized by a constant differential growth DðcgðtÞ; tÞ _EðtÞ (A2) and constant variation of the direction of the

differential growth
dcgðtÞ
dt (A3). A simulation of an organ with these conditions can be found in S3 Video. B and C (see [29]—

key 0 and 1). Underlying mechanisms for an elliptic pattern: B1 and C1. An ellipse in the horizontal plane. This pattern can

be realized with a constant constant DðcgðtÞ; tÞ _EðtÞ (B2) and a periodically varying
dcgðtÞ
dt which is maximal close to the

major axis of the ellipse (B3). A simulation can be found in S4 Video. Another option is if D _E varies periodically and is

maximal close to the major axis of the ellipse (C2), even if
dcgðtÞ
dt is constant in time (C3). A simulation is presented in S5

Video. A combination of these two limiting mechanisms will also lead to an ellipse.

doi:10.1371/journal.pcbi.1005238.g006
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The results obtained for a circular pattern are then slightly modified (Fig 7.B). Here the cur-

vature of the organ is reduced by proprioception, which tends to straighten the organ [11].

The observed pattern is shifted around the base of the organ, in order to reduce the maximal

curvature reached by the organ. The apical tip now converges towards a single stable orbit cen-

tered around the base that is fully independent of the initial conditions (see [29]—key 3). Due

to the evidence that proprioception prevents fixed curvature in the case of gravitropism [14], it

is reasonable to postulate that such regulation is also sufficient in the case of nutation.

Some experimental observations have shown the existence of epi- and hypo-trochoid pat-

terns (spirograph pattern) [22]. These patterns provide an interesting case where the validity

of hypothesis H1 (which assumes no local effects) is put in question. Mathematically, a tro-

choid is constructed as a sum of linear oscillators. If two segments of the organ of length L1

and L2 possess different temporal behaviors of the orientation of differential growth ψg1(t) =

ω1t and ψg2(t) = ω2t, a trochoid will then be observed in the horizontal plane, as shown in Fig

8, and from the simulations presented in S6, S7 and S8 Videos. Applying Eq 20 to the apical

curves cannot discern between the two separate oscillators, and will therefore result in an effec-
tive ψg(t). Furthermore, the sign of the effective

dcg ðtÞ
dt is dominated by the faster oscillator.

We now analyze an existing dataset of apical movements of 8 Arabidopsis thaliana plants

published by Stolarz et al. [18] (see Fig 9A, 9B, 9C and 9F for examples of measured apical pat-

terns. Most of the observed patterns are elliptical. We apply eqs 20 and 21 on all 8 measure-

ments of the apical tip in the horizontal plane (xa, ya), extracting ψg(t) (shown in Fig 9D) and

DðcgðtÞ; tÞ _EðtÞ. After *20 hours most plants exhibit a linear behavior, equivalent to a constant

time derivative
dcg ðtÞ

dt . Averaging over time and over the different plants results in

h
dcg ðtÞ

dt i ¼ 4:6� 10� 4 � 7� 10� 5s� 1, and substituting this in Eq 22 gives the time taken for a full

rotation of the differential growth direction, Tr = 230 ± 40 min. At this point we focus on a sin-

gle curve (plotted in dark blue), where no torsion has been observed. Examining
dcg
dt for closely

(plotted in Fig 9E) we identify oscillations. As mentioned earlier, the model predicts the max-

ima to be Tr/2 apart, representing opposite points along the apical curve. Indeed we find that

the average time between every other maximum is To = 215 ± 25 min, in agreement with Tr

found from the average value of
dcg
dt . Moreover, since this plant does not exhibit torsion, one

can plot
dcg ðtÞ

dt and DðcgðtÞ; tÞ _EðtÞ as a function of ψg(t) (shown in Fig 9G and 9H). As predicted

Fig 7. A. The effect of growth on the apical movement in the horizontal plane. A spiral is observed due

to the increase in size of the organ. B When proprioception is added to a circular pattern, (see Fig 6.A), the

apical tip modifies its trajectory to turn on a circular pattern centered on the base of the organ. Each colors

represent different initial conditions.

doi:10.1371/journal.pcbi.1005238.g007
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from the model, we find the minima of
dcg ðtÞ

dt and the maxima of DðcgðtÞ; tÞ _EðtÞ situated at

ψg = ±π/2, representing the farthest sides of the ellipse (on the right and left).

