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Lack of influence of dexmedetomidine on rat glomus cell 
response to hypoxia, and on mouse acute hypoxic ventilatory 
response
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Introduction

Dexmedetomidine is a non‑selective alpha2‑adrenoceptor (α2) 
agonist,[1] and a full agonist for the α2b receptor subtype,[2] 
and has been in clinical use worldwide since ~2010. It is 

an analgesic hypnotic and shows volatile and intravenous 
anesthetic‑sparing effects.

Many sedative  (midazolam[3,4]), analgesic  (opiate[5]) or 
anesthetic (volatile and intravenous) drugs[6‑8] have the common 
effect of depressing the protective chemoreflex increase in 
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Background and Aims: There is a lack of basic science data on the effect of dexmedetomidine on the hypoxic chemosensory 
reflex with both depression and stimulation suggested. The primary aim of this study was to assess if dexmedetomidine inhibited 
the cellular response to hypoxia in rat carotid body glomus cells, the cells of the organs mediating acute hypoxic ventilatory 
response (AHVR). Additionally, we used a small sample of mice to assess if there was any large influence of subsedative doses 
of dexmedetomidine on AHVR.
Material and Methods: In the primary study, glomus cells isolated from neonatal rats were used to study the effect of 0.1 
nM (n = 9) and 1 nM (n = 13) dexmedetomidine on hypoxia‑elicited intracellular calcium [Ca2+]i influx using ratiometric 
fluorimetry. Secondarily, whole animal unrestrained plethysmography was used to study AHVR in a total of 8 age‑matched 
C57BL6 mice, divided on successive days into two groups of four mice randomly assigned to receive sub‑sedative doses of 5, 
50, or 500 µg.kg‑1 dexmedetomidine versus control in a crossover study design (total n = 12 exposures to drug with n = 12 
controls).
Results: There was no effect of dexmedetomidine on the hypoxia‑elicited increase in [Ca2+]i in glomus cells (a mean ± SEM 
increase of 95 ± 32 nM from baseline with control hypoxia, 124 ± 41 nM with 0.1 nM dexmedetomidine; P = 0.514). In 
intact mice, dexmedetomidine had no effect on baseline ventilation during air‑breathing (4.01 ± 0.3 ml.g‑1.min‑1 in control and 
2.99 ± 0.5 ml.g‑1.min‑1 with 500 µg.kg‑1 dexmedetomidine, the highest dose; P = 0.081) or on AHVR (136 ± 19% increase from 
baseline in control, 152 ± 46% with 500 µg.kg‑1 dexmedetomidine, the highest dose; P = 0.536).
Conclusion: Dexmedetomidine had no effect on the cellular responses to hypoxia. We conclude that it unlikely acts via 
inhibition of oxygen sensing at the glomus cell. The respiratory chemoreflex effects of this drug remain an open question. In 
our small sample of intact mice, hypoxic chemoreflex responses and basal breathing were preserved.
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ventilation in the face of hypoxemia (or hypercapnia; perhaps 
this latter being somewhat better preserved than the former[9]). 
In this context, there has been considerable debate over 
the effects of dexmedetomidine on respiratory control with 
some reports finding respiratory chemoreflex depression in 
common with other anesthetics,[10,11] while others suggesting 
no depressive effect, and even chemostimulation of hypoxic 
responses.[12,13]

In intact rabbits and rats respectively, Nishida, et al.[10] and 
Fernandes, et  al.[11] reported that dexmedetomidine was 
depressive to chemoreflex control of breathing. One limitation 
of the Nishida et al.[10] study was that the animals continued 
to inhale up to 0.3% sevoflurane whilst dexmedetomidine 
was infused, which at these concentrations itself can modestly 
reduce the ventilatory response for hypoxia[14]  (but not for 
CO2

[9]).

