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Abstract

Background: Next Generation Sequencing technologies have facilitated differential gene expression analysis through
RNA-seq and Tag-seq methods. RNA-seq has biases associated with transcript lengths, lacks uniform coverage of
regions in mRNA and requires 10–20 times more reads than a typical Tag-seq. Most existing Tag-seq methods
either have biases or not high throughput due to use of restriction enzymes or enzymatic manipulation of 5’ ends
of mRNA or use of RNA ligations.

Results: We have developed EXpression Profiling through Randomly Sheared cDNA tag Sequencing (EXPRSS) that
employs acoustic waves to randomly shear cDNA and generate sequence tags at a relatively defined position
(~150-200 bp) from the 3′ end of each mRNA. Implementation of the method was verified through comparative
analysis of expression data generated from EXPRSS, NlaIII-DGE and Affymetrix microarray and through qPCR
quantification of selected genes. EXPRSS is a strand specific and restriction enzyme independent tag sequencing method
that does not require cDNA length-based data transformations. EXPRSS is highly reproducible, is high-throughput and it
also reveals alternative polyadenylation and polyadenylated antisense transcripts. It is cost-effective using barcoded
multiplexing, avoids the biases of existing SAGE and derivative methods and can reveal polyadenylation position from
paired-end sequencing.

Conclusions: EXPRSS Tag-seq provides sensitive and reliable gene expression data and enables high-throughput
expression profiling with relatively simple downstream analysis.

Keywords: Next generation sequencing, Tag-seq, High throughput expression profiling, RNA-seq, EXPRSS

Background
Gene expression profiling is widely used to investigate the
dynamics of cellular responses through quantification of
changes in transcript abundances. Microarray methods
have been widely used [1] to monitor global gene ex-
pression changes during investigations of transcriptional
regulatory mechanisms and have been the gold standard
in expression profiling studies for most of the last 15 years.
Alternate methods, such as sequencing of expressed
sequence tags (ESTs) [2] and differential display PCR
[3] were restricted by cost and design difficulties. With

the advent of Serial Analysis of Gene Expression (SAGE)
[4], sequencing-based expression profiling emerged as a
cost-effective alternative to microarrays. Despite various
improvements like LongSAGE [5] and SuperSAGE [6],
issues such as lower data acquisition rates, laborious
protocols, and the requirement for specialized equipment
have restricted rapid adoption of sequencing-based
methods. Recent improved sequencing techniques
[7-9] have led to a remarkable increase in data acquisition
rates, and have enabled simplified protocols. With wider
accessibility of these sequencing systems, there has been
an increase in the use of sequencing-based expression
profiling methods; these have several advantages, such as
the opportunity to detect all expressed genes and to deter-
mine their absolute abundances without hybridization
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biases. Additionally, higher depth of sequencing en-
ables superior dynamic range of detection, highly sen-
sitive differential expression assays, and also an
opportunity to minimize costs through multiplexed
sequencing.
Recent advances in Next Generation Sequencing (NGS)

technologies have been discussed in detail in several
reviews [9-11]. NGS technology has facilitated genome
re-sequencing [12,13], de-novo genome assembly [14,15],
transcriptome and non-coding RNA sequencing, transcrip-
tome assembly [16-19], as well as sequencing of genome
wide protein binding or methylation sites (ChIP-seq
and Methyl-seq) [20-22]. NGS transcriptome sequencing
methods are broadly referred to as RNA-seq methods and
have also been used for differential gene expression analysis
[18]. RNA-seq is a powerful method for whole transcrip-
tome annotation, identification of novel splice junctions
and rare transcription events. Several other methods were
developed based on the principles of SAGE (LongSAGE,
superSAGE and 5′ SAGE) methods that sequence a small
fragment of cDNA from a defined position for expression
profiling [23-25]. These methods can be broadly referred as
Tag-seq methods as they are aimed at sequencing a small
and relatively defined region of mRNA generally referred
as ‘tags’. RNA-seq can be used to measure differential
expression, but the need for 10–20 times more reads
than a typical Tag-seq, biases associated with transcript
lengths [26], and the absence of uniform coverage of
regions in mRNA [27] make inferences about relative
gene expression levels difficult. With Tag-seq methods
one cDNA tag is sequenced from each expressed gene,
thereby making relative expression analysis straightfor-
ward by simply counting tags for each gene. Increased
depth of sequencing allows investigators to make these
methods cost-effective through barcoded-multiplexed
sequencing.
Most existing Tag-seq methods such as NlaIII-DGE

(/DpnII-DGE) or Super SAGE or 5′ SAGE methods use
restriction enzymes and adapter ligation for cDNA tags.
For SAGE to work, each transcript requires the presence of
a restriction enzyme recognition site (referred as anchoring
enzyme such as NlaIII or DpnII to provide an anchor site
for tag generation). Therefore, no expression information
can be obtained for a gene without the anchoring enzyme
site. In Arabidopsis, 3 and 5 % of genes lack DpnII and
NlaIII sites respectively. The SAGE methods also involve
digestion using a tagging enzyme (MmeI or EcoP15I),
which produces a short cDNA tag that is sequenced later.
Each of these tagging enzymes has a complex restriction
nuclease activity and the mechanism of restriction di-
gestion of these enzymes is not entirely understood.
An additional shortcoming of SAGE is that the tagging
enzyme sites often occur within the genes and lead to
longer tag sequences, resulting in loss of such tags during

size selection. For example, in Arabidopsis 14383 genes
(out of 33602) have at least one recognition site (TCCRAC)
for MmeI in the sense strand. MmeI, a type IIS restriction
enzyme, has both restriction and methylating activity and
inhibits restriction digestion at high enzyme concentration
due to methylation of the recognition site [28]. Similarly
EcoP15I, a type III restriction enzyme with restriction and
methylation activity, needs two restriction recognition sites
in head-to-head orientation to effectively digest the DNA,
and the distance between two recognition sites can influ-
ence digestion efficiency [29-31]. Methods based on ana-
lysis of 5′ ends of cDNAs either involve low throughput
methods eg using methyl cap [32] or have amplification
biases that are less reliable in strand specificity (methods
using SMART cDNA amplification) [33,34]. There is thus
a need for a Tag-seq method that produces reliable expres-
sion data with no or minimal biases and is amenable for
analysing hundreds of samples.
Others have attempted to generate restriction digestion

independent Tag-seq using nebulisation [35]. However,
nebulisation for cDNA shearing of many samples is not
practical. We used adaptive focussed acoustics (AFA), a
technology from Covaris (http://www.covarisinc.com/)
that uses high frequency ultrasonic sound waves, to shear
DNA to a desired size. AFA-sheared DNA or cDNA has
been successfully used for whole genome and whole
transcriptome sequencing [36,37]. We have developed a
protocol named EXpression Profiling through Randomly
Sheared cDNA tag Sequencing (EXPRSS) that employs
AFA random shearing of double-stranded cDNA for high
throughput expression profiling. Implementation of EXPRSS
tag generation protocol is not limited to AFA sheared
cDNA but can also be used for sonicated cDNA derived
from other technologies such as SonicMan (http://www.
matrical.com/) or Bioruptor (http://www.diagenode.com/).