Discussion

A detailed analysis has now been carried out of the kinematics of differential growth outside of

the plane of curvature, and its implications on plant movement. This shows how a classical

measurement, here the position of the tip in the horizontal plane, is insufficient to provide a

clear picture of the relation between observed movements and the underlying growth

mechanisms.

Furthermore this study shows that the kinematics of the out of plane curvature can be

described as a simple extension of the kinematics relating curvature in the plane and differen-

tial growth [14]. By projecting the differential growth on the planes parallel and perpendicular

to the plane of curvature, only one supplementary equation is necessary to describe the full

kinematics. This equation relates the orientation of the curvature and the growth in the per-

pendicular plane. The amplitude of the curvature is modified by the difference in growth rate

between the two sides of the organ in the plane of curvature. The orientation of curvature in

Fig 8. Epi- and hypo-trochoids constructed as a sum of two linear oscillators with angular

frequencies respectivelyω1 andω2. A1 ω2 = 6ω1 and B1 ω2 = −6ω1. Plotting @t ψg as a function of time is

governed by the oscillator with the higher frequency, in this caseω2 (A2 and B2). Simulations of these patterns

are presented in S6, S7 and S8 Videos. The analysis of
dcgðtÞ
dt using Eq 20 does not allow to extract accurately

the values ofω1 andω2, but rather gives and effective oscillator.

doi:10.1371/journal.pcbi.1005238.g008
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Fig 9. A. B. C. and F. Four nutation patterns produced by different plants in the horizontal plane during 63

hours, taken from Stolarz et al [18]. D. The principal direction of differential growthψg(t) as a function of time. E.

Evolution of
dcgðtÞ
dt as a function of t. F. An elliptical pattern produced by a plant in the horizontal plane, not exhibiting

torsion. G.
dcgðtÞ
dt as a function ofψg(t), showing dips at aroundψg = ±π/2, predicting an elliptical pattern. H.DðcgðtÞ; tÞ _EðtÞ

as a function ofψg(t), exhibiting peaks atψg = ±π/2, in line with the underlying mechanism for an elliptic pattern.

doi:10.1371/journal.pcbi.1005238.g009
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space is then modified by the differential growth in the perpendicular plane. Only three

parameters are necessary to account for the full movement: i. the elongation rate along the

median line _Eðs; tÞ sets the time scale of the movement, ii. the principal direction of differential

growth ψg(s, t), the direction in which the differential growth is maximal and iii. the distribu-

tion of the differential growth in this direction Δ(ψg(s, t))(s, t). The description of this geomet-

rical framework has been neglected to date, and is a central step to unravel the relation

between differential growth and nutation.

In both the case of gravitropism [14] and nutation, the destabilizing effects of growth on the

movement are regulated by proprioception. The autonomous capacity of plants to control and

regulate their own shape is reinforced as a central element of postural control. During gravitro-

pic movements, it has been shown experimentally that effects due to growth could be neglected

due to the strong influence of proprioception [14]. It is then expected that this regulation is

sufficient to avoid the effects due to growth during nutation.

The position of the apical tip in the the horizontal plane, perpendicular to gravity, has been

central to the study of kinematics. The relevance of this measure has never been clearly dis-

cussed and the underlying hypotheses have remained hidden. In particular the relation

between the movement of the apical tip and the dynamics of the differential growth, the motor

of the movement, is difficult to extract because the full shape of the plants remains unknown.

A simple set of hypotheses needs to be properly stated to constrain the relation between shapes

and movements. The whole organ is now considered as a block that undergoes the same varia-

tion all along the organ. Despite the simplification of the problem, this has proved useful to

unravel the underlying dynamics of the differential growth, retaining the general observed

behavior. As plants tend to align their curvature orientation ψc with the principal direction of

growth ψg, the pattern observed in the horizontal plane can remain a marker of growth. Com-

mon observed patterns, like the circle or the ellipse, are then directly related to different oscil-

lating patterns of differential growth. Furthermore, simple input such as an oscillation of the

principal direction of growth, can produce robust, stable stereotypical patterns independently

of the initial conditions.