In humans observations to date on respiratory effects of 
dexmedetomidine appear to be largely clinical observations 
confined to its use for sedation[15] or to facilitate ventilation in 
critical care,[16] and there appear to be no rigorous studies of 
its effects on the physiology of chemoreflex control. One early 
report suggested that dexmedetomidine depressed ventilatory 
response to CO2, but hypoxic responses were not examined.[17] 
In an infusion and bolus regimen sufficient to cause significant 
sedation in human volunteers, a preliminary report in abstract 
form suggests that dexmedetomidine impaired both hypoxic 
and hypercapnic ventilatory responses, equivalent to the effects 
of propofol.[18]

In contrast to these findings of chemoreflex depression, 
Nguyen, et  al.[12] reported in dogs that high dose  (up to 
100 µg.kg‑1) dexmedetomidine actually stimulated ventilation 
and chemoreflex responses. More recently, Nakatani, et al.[13] 
used a reductive approach to the problem, by studying more 
directly the influence of the drug on carotid sinus nerve activity 
from excised carotid bodies (rabbits) and reported an increase 
in response to hypoxia when perfused with high dose (1 nM 
at cell level) dexmedetomidine.

Hypoxia causes membrane depolarization through closure 
of leak potassium  (TASK; TWIK‑related acid‑sensitive 
potassium) channels and results in an increased intracellular 
calcium ([Ca2+]i) and subsequent neurotransmitter release 
to activate the carotid sinus nerve and initiate autocrine/
paracrine signaling pathways.[19,20] Thus the findings of 
Nakatani, et al.[13] and Nguyen, et al.[12] might imply that 
the glomus cells (the hypoxia sensing element of the carotid 
body) may be stimulated by dexmedetomidine. Yet, little is 
currently known about how dexmedetomidine might act on the 
glomus cell. The answer to this question is of key mechanistic 

importance, as the excitability of these cells (and the function 
of their background TASK‑like channels) has been shown to 
be depressed by a variety of inhalational anesthetics[21‑23]  and 
similarly depressed by intravenous agents[24‑26]: consistent 
with the known effects of all these drugs at whole body level. 
Verifying Nakatini et  al.’s[13] results of stimulation of the 
response would make dexmedetomidine quite a unique drug 
in this context.

There is plausible reason to suppose that dexmedetomidine 
could have a direct glomus cell effect: α2‑adrenoceptors have 
been demonstrated by radio‑binding assays on rabbit glomus 
cells.[27]

We wished to determine whether dexmedetomidine augments 
the hypoxia‑induced Ca2+  influx into carotid body glomus 
cells  (as predicted by the results of Nguyen, et  al.[12] and 
Nakatani, et al.[13]). A contrary result of depression would 
be more consistent with the findings of Nishida, et al.[10] and 
Fernandes, et al.[11] Thus our null hypothesis (statistically) was 
that dexmedetomidine would have no effect on hypoxia‑induced 
cellular Ca2+ influx in isolated glomus cells.

In an additional set of experiments, we also tested the effects 
of dexmedetomidine on the chemoreflex responses of a small 
sample of intact mice (unrestrained plethysmography), simply 
to assess if our results in isolated glomus cells (i.e., null effect 
or depression or stimulation of response) were consistent across 
the hierarchies of cellular organization from cell to organism, 
and across species.

Material and Methods

All experiments were performed in accordance with the UK 
Animals (Scientific Procedures) Act, 1986. Our reporting 
conforms to ARRIVE guidelines. The work had the approval 
of the local animal ethics committee and was performed under 
a project license to KJB (all authors also possess personal 
animal licenses for rodent work).

Primary study: isolated glomus cell responses 
to hypoxia
Neonatal Sprague‑Dawley rats (P11‑14) were used for the 
isolated glomus cell study, supplied by Harlan (Blackthorn, 
Oxfordshire, UK).

The methods used have been extensively previously 
described.[23,28] Briefly, carotid bifurcations were dissected 
in situ from rat pups anesthetized with 2‑4% isoflurane and 
placed in ice‑cold Dulbecco’s phosphate‑buffered saline. 
Microdissection of the carotid body was carried out ex vivo, 
and after enzymatic treatment, the tissue was triturated to 
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isolate individual cells in suspension. Primary cell cultures 
were plated onto coverslips and incubated for 2 h prior to 
loading with the cell permeant acetoxymethyl ester variant of 
indo‑1 dye for exactly 60 min. After microscopic identification 
of a glomus cell, [Ca2+]i was estimated in these cells using 
ratiometric fluorimetry.