Results
EXPRSS Tag-seq protocol and experimental setup
The EXPRSS Tag-seq method involves the following
steps (Figure 1). First strand cDNA is synthesized through
reverse transcription of poly(A) RNA from total RNA
using a custom oligo-dT primer. The oligo-dT primer, at
the 5′ end, has Illumina single end flow cell primer se-
quence referred as P7 [13] and the oligo-dT sequence was
terminated with 12 two nucleotide combinations compris-
ing V (AGC) & N (ATGC) to initiate reverse transcription
at a poly (A) junction. Second strand cDNA synthesis was
carried out according to Okayama and Berg [38]. Purified
cDNA was sheared using Covaris AFA to a target size
of ~200 bp and sheared cDNA was end-repaired and
dA-tailed. A Y-shaped adapter with a dT overhang was
ligated to dA-tailed sheared cDNA fragments. The Y-
shaped adapters were designed as described previously by
Prashar and Weissman [39] so that the primer binding
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sites for amplification on the adapter end will only be syn-
thesized after priming from the P7 sequence on oligo-dT
end. Therefore, the Y-shaped adapters ensure selective
amplification of the 3′-most fragment of each cDNA, so
that only one tag per transcript is sequenced at a defined
average distance from the 3′ end, specified by the choice of
shearing parameters. This adapter design also prevents
adapter dimer amplification and also provides the oppor-
tunity to directly sequence on Illumina without prior ampli-
fication. The adapter also contains 3 to 6 base barcodes at
the ligation junction for multiplexed sequencing of libraries.
Barcodes of different lengths were introduced to avoid pre-
dominance of T at any particular base position, resulting
from T/A ligation. Alternative implementation of “bare-
back” from the Babraham Institute [40] would have enabled
us to use a simpler barcode design. However, it is not pos-
sible to store sequence data images with current data ana-
lysis pipeline of GAII and no such option exists for Hiseq.
Hence, the approach we adopted is an excellent method for
multiplexed sequencing with reliable base calling on the
Illumina platform. Alternatively, an unsupported version of
the base calling pipeline is available with a delayed base
calibration option, which was found to give mean quality of
reads less than those from real time analysis [40]. The bar-
codes were designed so that with an equimolar mixture,
there would be near equal distribution of all four bases at
each position in the first 5–6 bases. Therefore, it is not ne-
cessary to run a PhiX lane for base calibration of cDNA tag
sequencing especially for samples with GC content < 40 %,
such as the Arabidopsis transcriptome.

To test the EXPRSS method, an experiment was con-
ducted in which leaf discs from 5 week old plants of Ara-
bidopsis ecotype Col-0, were treated either with water or
flg22 (22 amino acid peptide from bacterial flagellin) for
60 minutes [41]. Four biological replicates were collected
and 5 μg of total RNA was used from each sample for li-
brary preparation. For comparative purposes, 5 μg of each
RNA sample was also subjected to NlaIII-DGE library
preparation protocol [42,43]. However three modifications
were made to the NlaIII-DGE protocol (see Additional file
1, Figure S1A & B); (1) barcodes were introduced in the
Adapter2 for multiplexed sequencing and (2) methylation
of adenosine was used in the NlaIII recognition site
(CATG) to favour Adapter1 ligation to cDNA over cDNA
and cDNA ligations [44] and (3) adapter1 was biotinylated
to avoid two rounds of size selection to remove Adapter2
self-ligated products, which would get preferentially amp-
lified creating PCR biases in the library [45]. A detailed
protocol is provided in Additional file 2. Eight libraries (4
each of control and treatment) prepared for each method,
were mixed in equimolar ratios and sequenced using Illu-
mina Genome AnalyzerII (GAII).

EXPRSS sequence tags can be reliably assigned to transcripts
EXPRSS library preparation uses total RNA and unlike
NlaIII-DGE no prior selection for poly(A) RNA was
performed. Most of the total RNA is ribosomal RNA
(rRNA), and the number of reads mapped to Arabidop-
sis rRNA sequences [46,47] was examined to rule out non-
specific reads from rRNA. Reads mapping to rRNA from

BA

Figure 1 Schematic diagram representing EXPRSS Tag-seq. (A) Library preparation (B) Data analysis pipeline.
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the eight sequenced EXPRSS libraries accounted to 0.64 %.
A similar analysis on NlaIII-DGE reads indicate about
~0.13 % of reads map to rRNA. Most of the rRNA reads in
EXPRSS are from transcripts downstream of the 5.8S
rRNA-encoding loci (AT2G01020 and AT3G41979) with
cDNA evidence in TAIR database (see Additional file 1,
Figure S2). Although NlaIII-DGE has less reads from
rRNA, there were no reads from the transcripts down-
stream of 5.8 s rRNA-encoding loci, as they lack NlaIII re-
striction sites, exemplifying one of the caveats for
restriction enzyme based methods.
Individual libraries from multiplexed samples were

aligned to TAIR10 genome sequences [48] using Bowtie
short read alignment software [49]. Three main groups
of tag sequences were observed from the uniquely
mapped reads of EXPRSS data sets (Figure 2). Type A
tags (the majority) align within ~300 bp from the 3′ end
of existing gene models. Type B tags align upstream of
300 bp from the 3′ end, revealing genes with early polya-
denylation sites. Type C tags align to antisense strands of
existing gene models. In the following three sub-sections,
we explain various sequence tag groups detected and their
assignment to gene expression analysis.

i EXPRSS Tag-seq generates cDNA tags at a
controlled distance from polyadenylation site

The EXPRSS method is mainly intended to produce a
tag sequence from the 3′ end of each cDNA. As the
cDNA is randomly sheared to ~200 bp, which includes
48 bp of oligo-dT_P7 primer, the resulting fragments
should contain ~150 bp of transcript sequence. If shear-
ing of cDNA is random, most sequenced reads should
align within ~300 bp (150 ± 150 bp) from the 3′ end of
cDNA. This distribution however, depends on the precision
of polyadenylation machinery and the dexterity in fragment
size selection. Furthermore, shearing of cDNA overcomes
the bias associated with longer genes since to make a tag
from cDNA for a gene, only the last 300–400 bp need to be
reverse-transcribed. Also, each gene produces only one tag
per transcript thus, avoiding the need for length-based data
transformations usually employed in quantitative RNA-seq
protocols. The efficiency of random shearing was tested by
plotting mapping frequency against the alignment distance
from the 3′ end of cDNA. Uniquely matched tags to the
sense strand of genes were included in this analysis and
the distance for the longest splice variant was taken into
consideration for tags that match to multiple splice
variants of a gene. Figure 2A shows the plot of pooled
frequency of tags aligned against the distance from 3′ ends
in bp from the start position of the tag. As expected
for random shearing, ~90 % of the tags aligned within
the ~300 bp distance from 3′ end with a clear peak
at ~150 bp. Tags derived from transcript variants, with

either premature or alternative polyadenylation, contrib-
ute to the long tail of distribution reaching the 5′ end
(Figure 2A). Tags aligning to distinct long and short
transcripts of FCA (cDNA clones are ~6.5 kb apart –
Figure 2B) support this interpretation. Identification of
alternative polyadenylation sites in EXPRSS data sets is
only reliable when these sites are >200 bp apart so that
tag peaks can be identified and distinguished. Affyme-
trix microarray probes for each Arabidopsis gene were
designed to span up to ~600 bases upstream of the stop
codon [50], which thus also pools expression information
from alternative transcripts of a gene as one. Therefore,
for expression analysis purposes, both Type A and Type B
tags that align to a particular gene and its splice variants
are combined. All reads aligning to different splice vari-
ants of a gene are pooled.