Minimal regulation of the movement is necessary to achieve commonly observed patterns

like the circle or the ellipse. If measurements in the horizontal plane are useful to understand

the kinematics of nutation, they are limited in their scope of analysis. Future studies allowing

the measurements of proper 3D kinematics should provide a better understanding of the

dynamics of differential growth, and give the exact validity of the measurements performed in

the horizontal plane.

In conclusion, we have presented a mathematical description of the kinematics of plant

nutation based on the interplay between geometry and differential growth. This framework

allows a full 3D analysis of complex observed kinematics, shedding light on the underling

mechanism, while revisiting the interpretation of common horizontal measurements of the

plant tip.

Supporting Information

S1 Video. Definitions. The movie shows the basic definitions shown in Figs 2 and 3, and used

in the simulations brought here. The abscissa of a plant organ is defined as starting the base

(blue dot at the bottom), and ending at the apex (red dot at the top). When looking at a circular

cross-section along the organ, a point on its circumference is defined by an angle ψ chosen

from an arbitrary starting point. We then define ψc as the orientation of the vector normal in

the principal direction of curvature c(shown here as a green vector at the apex), and ψg as the

direction of the principal differential growth vector g, here shown as a black vector at the apex.
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Simulations of the nutation movements are carried out by solving eqs 13 and 14, together with

Eqs 15 and 16, using the appropriate functions of ψg(t) and Dðcgðs; tÞÞ _Eðs; tÞ. An example of a

simple circular nutation motion in 3D is presented from various points of view, showing how

c and g are oriented throughout.

(MP4)

S2 Video. Constant. Dðcgðs; tÞÞ _Eðs; tÞ ¼ 1 and ψg = 0. The principal direction of curvature

aligns with the principal direction of growth. Two different initial conditions of the curvature,

C(0), are presented to show that the dynamics does not depend on this initial conditions.

(MP4)

S3 Video. Circle. Dðcgðs; tÞÞ _Eðs; tÞ ¼ 1 and ψg = ω0t. When the principal direction of growth

is revolving around the surface of the organ, the pattern displayed is a circle. Two different ini-

tial conditions of the curvature, C(0), are presented to show that the dynamics does not depend

on this initial conditions.

(MP4)

S4 Video. Ellipse 2. Dðcgðs; tÞÞ _Eðs; tÞ ¼ 1 and
dcg
dt ¼ o0ð1þ :5cosð2cgÞÞ. Here the principal

direction of growth is oscillating around the surface of the organ, however this revolution is

slower when ψg = ±π/2, the pattern displayed is an ellipse.

(MP4)

S5 Video. Ellipse 2. Dðcgðs; tÞÞ _Eðs; tÞ ¼ ð1þ :5 cos ð2cgÞÞ and ψg = ω0t. Here the principal

direction of growth is revolving around the surface of the organ, while the intensity of the dif-

ferential growth element Dðcgðs; tÞÞ _Eðs; tÞ is slower when ψg = ±π/2. The pattern displayed is

still an ellipse but it is rotated by π/2 from the pattern obtained in S4 Video.

(MP4)

S6 Video. Trochoids, definitions. An example of a more complex dynamics that can be

obtained when different part of stem are constrained by different dynamics. The organ is here

divided into two sections, from the base (in blue) to the purple point (Part 1) and from the pur-

ple point to the apical tip (in yellow). The red dot corresponds to the movement observed in

the horizontal plane when only the apical tip is tracked. The yellow and purple dots shows the

underlying dynamics of, respectively, the Part 1 and 2 of the plants.

(MP4)

S7 Video. Epitrochoids. The definition are the same than in S6 Video. Part 1:

Dðcgðs; tÞÞ _Eðs; tÞ ¼ 1 and ψg = ω0. Part 2: Dðcgðs; tÞÞ _Eðs; tÞ ¼ 5 and ψg = 6ω0t.
(MP4)

S8 Video. Hypotrochoids. The definition are the same than in S6 Video. But here Part 1:

Dðcgðs; tÞÞ _Eðs; tÞ ¼ 1 and ψg = ω0. Part 2: Dðcgðs; tÞÞ _Eðs; tÞ ¼ 5 and ψg = −6ω0t.
(MP4)

S1 Text. Appendix. Analytical detail of the calculation performed in this manuscript.

(PDF)
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