Each cell was sequentially superfused with 37°C Tyrode’s 
solution equilibrated with 5% CO2 in balanced air (euoxia) 
for 5–10 min and 5% CO2 with 1% O2 in balanced N2 (mild 
hypoxia) or 5% CO2 in balanced N2 (severe hypoxia) for 
periods of 1–3 min each, returning to euoxia each time for 
between 5 and 10 min. This exposure sequence protocol was 
repeated in both control and drug so that each cell acted as its 
own control. Dexmedetomidine (Tocris Bioscience, Bristol, 
UK) was added to the superfusate in the concentrations 
0.1 nM and 1 nM (the same concentration range as used by 
Nakatini et al.[13]), randomly assigned by coin flip.

Each cell under investigation was exposed to hypoxia only 
once (with euoxic periods either side of the hypoxic stimulus) 
and on any given day, only one severity of hypoxic stimulus 
was used on a batch of cells.

These levels of gas input yield average O2 tensions of 
10 mmHg and 3 mm Hg in the cell perfusion dish for mild 
and severe hypoxia, respectively, as measured using O2 
optodes (Presens, Regensburg, Bavaria, Germany).[29] These 
stimuli elicit robust activation of glomus cells and probably 
mimic tissue conditions during whole‑body exposures to 
hypoxia of ~ 50 mmHg end‑tidal.[30]

The end‑point was the change in intracellular calcium 
concentration ([Ca2+]i, nM) in response to hypoxia, calculated 
as the average value over the period of hypoxia, subtracted 
from the mean of [Ca2+]i values in the 30 sec euoxic period 
before the switch into hypoxia, and compared for each cell 
in the presence and absence of dexmedetomidine. Values 
for individuals cells were averaged to yield mean ± SD for 
statistical analysis (see below). Values in results and figures are 
presented as mean ± SEM, for clarity (SDs can be readily 
derived from each SEM using the square root of the n quoted).

Secondary study: Breathing responses of intact 
mice
After the primary study, we wished to assess if our results 
were also observed in intact animals. Our purpose here 
was not to provide a complete analysis of modest effects 
of dexmedetomidine on breathing responses using a large 
sample size, but rather to assess if dexmedetomidine had as 
large an effect on hypoxic chemoreflex response as did other 
anesthetics. We used a small sample of 8 C57BL6 inbred 

mice (7‑8 weeks old; Harlan). All animals compared were 
kept in identical housing conditions.

Whole body plethysmography was performed by placing 
mice in plexigas chambers (Buxco Electronics, Wilmington, 
North Carolina, USA), which were continually flushed with 
gas mixtures at a flow rate of 2 l.min‑1. Pressure changes were 
measured with a differential pressure transducer, the signal 
amplified, filtered and converted from analogue‑to‑digital 
through a preamplifier. Signal processing was performed by 
Finepointe software (Buxco Electronics, Wilmington, North 
Carolina, USA). Oxygen and carbon dioxide concentration 
within the chamber were measured by continuous sampling 
from a side‑port (Datex, Helsinki, Finland).

Animals were acclimatized to the chambers for a period 
of 30  minutes prior to experimentation. All experiments 
were conducted at room temperature, between 0800 and 
1400, on animals housed in a dual light cycle aligned with 
ambient. Hypoxic stimulus was performed with two 5‑min step 
changes from air into 10% O2, 3% CO2, 87% N2 (“isocapnic 
hypoxia”; see Supplementary material) with periods of euoxia 
in between.

The first 30 sec of data after the switch was excluded to allow 
for the gas concentration in the chamber to equilibrate and the 
‘peak’ minute ventilation calculated as the mean ventilation 
achieved within the subsequent 90 sec after the switch into 
hypoxia  (i.e.,  average of data 30‑120  sec after entry into 
hypoxia). The AHVR was the difference between this peak 
value and the mean resting minute ventilation over the 90‑s 
period of euoxic breathing before the gas switch. The increase 
in minute ventilation was indexed to  (i.e., divided by) the 
resting minute ventilation to give AHVR as a percentage 
increase from baseline, to account for variations in absolute 
levels of resting breathing between mice.