ii Antisense transcription

The tag sequences resulting from the EXPRSS method
are directional. Thus, type C tags aligned to the alternate
strand are either due to antisense transcription or novel
transcripts on the antisense strand of annotated transcripts.
Antisense transcription revealed by SAGE or RNA-seq ana-
lysis has been widely reported from plants and animals
[51-57]. In the present study, ~ 17% of the transcripts that
provide tags (mean expression of ≥1TPM [tags per mil-
lion] from at least 4 replicates) were found to be derived
from the antisense strand of genes. Antisense transcription
observed in this study is not due to second strand cDNA
synthesis by reverse transcriptase, which was shown to com-
promise strand specificity of microarray based techniques
[58]. Such artefacts would not influence EXPRSS data sets,
since the strand synthesized from mRNA using oligo-dT
primer acts as a template for sequencing, thus providing
the same strand information as that of the mRNA.
One hypothesis for the high amounts of antisense

transcription observed is gene looping during transcrip-
tion [59] which might lead to antisense transcription by
jumping of the transcriptional machinery to the other
strand. In this scenario, genes with high levels of sense
transcription should have a higher chance of antisense
transcription. If that were the case, genes with differen-
tial expression in both sense and antisense transcripts
(263 upregulated and 34 downregulated genes - Table 1),
would be expected to show high correlation between
sense and antisense counterparts and relatively high ex-
pression level of the sense transcripts (upregulated
genes in treated sample and downregulated genes in
control). However, this was not the case, as the pairwise
correlation of mean expression represented as TPM for
the 297 genes between sense and antisense transcripts
showed that apart from a few genes on the diagonal
and genes with high expression, the distribution was
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Figure 2 (See legend on next page.)
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either side of the diagonal (see Additional file 1, Figure
S3A). Additionally the distribution of mean expression for
the 297 genes shows that about 44% of sense transcripts
have less than 250 TPM, while only 6% of the genes have
more than 2000 TPM (see Additional file 1, Figure S3B). It
has also been suggested that antisense transcription might
arise due to convergently overlapping gene pairs (COPs)
[51]. Further analysis identified that only 7 (out of 379
antisense genes differentially expressed in the present
study) are part of 2147 genes identified as COPs in Arabi-
dopsis by Jen et al. [60]. The majority of genes with anti-
sense transcription had a clear peak of tags at a defined
position suggesting a relatively defined polyadenylation
position for these transcripts (Figure 2C), supporting a
possible regulatory role for these antisense transcripts.
These data rule out that antisense transcription is an arte-
fact. Since the current study is focussed on establishing a
method for high throughput expression profiling, this
antisense transcription was not further investigated.

iii Non canonical transcription and tag to gene
assignment

Two other types of tags obtained from this study are
sequences from novel polyadenylated longer transcripts
and sequences from regions of genome without predicted
gene models (novel transcripts). Tags not assigned to any
genes from the Arabidopsis genome (TAIR10) alignment
were further analysed to identify regions with novel
transcription and alternative polyadenylation. A transcript
downstream of AT1G02360 shows flg22-dependent
downregulation (see Additional file 1, Figure S4A), while a

chloroplast-derived transcript upstream of ATCG00270
(see Additional file 1, Figure S4B) shows similar and high
expression in all replicates of control and treatment
samples. Further instances of novel transcription were
identified when all the un-assigned reads from eight librar-
ies were pooled (see Additional file 1, Figure S4C & D),
highlighting the need for increased depth of sequencing to
investigate such phenomena.
To assign tags to genes, reads were initially mapped to

Arabidopsis genome sequences [48] and unaligned reads
were mapped to transcript sequences [61]. Details of tag to
gene association and alignment parameters are explained in
the methods section. We have created modules of our
analysis pipeline and implemented them in Galaxy, an
open web-based research platform [62] and modules are
provided in Additional file 3. EXPRSS Tag-seq can gener-
ate long (36 bp to 150 bp) reads. With EXPRSS reads, we
found that ~94% of reads aligned uniquely, ~5% mapped
to multiple positions and 1% were unmapped. The longer
cDNA tags prompted us to test the number of genes
each multiply-matched read aligned to. From the plot of
cumulative frequency of multiple matched reads against
the number of genes, it was striking to observe that ~77%
of multiple matched reads aligned only to two genes
(see Additional file 1, Figure S5). With Arabidopsis having
duplicated at least 2–3 times [63], many genes show par-
alogous gene families. The EXPRSS data either can reveal
differential expression patterns between paralogs or sum
expression levels of indistinguishable paralogs. Where tags
could be assigned to up to 10 multiple paralogs, matching
reads were split equally between them.

Multiplexing with reproducible tag sequencing
Since our experiments commenced, reads per lane on
the Illumina GAII increased from 12 million to 35–40
million reads. This enables ~16 fold multiplexing for 2
million reads per library. We employed barcodes of
varying length in EXPRSS, with 8 fold multiplexing for
experiments presented in this manuscript and 16 fold
multiplexing at present in our lab. For EXPRSS ~12.4
million reads passing the Illumina quality filter were
obtained of which ~2.1% reads with “N” and below quality
threshold were discarded (see methods section for more
details). For NlaIII-DGE ~13 million reads passing the

Table 1 Differential expression observed for sense and/or
anti-sense transcripts of genes using EXPRSS

Sense transcript Antisense transcript Number of genes

Up regulated Up regulated 263

Down regulated Down regulated 34

Up regulated ND 1175

Down regulated ND 1032

ND Up regulated 44

ND Down regulated 38

ND - No differential expression.