Sustained hypoxia can result in a secondary decline in 
ventilation towards baseline, after the initial peak. This 
“hypoxic ventilatory decline” (HVD) has been extensively 
studied and if it arose in mouse ventilation we planned 
to estimate its magnitude as previously described in 
human studies.[4] First, the difference between the ‘peak’ 
ventilation (described above) and the ventilation in the last 
90 sec of hypoxic exposure was calculated. Second, this value 
was expressed as a proportion (%) of the AHVR such that 
a high % indicates significant HVD.

A total of 8 age‑and weight‑matched male mice were used 
and on successive days were randomized in two groups of 4 
to receive either dexmedetomidine subcutaneously (5 µg.kg‑1, 
50 µg.kg‑1 or 500 µg.kg‑1) or vehicle (equivalent volume NaCl 
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0.9%) in age‑matched control animals. Thus in this crossover 
design, each mouse was studied three times, being randomly 
subjected to either drug or control on any given day. We wished 
to select a range of doses, where the highest was sub‑sedative, 
but which had proven analgesic or behavioral properties. 
Savola and Virtanen have confirmed that a dose of ~500 
µg.kg‑1 reduces spontaneous motor activity and is analgesic in 
mice, but that there is no overt sedation.[31] Sallinen et al.[32] 
confirmed a reduction in motor activity including fine grooming 
movements, but no sedation, at dexmedetodine doses of 30 
µg.kg‑1. Doses of up to  ~500 µg.kg‑1 have been used as 
antinociceptive, but not sedative, in many other experiments 
in mice.[33]

The reason for our approach was that most if not all drugs 
known to induce sedation also depresses the hypoxic 
chemoreflex by a non‑specific effect of sedation. It is by 
studying concentrations just below those needed to induce 
sedation that any specific effects of drug can be discerned 
with confidence.

Before commencing the respiratory studies, we first estimated 
the inspired CO2 that would maintain a near‑isocapnic state 
during hypoxic exposure. A separate cohort of four wildtype 
mice were exposed to 5 min of air or 10% O2, 3% CO2 
with 87% N2. At the end of this exposure, the animals were 
killed and immediately exsanguinated into a heparinized 
tube. Blood gas analysis  (GEM 3000, Instrumentation 
Laboratory, Warrington, UK) was carried out on the samples 
immediately (the time between killing and analysis was ~5 sec). 
There was no significant difference in the exsanguinated 
blood gas analysis of pH comparing the isocapnic hypoxic 
stimulus (pCO2 5.00 ± 0.09 kPa; pH 7.38 ± 0.01) and 
air (CO2 5.73 ± 0.19 kPa; pH 7.35 ± 0.02), confirming 
that 3% inspired CO2 approximated isocapnia (P = 0.916 
and P = 0.139 for pCO2 and pH. respectively). Furthermore, 
a separate cohort of 8 mice were studied for their breathing 
responses to hypoxia  (10% and 12% O2) against four 
different background inspired CO2 concentrations: no 
added CO2  (poikilocapnia), 1%, 3% and 4% CO2. In 
human studies,[34,35] isocapnia appears characterized by a 
concentration of inspired CO2 which (a) elicits a measurable 
AHVR, such that  (b) there is a clear graded response 
to hypoxia, with AHVR in 10% O2 greater than that in 
12% O2, and (c) does not change the baseline ventilation 
post‑hypoxia compared with pre‑hypoxia baseline. Data in 
Supplementary Material shows that only 3% CO2 fulfilled 
all these criteria in mice.

Statistical analysis
Factorial analysis of variance was used to assess the influence of 
different doses of dexmedetomidine on the endpoints for both 

isolated carotid body and whole animal studies (IBM‑SPSS 
version  20.0, IBM‑SPSS Science Inc., Chicago, Illinois, 
USA). For the former, the end‑point was [Ca2+]i and there were 
the following factors: hypoxia (two levels, one for each stimulus 
level, mild or severe) and dexmedetomidine (two levels, one for 
each dose). For the latter, the end‑point was minute ventilation 
and there was one factor, dexmedetomidine (three levels, one 
for each dose). Where significance was suggested (P < 0.05 
was taken as level of statistical significance) post‑hoc Bonferroni 
tests were applied (where this P value was adjusted by dividing 
by the number of multiple comparisons).

Results

Primary study: Isolated glomus cell responses 
to hypoxia
Figure 1 shows a typical glomus cell  [Ca2+]i recording of 
hypoxia, with and without dexmedetomidine. The drug did not 
appear greatly to influence the magnitude of [Ca2+]i response 
in either direction (stimulation or depression). With milder 
levels of hypoxia [Figure 1a], we noticed a more ‘spiky’ [Ca2+]i 
response, whereas severe hypoxia generally yielded a more 
stable [Ca2+]i response pattern [Figure 1b], consistent with 
previous reports.[36,37] Our method of calculating glomus cells 
hypoxic response by average [Ca2+]i values over the hypoxic 
period thus took into account this range of cell response types.

Quantitative analysis confirmed the appearances. 
Hypoxia increased  [Ca2+]i as expected in the absence of 
dexmedetomidine; severe hypoxia elicited a greater increase 
in [Ca2+]i than mild hypoxia (189 ± 41 nM, n = 21, versus 
95 ± 41 nM, n = 9; P = 0.009). However, the magnitude 
of increase in [Ca2+]i evoked by mild and severe hypoxia was 
not influenced by dexmedetomidine (ANOVA, P = 0.512) 
and there was no interaction between level of hypoxia and 
drug dose (P = 0.544).

Secondary study: Breathing responses of intact 
mice
Figure 2 shows a typical plethysmographic output of mice 
breathing quietly in euoxia, and the effect of hypoxia, with and 

Figure 1: Example traces of intracellular [Ca2+]i glomus cell responses to ~60 sec 
exposures to hypoxia; (a) mild hypoxia; (b) severe hypoxia. There is no apparent 
influence of dexmedetomidine in either hypoxic exposure, and this is confirmed 
by quantitative analysis (see text)

ba
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without dexmedetomidine. Minute ventilation rose abruptly, 
as expected, with hypoxia and even during this short exposure, 
some ‘hypoxic ventilatory decline’  (HVD) was evident with 
sustained hypoxia (a phenomenon recognized in rodents[38,39] 
and modelled elsewhere[40]). This HVD gave the appearance 
of a depressive influence of dexmedetomidine on ventilation (i.e., 
the bottom row in Figure 2 gives appearance of lower ventilation 
values with drug than control; analyzed further below). There 
was appropriate return of ventilation to pre‑hypoxic levels on 
return to euoxia. Also evident is the variability in control (no 
dexmedetomidine) responses between the groups of mice for each 
experiment. Overall, any effect of dexmedetomidine seemed at 
best modest. Only at the highest dose was there a suggestion of a 
reduced response during hypoxia, but this must be offset against 
what appeared to be a small reduction in baseline ventilation.

The behavior of the mice at all doses of dexmedetomidine was 
superficially normal (we did not test subtle motor movements 
or pain responses). Immediately after experimentation, they 
fed normally. It was therefore concluded that even at the 
highest doses, dexmedetomidine was sub‑sedative, as intended.

Figure 3 shows the quantitative analysis and averaged results for 
all mice across the three protocols for both pre‑hypoxic resting 
ventilation and AHVR. There was no significant interaction 
between day and AVHR (P = 0.855). Analysis of variance 

confirmed that dexmedetomidine had no significant effect on 
resting, air‑breathing minute ventilation at any dose compared 
with control,  (P = 0.291). Although in Figure 3  (bottom 
panel) it might appear that low dose dexmedetomidine depresses 
AHVR while higher doses augment it, there were no statistically 
significant dose dependent effects on normalized (P = 0.559) 
or absolute hypoxic ventilatory response (P = 0.997). While 
there was indeed an increase in mean magnitude of HVD with 
increasing dose of dexmedetomidine [Table 1], this did not reach 
statistical significance (P = 0.127), and the effect on the mean 
value may be due to one animal with an especially pronounced 
reduction in AHVR in the 500 µg.kg‑1 group [see Figure 2].