(See figure on previous page.)
Figure 2 Characteristics of EXPRSS tag-sequences. (A) Uniquely aligned tags to the sense strand of cDNA and genome sequences from all
Arabidopsis genes are used to plot tag alignment position as a distance from 3′ end of annotated genes against the frequency of reads mapped.
Rectangle selection is shown as inset picture. (B) Example of alternative polyadenylation. A distinct cluster of tags from both full length (blue
circle) and short (red circle) sense transcripts of FCA (AT4G16280), which are about 6.5 kb apart. Evidence from cDNA sequences (green arrows) in
the TAIR database corroborates short transcripts. Reads from such alternative polyadenylation transcripts result in a long tail in tag alignment
frequency distribution presented in A. (C) Frequency distribution of antisense tags aligning to 10 selected transcripts plotted against mapping
position as a distance from 5′ end of annotated genes. Each individual abundantly expressing an antisense transcript has a distinct peak of tag
alignment suggesting a defined polyadenylation site for antisense transcripts identified through EXPRSS method.
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Illumina quality filter were obtained of which ~10% were
discarded as reads with “N”, below quality threshold,
adapter only and shorter than 14 bp tag sequence. Se-
quenced libraries were computationally assigned to sub-
libraries based on perfect match to barcode for EXPRSS
data and up to 1 mismatch allowed for NlaIII-DGE data.
For EXPRSS, each sub-library received ~12% reads, while
2.1% have no distinct barcode. For NlaIII-DGE, each library
received ~11.1% reads, and 1.4% reads with no distinct bar-
code were discarded. Library distributions are presented in
Table 2. Artefact filtering using FASTX-toolkit [64] resulted
in loss of 7.7% and 4% of reads in each sub-library for
EXPRSS and NlaIII-DGE respectively. Most of these reads
were found to be due to poly(A) sequences, initially as-
sumed to be resulting from the poly(A) tail. On further in-
spection these reads in EXPRSS were found to result from
ligation of excess oligo-dT primer to the Adapters. How-
ever, this factor introduced no technical bias into EXPRSS
libraries as evident from higher reproducibility of replicates
presented later. Since these fragments occur due to T/A li-
gations, we have designed an approach to reduce oligo-dT
primers ending with Adenosine. Since our oligo-dT primer
is a mixture of 12 primers ending with VN (V-A, C & G
and N-A, T, G & C) we have used an equimolar mixture of
9 primers ending with V*B (B-T, G & C and * - is a phos-
phorothoiate linkage) and 3 primers ending with VA. After
2nd strand synthesis, primers ending with Adenosine were
depleted by Exonuclease I digestion.
In order to verify that tag generation and barcoding

process do not create any technical variability, 4 independ-
ent libraries were prepared from the same Arabidopsis
water- and flg22- treated leaf disc RNA samples and dif-
ferent barcodes ligated. Eight million reads passing the
Illumina quality filter were obtained for each of water and
flg22-treated EXPRSS technical replicate libraries (Table 2).

Pair-wise Pearson correlations of log10 transformed count
data are presented in Figure 3A-C (control samples) and
Additional file 1, Figure S6 (treatment samples). Very high
correlations (r ≥ 0.95) between technical replicates support
that the tag generation and barcoding process have not
introduced any significant variability (Figure 3A and
Additional file 1, Figure S6A). Similarly, higher correlation
(r ≥ 0.92) was observed between biological replicates of
EXPRSS Tag-seq libraries (Figure 3B - control and
Additional file 1, Figure S6B - treatment), while corre-
lations between biological replicates of NlaIII-DGE
Tag-seq libraries (r ≥ 0.82) were less than those of
EXPRSS (Figure 3C and Additional file 1, Figure S6C).
Fewer tag sequences were retrieved for control replicate 4
and treatment replicate 1 of EXPRSS samples (Table 2).
However, the correlations between EXPRSS replicates are
still very high indicating robust sampling (Figure 3A-C
and Additional file 1, Figure S6). Most of the deviation for
these less sequenced samples is observed for genes with
very low tag frequencies compared to other replicates.

Comparison of differential expression between EXPRSS,
NlaIII-DGE and microarray
Differential gene expression analysis was carried out
using the baySeq R package [65] for both EXPRSS and
NlaIII-DGE data; genes with FDR <0.01 were classified
as differentially expressed. An example of differential ex-
pression from EXPRSS data is provided in Figure 3D-E.
It depicts the number of tags observed for WRKY22, a
flg22-inducible gene encoding a WRKY transcription fac-
tor, in control and flg22- treatment data sets (Figure 3D-E,
respectively). Tags observed upon flg22 treatment are ~7
times more compared to tags observed with water treat-
ment, in line with previously published microarray analysis
[41]. It is apparent that there are multiple polyadenylation
sites in WRKY22 and all of them are induced upon flg22
treatment. The distribution of tags aligning to WRKY22
at the 3′ end is wider than expected (~150 bp). This ob-
servation is in agreement with varying lengths of cDNA,
resulting from alternative polyadenylation, in the TAIR
database (Figure 3E cDNA lengths). Full-length transcripts
of WRKY22 have most of their tags aligned and thus pro-
vide an example that not only illustrates the dynamics of
expression differences but also supports the choice of
summation of tags from alternative transcripts for each
gene to identify differential expression at the gene level.
Once differential expression is validated, further investiga-
tions can be carried out on alternative transcripts.
Microarrays have been widely used for gene expression

analyses. We therefore compared differential expression
results derived from EXPRSS data, microarray data and
NlaIII-DGE data. EXPRSS and NlaIII-DGE data sets were
generated from the same RNA sample, while microarray
data is from similar RNA samples from a previous study,

Table 2 Library distribution of EXPRSS and NlaIII-DGE
multiplexed sequencing

Technical replicates Biological replicates

EXPRSS EXPRSS EXPRSS NlaIII-DGE

Total sequences 7,643,302 7,959,474 12,389,113 13,030,761

Quality filtering 395,555 329,981 267,878 1,283,806

Without barcode 253,014 235,906 266,961 186,590

1h_water_R1 1,470,648 1,643,337 1,515,575

1h_water_R2 2,389,038 1,664,707 1,428,489

1h_water_R3 1,753,281 1,550,807 1,411,340

1h_water_R4 1,381,766 992,328 1,458,164

1h_flg22_R1 2,112,170 668,184 1,460,491

1h_flg22_R2 2,253,392 1,791,790 1,435,230

1h_flg22_R3 1,638,415 1,693,260 1,634,751

1h_flg22_R4 1,389,610 1,849,861 1,216,325

R1 - R4: replicates 1 to 4.
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Figure 3 Higher reproducibility and better dynamics of differential expression detection using EXPRSS. (A-C) Pairwise scatter plots of
gene counts from treatment replicates, expressed as tags per million in log10 scale. Correlations between four independent technical replicates
of EXPRSS Tag-seq (A), made from same RNA sample; four independent biological replicates of EXPRSS Tag-seq (B) and NlaIII-DGE (C) are presented.
Pearson correlation of log10 transformed tag counts per million plus 1 is depicted at left hand top corner of each comparison. Right hand bottom
corner indicates replicate number depicted on X and Y-axis, respectively. (D-E) Example of differential expression using reads aligned (small black
arrows) to WRKY22, a flg22 responsive gene are presented from control (D) and treatment (E).
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hybridised to Affymetrix ATH1 chip [41]. Analysis of
EXPRSS data identified differential expression in 2883
transcripts; 2504 of which were derived from sense tran-
scripts (1066 down-regulated and 1438 up-regulated)
and 379 from antisense transcripts (72 down-regulated
and 307 up-regulated) (details provided in Additional
file 4). A similar analysis on NlaIII-DGE data revealed
differential expression in 462 transcripts (379 sense [75
down-regulated and 304 up-regulated] and 83 antisense
[19 down-regulated and 64 up-regulated] transcripts)
(details provided in Additional file 5). Microarray analysis
using the Rankproducts method [66] revealed differential
expression in 874 probe sets (< 0.05 FDR) associated with
899 genes (370 down-regulated and 529 up-regulated)
(details provided in Additional file 6). Comparisons were
performed between these three methods, using only the
sense gene list. Figure 4A shows the Venn diagram repre-
senting the results from a 3-way comparison. Not only
does EXPRSS have a higher overlap with NlaIII-DGE
[~85% - 391 out of 462 (338 sense – hyper geometric
probability 0.00 and 53 antisense – hyper geometric prob-
ability 3.51E-83)] but it also has a similar overlap with

microarray data [~80% - 723 out of 899 (hypergeometric
probability 0.00)], while the overlap of NlaIII-DGE with
microarray is 23% (207 out of 899). As mentioned in the
introduction, one of the main advantages of Tag-seq
methods is the opportunity to identify all genes expressed
in a cell, unlike detecting only spotted genes on a
microarray. Genes not present on the ATH1 microarray
chip that are detected by EXPRSS and NlaIII-DGE are
highlighted in red in the respective section of Venn dia-
gram (Figure 4A). To find the similarities with respect
to expression changes detected between the methods
compared, fold- changes of genes commonly found
from each pairwise comparisons are used for correlation
analysis. Correlation of fold changes from genes com-
monly found by EXPRSS & microarray is 0.96, EXPRSS &
NlaIII-DGE is 0.95 and microarray and NlaIII-DGE is
0.90 (see Additional file 1, Figure S7). Correlations from
expression fold-changes indicate that there is generally a
good agreement between platforms and more so for
EXPRSS with ATH1 microarray data and NlaIII-DGE.
The data showing higher overlap of EXPRSS data with
microarray and NlaIII-DGE, better agreement of expression

A

B

C

D

Figure 4 Comparison of differential expression between EXPRSS, NlaIII-DGE and Affymetrix ATH1 array. (A-B) Venn diagrams showing
overlap of differential expression identified from the same RNA samples (EXPRSS and NlaIII-DGE) and similar RNA sample (ATH1 microarray). Overlap of
(A) sense transcripts (numbers in black - genes spotted on ATH1 array and numbers in red- genes not spotted on ATH1 array) (B) antisense transcripts
identified by EXPRSS and NlaIII-DGE. (C-D) Q-PCR confirmation of differential expression observed through EXPRSS. Three up-regulated genes (C) and
five down-regulated genes (D) that are found differentially expressed with EXPRSS are verified with QPCR. Error bars indicate standard deviation from
three biological replicates. FDR values are provided for EXPRSS log2 fold changes.
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changes, and increased differential expression detection,
highlights the potential of EXPRSS Tag-seq as an expres-
sion profiling method.
One key observation coming from the differential ex-

pression analysis is that additional genes are identified in
EXPRSS compared to the other two methods. Validation
of differential expression was carried out to verify some
of the genes identified from EXPRSS Tag-seq through
qPCR. A set of genes spotted on the microarray or not
spotted on microarray that were differentially expressed
in EXPRSS was chosen for qPCR verification. Details
about all the genes and their expression levels in
EXPRSS and qPCR are provided in Additional file 7.
Double stranded cDNA samples subjected to EXPRSS
library preparation were also used for qPCR verification.
Figure 4C and D verify that differential expression of se-
lected genes could be confirmed with qPCR. Evidence
from qPCR supports differential expression from the se-
lected genes identified by EXPRSS method. However,
there are 176 genes that are not differentially expressed in
EXPRSS but found to be differentially expressed using
microarray data. Further analysis revealed that 167 genes
of these were identified in EXPRSS data and about one
third of the genes had FDR between 0.01 and 0.05, sug-
gesting that they are near the statistical threshold
(Additional file 8). Most of the remaining genes had
mean expression levels less than 10 TPM and high vari-
ability among replicates. Such discrepancies can thus be
associated with depth of sampling and statistical tech-
niques employed.

Higher sensitivity of the EXPRSS method
EXPRSS revealed differential expression in more genes
than the other two methods and we wanted to verify if
differential expression was observed for these additional
genes in previous flg22 experiments. Therefore micro-
array data from previously published flg22 treatments of
plants at various developmental stages were compared
with EXPRSS Tag-seq data. ATH1 microarray data from
seedlings treated with 1 μM flg22 [67], mature leaves in-
filtrated with 1 μM flg22 [68] and leaf discs generated
from mature leaves incubated in 100 nM flg22 solution
[41], were used for the analysis. Flg22 samples were
compared against 1 hr water treated samples for leaf and
seedling arrays and with untreated samples for leaf disc
arrays. Details of differential expression are provided in
Additional files 9 and 10. The Rank products method
[66] was used to generate differential expression lists
(< 0.05 FDR) from the 1 hr flg22 treatment microarrays
and resulting lists were compared against the EXPRSS
data. The outcome of these comparisons is summarised as
Venn diagrams in Figure 5A and B. The majority of flg22-
induced genes from various tissues are in good agreement
among microarray experiments. In pair-wise comparisons

of microarray data, the overlap for upregulated genes
ranged from 48 to 74% (see Additional file 11). For up-
regulated genes EXPRSS has 92% overlap with leaf disc
data (487 out of 529), 77% overlap with seedling data (626
out of 808) and 74% overlap with leaf data (445 out of
604). There is a substantial overlap of EXPRSS Tag-seq
with three microarray datasets (hypergeometric probabil-
ity 0.00 for three comparisons), for common as well as
specific identifications. 64% of the upregulated genes iden-
tified by EXPRSS that are spotted on ATH1 chip, were
found to be differentially expressed in at least one of the
three microarray datasets. Although some these genes
were only identified at a different developmental stage or
with differing concentration of flg22, EXPRSS Tag-seq is
sensitive enough to identify responding genes.
Compared to upregulated genes, the overlap of down-

regulated genes between three microarray experiments is
less. In pair-wise comparisons of microarray data, the
downregulated gene overlap ranged from 11 to 37% (see
Additional file 11). However, EXPRSS profiling data has
better overlap with two of the three microarray data sets.
EXPRSS has 64% overlap with leaf disc data (236/370),
49% overlap with seedling data (181/372) and 23%
overlap with leaf data (45/199) for downregulated genes.
To understand the poor overlap of downregulated genes
from three microarray experiments, fold-changes of genes
commonly detected among three microarray experiments
were compared pairwise. It was interesting to observe the
detection dynamics is restricted for downregulation com-
pared to upregulation (Figure 5D - scatter plot of leaf log2
fold changes against seedling log2 fold changes resulting
from Rankproducts analysis). Similar analysis on the genes
commonly detected between EXPRSS and NlaIII-DGE
has shown that fold-change distribution is relatively even
on both positive and negative scales (Figure 5E). It appears
that there is a detection bias with microarray analysis in
favour of gene induction rather than down-regulation,
while sequencing based methods do not show such a limi-
tation. With such a sensitive technique available there is a
tremendous opportunity to study tissue-specific as well as
other response-specific genes. Higher overlap of EXPRSS
Tag-seq with data from previous flg22 treatment of
various tissue microarrays supports the sensitivity of
the EXPRSS method.