Discussion

The main result of this study is that dexmedetomidine has no 
effect (i.e., neither stimulation nor depression) on the glomus 

Figure 2: Influence of dexmedetomidine on hypoxic responses in mice. Each row shows the results for one drug concentration: top to both, from low dose (5 µg.kg‑1), 
middle dose (50 µg.kg‑1) and high dose (500 µg.kg‑1) dexmedetomidine. The first column is the control data for that dose (dark lines), the middle column the with‑drug 
data (red lines). In these first two columns, each trace shows the data for a single mouse (individual data points omitted for clarity). The last column panels show the 
averages for the drug dose control values (black lines) and with‑drug (red lines; points are 30‑sec averages, mean ± SEM)

Table 1: Values of HVD (Mean±SEM) expressed as % 
of AHVR. See text for further detail. Effect of drug 
concentration was NS (P=0.127, ANOVA)

Condition HVD (%) SEM n
No drug (control) 22.4 6.5 12
Dexmed 5 µg.kg‑1 13.2 6.6 4
Dexmed 50 µg.kg‑1 33.7 16.9 4
Dexmed 500 µg.kg‑1 50.7 25.4 4
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cell response to mild or severe hypoxia. If dexmedetomidine 
does have any influence on chemoreflex control  (whether 
inhibitory[10,11] or stimulatory[12,13]) then our results confirm 
that this effect is not via a direct action on the glomus cell 
itself. If drug effects do exist, then alternative mechanisms for 
these could be at the level of the glomus cell‑afferent nerve 
synapse (e.g. an effect of drug on neurotransmitter secretion), 
or due to central drug effects. Thus, our result could be 
consistent with those of Nakatini et  al.,[13] who reported 
response stimulation by dexmedetomidine in an isolated 
carotid body preparation, an experimental setup which retains 
synaptic transmission.

The result of our additional set of observations in intact mice 
is consistent with our main results in the carotid body. Thus, 
while we did not find that dexmedetomidine is a depressive 
drug to the ventilatory chemoreflex (as was suggested by 
Nishida[10] and Fernandes[11]), we also did not find that it 
actually stimulates chemoreflex function (as was suggested 
by Nguyen[12] and Nakatini[13]). However, this ‘neutral’ 
effect, if reflected in future human studies, nevertheless 
implies a potentially beneficial therapeutic profile for clinical 
practice, since during sedation or anesthesia it is highly 
desirable to maintain chemoreflex function as a protective 
response.

That said, we cannot exclude the possibility of a central 
effect of dexmedetomidine, even in our intact animal study. 
We noted that HVD persists with increasing doses of 
dexmedetomidine  [Table  1]. Whereas in humans, HVD 
may originate in the peripheral chemoreceptor[41] in animals 
there is compelling evidence that it may be of central 
origin.[42] Normally HVD is studied over hypoxic exposures 
of 20‑30 min, whereas our methods used hypoxic exposure 
time of only 5 min: if dexmedetomidine has a pronounced 
effect in increasing HVD, our methodology would not have 
detected this. Therefore, future human studies should explore 
the effect of drug on both acute and sustained hypoxia.

Even in theor y it is not fully established how 
α2‑adrenoceptors  (the main putative target for 
dexmedetomidine) could influence the hypoxic chemoreflex 
loop. The same study that identified α2‑adrenoceptors existing 
on glomus cells in rabbits,[27] showed that guanabenz (like 
dexmedetomidine, an α2‑adrenoceptor agonist), reduced 
carotid body hypoxic chemosensory discharge. However, this 
study was conducted in an intact preparation without control 
of local blood flow or blood pressure, and it is possible that 
changes in these might have influenced the result (noting that 
Nakatani et al.[13] reported an opposite, stimulatory effect for 
dexmedetomidine).