EXPRSS tag-seq reliability and paired-end sequencing
Expression profiling of flg22 responses in Arabidopsis
ecotype Col-0 was carried out over a time course to
study transcriptional regulation during flg22 triggered
PTI and to validate the reliability of the EXPRSS Tag-seq.
Additionally we performed a flg22 time course on mutants
from three major hormonal pathways (npr1-1 – salicylic
acid [69], jar1-1 – jasmonic acid [70] & ein2-5 – ethylene
[71]). We collected three replicates each of 7 time points
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of flg22 treatment (8, 15, 30, 45, 60, 120 and 180 minutes)
and a water treatment control. Comparison of correlation
between 3 replicates of 60 minutes flg22 samples from
time course data with 4 replicates of data presented earlier,
from validation of EXPRSS Tag-seq, show significantly
high correlation (>0.925, see Additional file 1, Figure S8).
Differential expression analysis over 60 minutes of flg22
treatment revealed ~80% (1987/2504 at < 0.01 FDR)
and ~90% (2259/2504 at < 0.05 FDR) of genes found
differentially expressed using 4 replicate data from EXPSS
validation. The high correlation (>0.94) between log2 fold
changes of 2504 genes from two experiments supports the
consistency of EXPRSS Tag-seq (see Additional file 12).
Additional genes found in the time course experiment
could be due to comparison using a different control
sample than with the validation experiment. High corre-
lations (>0.9) have been observed between three biological

replicates of 32 data points collected (4 genotypes and 8
time points; see Additional file 1, Figure S9 – S12). Sam-
ples were sequenced on different lanes of the same flow
cell (wildtype and npr1-1), or on different flow cells from
separate runs (jar1-1 and ein2-5). The high correlations of
replicates confirm that variation due to library preparation
or sequencing lane or sequencing runs is minimal. Differ-
ential expression analysis on the time course data identi-
fied flg22-dependent gene expression changes as early as
8 minutes. Details of genes differentially expressed during
the flg22 time course from four genotypes are provided in
Additional file 13. Hormonal signalling mutations (npr1-1
and jar1-1) responded similarly to Col-0 during flg22
treatment, while ein2-5 appeared to show a weaker re-
sponse (see Additional file 1, Figure S13). On further
investigation it is evident that ein2-5 displayed higher
induction or repression of flg22-responsive genes in

A B

D E

C

Figure 5 Sensitivity of EXPRSS in differential expression detection for specific responses to treatment. (A-C) Venn diagram representing
overlap of differential expression for flg22 treatment from four different experiments (Microarray on seedling, leaf, leaf disc and EXPRSS on leaf
disc) (A) Up-regulated genes between the four methods are compared. (B) Down-regulated genes between the four methods are compared.
(C) Depiction of the overlap among the sections of Venn diagram. Number under each experiment represents number of genes differentially
expressed. (Numbers in black - genes spotted on ATH1 array and numbers in red- genes not spotted on ATH1 array) (D-E) Scatter plots showing
fold change distribution for commonly detected genes between two experiments. (D) Comparison of log2 fold changes between leaf and seedling
microarray shows more restricted dynamics on negative scale (~− 3) than positive scale (~ + 7). (E) Similar comparison of log2 fold changes between
leaf disc data from EXPRSS and NlaIII-DGE showing more even distribution (−6 to +7).
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uninduced conditions (see Additional file 1, Figure S14).
Direct comparison of expression levels during the flg22
time course from mutants and Col-0 confirmed that there
are no significant differences between wild type and mu-
tants in flg22 responsiveness, though a few genes in ein2-5
showed a stronger response to flg22 (see Additional file 1,
Figure S15).
EXPRSS Tag-seq was initially designed with Illumina

single end adapters that are compatible with single read
flow cells of GAII and Hiseq. We have modified EXPRSS
to be compatible with the Illumina paired-end flow cell,
so we can now sequence EXPRSS tag-seq samples from
both ends on a GAII, a HiSeq, a HiSeq2500 and a Miseq.
The second sequence read from polyadenylation junction
enables verification of polyadenylation site assignments of
transcripts. We have performed paired end sequencing on
cDNA libraries made from temperature-shifted (28°C to
21°C – collected at 0, 6, 9 and 24 hr) samples of Arabidop-
sis ecotype No-0 and slh1 leaves. We pooled eight libraries
and sequencing was carried out on a Miseq and resulted
in 4.6 million paired reads. As our primary focus was on
the technical feasibility of the paired-end sequencing the
biological relevance of this data is not further considered
here. As anticipated, forward reads aligned at a defined
position from the 3’ end depending on the sonication
parameters (see Additional file 1, Figure S16A). For the
second read, an oligodT primer comprising the Illumina
P7 sequence was used as sequencing primer and 75%
reads from 2nd sequencing read passed the quality filtering,
compared to 95% from sequencing read 1. This difference
is probably due to the less complex sequencing primer
used. Nevertheless, for differential expression analysis read
1 data should be sufficient and read 2 data would assist
primarily in polyadenylation position assignment. The
resulting paired reads enabled us to define the position of
polyadenylation from selected genes (see Additional file 1,
Figure S16B & S17). These data support that paired read
sequencing from EXPRSS Tag-seq can be used to de-
fine the polyadenylation location of expressed genes, in
addition to relative gene expression information obtained
from read 1.