There were several limitations of our study. Our sample of 
intact mice in our secondary study was small. We designed our 
power analysis to detect only a large change in effect size (25%; 
similar to effect size of subanesthetic volatile agents[6,7]). Based 
on our recorded variance in minute ventilation (1 ml g‑1 min‑1; 
see Supplementary Material), this showed that 4 animals 
in each group would be sufficient (α = 5%, β = 80%) to 
detect a 2 ml g‑1 min‑1 change in AHVR.[43] Thus this subset 
of experiments cannot be regarded as definitive (i.e., could 
still be a type  2 statistical error), but rather as excluding 
only large effects comparable to other agents at subanesthetic 
doses. Taken together with the work of other authors, the 
physiological results to date demonstrate considerable 
heterogeneity. At various levels of cell organization from 
single glomus cell to isolated carotid body to whole organisms, 
and across species (rabbits, rats, mice and preliminary human 
data), some groups report depression,[10,11,16,18] whereas others 
report stimulation,[12,13] and now where we report here a 
neutral effect. This degree of heterogeneity itself suggests that 
dexmedetomidine is unlikely to demonstrate the inhibition of 
hypoxic chemoreflex response that other anesthetic agents do.

Unusually, we conducted some  (cell) studies in rats and 
other  (plethysmography) studies in mice. We did not use 
carotid bodies from mice in our primary study, because 
glomus cells isolation is technically extremely challenging. 
Although single cell data from mice has been reported, this 
has been after the culmination of several years of work for a 
single paper.[44] Conversely, had our rat glomus cells in the 
primary experiments yielded a positive result (i.e., inhibition or 
stimulation), then we would have logically studied rats in the 
plethysmogram. Having established no drug effect at glomus 
cell level, we took the opportunity to assess if a different species 
produced a different result at whole‑organism level. We note 
that previous workers have also used a similar mix of species 
to study dexmedetomidine on different aspects of function.[31]

In the plethysmography experiments, we were careful to 
employ real time gas analysis to ensure that hypoxic input 

Figure 3: Quantitative analysis of the plethysmography data. (a) pre‑hypoxic 
resting, air‑breathing minute ventilation  (values from first column, Fig.  2; 
absolute level in l.min‑1 ± SEM). (b) AHVR (shown as % increase from resting 
ventilation ± SEM)
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was stable over time and equivalent across the protocols. 
Although we do not report on hypercapnic responses, we did 
employ the technique of adding 3% CO2 to the inspirate to 
ensure constancy of CO2 (isocapnia)[45,46] during the hypoxic 
exposures (as otherwise there would have been hypocapnia, 
which would have acted as a brake to ventilatory response, 
and therefore a confounder).

In relation to humans and patients, the study of dexmedetomidine 
on ventilatory chemoreflexes in humans remains sparse and we 
can find no full report of investigation on its effects on AHVR, 
and this would seem a gap that seems important to fill. The 
full report of Danielson, et al.[18] is therefore to be welcomed.

In summary, we can confidently exclude that dexmedetomidine 
does not have any direct action on glomus cell response to 
hypoxia. If it has any chemoreflex influence at all (depressive 
or stimulatory) it is possible that this is exerted at the level 
of the glomus cell‑afferent nerve synapse, or more centrally 
in the nervous system. However, taken together with the 
heterogenous results of others, our results in mice suggest that 
subsedative doses are not depressive to the same extent as are 
other anesthetic agents.
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Supplementary Material

Defining an optimal isocapnic stimulus (see text for further detail). This array represents the change in minute ventilation to 
a variety of inspired gas mixtures (period of hypoxia black bar). Increasing background CO2 concentration top to bottom. 
This highlights a number of important observations: (1) The response to hypoxia in poikilopcapnia is small or absent; (2) 
the magnitude of response with 1% CO2 across the range of O2 concentrations is relatively small and produces little by way 
of a graded response between 10% and 12% O2. This suggests these two CO2 stimuli unlikely maintain isocapnia (ie, a 
hypoxia‑evoked hypocapnia likely blunting any ventilatory response of magnitude). Then: (3) with 4% CO2, post‑hypoxic 
ventilation does not return to pre‑hypoxic baseline values on return to euoxia and HVD appears absent, which suggests this 
stimulus is too high (ie, an ongoing acid/CO2 chemostimulus) and represents hypercapnia rather than isocapnia. It is only 
with 3% CO2 stimulus that a characteristic response to hypoxia is seen (with HVD), reminiscent of the human response to 
isocapnic hypoxia when using dynamic end‑tidal forcing. All data points are mean ± SEM (n = 8 per stimulus).