Discussion
We have developed a restriction enzyme-independent
Tag-seq method for expression profiling (EXPRSS) and
we present evidence that it performs better than existing
restriction enzyme- based (SAGE and derivative) methods.
The main drawback associated with SAGE-derived NGS
expression profiling methods is restriction enzymatic bias.
We overcame this bias using Adaptive Focussed Acoustics
from Covaris to shear cDNA and using a specific adapter,
we could sequence cDNA tags from a defined position in
a transcript for expression profiling. Additionally, use of
sonication for fragmenting cDNA allowed us to sequence

tags from all expressed genes, unlike restriction enzyme
based methods, which require the enzyme recognition site
in the gene to get a sequence tag. AFA shearing could be
replaced with other available physical fragmentation tech-
niques (SonicMan, Bioruptor, Hydroshear etc.), as the pre-
requisite is to shear cDNA to a desired size.
In principle, the EXPRSS method has the following

advantages over the enzyme-based and other existing
Tag-seq methods [24,25,43,70-74]. EXPRSS generates
one tag per transcript at a relatively defined position
from the 3′ end of a gene, ensuring no length-based data
transformation and enabling straightforward statistical
analysis. Reverse transcription of only the 3′ ~300 bp of
mRNA is required to generate a tag. Shearing using AFA,
followed by gel purification, allows us to generate un-
biased cDNA tags at a user-specified distance from the
poly(A) site for mapping to the transcriptome. DNA shear-
ing and DNA ligation are more high-throughput than
RNA fragmentation and RNA ligation. A comparative
analysis of frequency distribution of lengths of TAIR10
genes (longest transcript taken for a gene with multiple
variants) against that of genes detected (1 TPM at least in
4 replicates) and differentially expressed in EXPRSS
Tag-seq, revealed no preference for or against longer
transcripts (see Additional file 1, Figure S18), unlike
RNA-seq [26]. However, transcripts less than 250 bp are
slightly depleted in detection. However, 50% of the tran-
scripts less than 250 bp in TARI10 are pre-trna and
other non-coding RNAs, suggesting EXPRSS may not
lose information on protein coding genes. Tag sequences
are longer than existing Tag-seq methods (~30 bp and can
be up to 250 bp) thus increasing the accuracy of read
mapping to reference; EXPRSS tags are directional and
can distinguish sense and antisense transcripts since the
strand synthesized from mRNA acts as template for se-
quencing, thereby providing the same strand information
as that of mRNA. SMART cDNA amplification might
result in amplification biases and has been shown to have
reduced strand specificity [34], while EXPRSS does not
use amplification for cDNA generation. If enough quantity
of input is provided or enough samples are pooled,
EXPRSS samples do not require any amplification be-
fore loading on to the Illumina flow cell, as they have
adapters required to bind in the flow cell. Handling
losses are minimal, resulting in lower variability which
is an essential factor for a high-throughput method. For
example in Arabidopsis, (with a mean mRNA length
of ~1.5 kb based on TAIR10 transcripts) for every ~200 bp
3′-most fragment of cDNA there are 5 to 6 additional
fragments resulting from shearing. These fragments act as
carrier DNA until the size selection step, thereby minimiz-
ing variation in handling. EXPRSS can be carried out with
minimal input of RNA and addition of a carrier DNA, at
the end of the second strand cDNA reaction, reduces any
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losses during subsequent steps. Carrier DNA would not
result in tags, as they lack sequences for amplification in
the flow cell. We have successfully employed lambda
phage DNA as carrier in our sample preparation without
any interference. With these advantages, EXPRSS Tag-seq
is an excellent method for expression profiling.
Improvements in NGS techniques have resulted in im-

proved and increased sequence yield, thereby providing
an opportunity for multiplexed tag sequencing. How
should one judge sufficient depth of sampling of the
library? A simulated study based on pooled SAGE data
[75] indicated that a cell with a million mRNA copies,
requires three million SAGE tags to identify ~90% of
expressed genes. According to Zhu et al., [75] a million
reads would sample ~85% of mRNA tags expressing at
1–5 copies per cell. Further evidence from recent studies
[76-79] suggest that a RNA-seq sample resulting in 20–40
million reads would identify ~80% of the genes.
How do Tag-seq methods compare with whole tran-

scriptome sequencing RNA-seq methods? RNA-seq is
invaluable for annotation of a transcriptome and detec-
tion of splice variants and novel transcripts. However,
RNA-seq as a tool for differential expression analysis has
its drawbacks. Tag-seq methods generate one tag per
transcript, mostly from a defined position, thereby avoiding
transcript length biases and length-based data trans-
formation for differential expression analysis. According
to TAIR10 transcript data, the mean cDNA length of
Arabidopsis is 1.5 kb. Thus, for every one fragment
sequenced per transcript by EXPRSS there would be
10 ~ 150 bp fragments from RNA-seq, one could reason-
ably assume that 2 million reads from EXPRSS are equiva-
lent to ~20 million reads of RNA-seq data, without
transcript length and reverse transcription biases. Illumina
single end sequencing on GAII provides about 35-40 M
reads per lane, while a Hiseq lane provides about ~100-
150 M reads. This means sequencing of only 2 RNA-seq
samples per lane on GAII and 4–6 RNA-seq samples on
Hiseq is required to provide sufficient depth for differen-
tial expression analysis. Multiplexing is thus more valuable
with Tag-sequencing than RNA-seq. Tag-seq methods like
EXPRSS therefore provide an attractive option for expres-
sion profiling with superior dynamics and reliability at
substantially reduced cost.
Based on pilot experiments using four replicates each

of Arabidopsis (Col-0) control and 60 minute flg22-treated
leaf discs, we found that EXPRSS captures tags resulting
from annotated and novel transcription units and also
poly(A) transcripts from antisense strands. Read align-
ments indicate that cDNA is randomly sheared, as ~90%
of tags are aligning around ~150 bp (±150) from the 3′
end. EXPRSS Tag-seq is highly reproducible between bio-
logical replicates and was also superior to NlaIII-DGE
Tag-seq libraries made from the same RNA samples.

EXPRSS revealed expression of 26% more genes com-
pared to NlaIII-DGE in libraries made from the same
RNA samples (16619 genes in EXPRSS against 13153
genes in NlaIII-DGE genes with ≥1 TPM in 4 replicates).
Differential expression analysis performed on absolute tag
counts facilitates interpretation of expression levels.
Analysis using EXPRSS has identified more than 80% of
the genes found by NlaIII-DGE and ATH1 microarray,
though one could argue this is due to the higher numbers
of genes found differentially expressed by EXPRSS com-
pared to NlaIII-DGE and ATH1 microarray. A compara-
tive study of flg22-treated microarray data from three
different developmental stages in Arabidopsis has shown
that EXPRSS data had a better overlap with the three
microarray data sets than the overlap observed between
the three microarray data sets. Two thirds of the upregu-
lated genes from EXPRSS (spotted on ATH1 chip) were
also found differentially expressed in at least one of the
three array experiments. This supports the view that
EXPRSS is sensitive enough to detect response-specific
differential expression.
With respect to downregulated genes, EXPRSS had

good overlap with two of the three-microarray data sets;
although the three-microarray data sets had poor over-
lap among themselves. The number of genes found
downregulated, using the EXPRSS Tag-seq, was greater
than those detected from other microarray experiments.
Therefore, one could argue this higher overlap might be
due to the higher number of genes identified as down-
regulated with the EXPRSS method. There appears to be
a detection bias against identification of down-regulation
with microarrays, explaining the poor overlap between
the three microarray data sets tested. The down-regulated
genes found in this study could have been previously
undetected in microarray analysis. Additionally, qPCR
verification of selected genes from EXPRSS data con-
firmed that differential expression identification is reliable.
These results thus emphasize the advantages of EXPRSS
Tag-seq sensitive detection and absence of hybridization
related issues, unlike microarrays.
Alternative splicing is another interesting phenomenon

to detect during gene expression profiling. However,
finding alternative splice-junctions is computationally
intricate with a tag length of ~30 bp and requires higher
depth of sequencing [80]. Variable levels of expression of
different alternative transcripts of a gene results in fluctu-
ating tag densities for each variant. Li et al. [80] found that
even at a tag density as high as ~20 million RNA-seq
reads, only ~20% of verified alternative splice variants
were discovered in the human transcriptome. Due to such
insufficient tag densities, quantitative differences among
alternative polyadenylation and alternative transcripts are
unreliable. However, with the possibility of longer tags
(~150 bp with Illumina) EXPRSS tags could be used to
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find alternative splice junctions, provided they occur
within the last ~300 bp from a polyadenylation site.
Through EXPRSS we identified cDNA tags from regions

of the genome without prior annotation. Paired end
EXPRSS tag-seq could greatly improve annotation of
3′ regions and determine precise poly(A) sites for these
rare transcripts. With improvements in technology the
length of sequencing reads continues to increase, so
that longer cDNA tags can be obtained. Longer cDNA
tags not only enable us to match tags with higher confi-
dence, but also to expression profile during host-pathogen
interactions, and thus study gene expression patterns
of both host and microbe. We are using such methods
to address gene expression changes during Arabidopsis
interactions with white rust and downy mildew.

Conclusions
EXPRSS is a restriction enzyme-independent Tag-seq
method and avoids biases of existing restriction enzyme-
based (SAGE and derivative) methods. In addition to
identification of expression in annotated genes, EXPRSS
reveals alternative polyadenylation sites and antisense
transcripts with a defined polyadenylation site. EXPRSS
also identified expression in regions of the genome
without prior gene annotation. EXPRSS Tag-seq pro-
vides sensitive and reliable gene expression data and
enables high-throughput expression profiling. Sequencing
technologies continue to improve and costs of sequencing
continue to decline. However, as noted by Sboner et al.,
[81], even though the cost of sequencing has reduced, the
cost of experimentation hasn’t. It is therefore vital that
not only sample preparation and sequencing costs are
reduced, but the downstream analysis should also be
relatively simple. The EXPRSS method by all these criteria
is highly suitable for cost-effective expression profiling of
large numbers of mRNA samples.

Materials and methods
Plant material and flg22 treatment
Arabidopsis thaliana (Col-0, npr1-1, jar1-1 and ein2-5)
plants were grown under short-day conditions (8 hr light/
16 hr dark cycles). No-0 and slh1 plants were grown in
short day conditions (10 h light / 14 h dark) for 4 weeks at
28°C after germination on MS plate. Leaf discs from 5-
week-old Col-0, npr1-1, jar1-1 and ein2-5 plants were
prepared 2 hours after start of light period and vacuum-
infiltrated with water for 1 min. Leaf discs were placed
in water in 50 mm petri dishes and left in the same
growing conditions for ~20 h. A day after leaf disc gen-
eration the water in the petri dishes was replaced with
water or 100 nM flg22 and samples were harvested 1 h
after incubation. For flg22 time course experiment sam-
ples were harvested after 8 minutes incubation in water
and 8, 15, 30, 45, 60, 120 & 180 minutes incubation in

100 nM flg22. Four weeks old No-0 and slh1 plants
grown at 28°C were transferred to 21 °C growth cham-
ber at the beginning of the light cycle and samples were
harvested at 0 h, 6 h, 9 h and 24 h after transfer.

RNA preparation
Total RNA was extracted using the TRI reagent (Sigma)
and 1-Bromo-3-chloropropane (Sigma), as per manufac-
turer’s guidelines. RNA was precipitated with half volume
of isopropanol and half volume of high salt precipitation
buffer (0.8 M sodium citrate and 1.2 M sodium chloride).
RNA samples were treated with DNaseI (Roche) accord-
ing to the manufacturer’s recommendation and phenol/
chloroform extracted and ethanol precipitated.

Q-RT-PCR
For quantitative Reverse Transcription PCR, RNA sam-
ples were reverse-transcribed into complementary DNA
(cDNA) using SuperscriptII reverse transcriptase (Invitro-
gen). The cDNA was used to quantify gene expression
using a SYBR Green quantitative PCR kit (Sigma) and
gene-specific primers (see Additional file 2). Themocycling
and intensity detection was carried out with Chromo4 sys-
tem on MJ Research Thermal cycler and data extracted
using Opticon Monitor software.

Tag-seq library preparation and sequencing
EXPRSS
Typically 5 μg of total RNA was used to generate first
strand cDNA using a oligo (dT) primer comprising P7
sequence of Ilumina flow cell. Double strand cDNA is
synthesized as described previously [38]. Purified cDNA
is subjected to Covaris shearing (parameters: Intensity – 5,
Duty cycle – 20%, Cycles/Burst – 200, Duration – 90 sec-
onds). End repairing and A-tailing of sheared cDNA is
carried out as described by Illumina. Y-shaped adapters
are ligated to A-tailed DNA and subjected to size selection
on 1X TAE agarose gel. The gel-extracted library is PCR
enriched and quantified using qPCR with previously
sequenced similar size range Illumina library.

NlaIII-DGE
Library preparation was carried out with 5 μg of total
RNA as mentioned previously [43]. In our modified
protocol, ligation of biotinylated Adapter1, harbouring
methylated adenine, was carried out in the presence of
NlaIII and T4 DNA ligase at 37°C as described previously
[44]. After Adapter2 (which contains barcode) ligation,
streptavidin magnetic beads (Promega) were used to cap-
ture ligated constructs and which were taken forward for
PCR enrichment as in the default protocol. Detailed
protocols for EXPRSS and NlaIII-DGE are provided in
Additional file 2. Both EXPRSS and NlaIII-DGE libraries
are sequenced on Illumina Genome Analyzer II.
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Bioinformatics analysis and data processing
Illumina sequence library is quality filtered using FASTX
Toolkit 0.0.13 with parameters -q20 and -p50 [64] and
reads containing “N” are discarded and read qualities are
converted from Illumina fastq to sanger fastq format.
EXPRSS libraries are separated using perfect match to
the barcode. For NlaIII-DGE, FASTX Toolkit fastx_clipper
is used to trim 3′ adapter sequence (parameters used -a
TCGTATGCCGTCTTC -l 18 –c) and libraries are sepa-
rated using barcodes allowing up to 1 mismatch. Each
sub-library is quality filtered (−q20 and -p50) and artefact
filtered using FASTX-toolkit. For NlaIII-DGE libraries
NlaIII recognition site (CATG) was added at 5′ end of
each tag sequence and “FFFF” as fastq quality. Quality fil-
tered library was aligned to the Arabidopsis thaliana Col-0
genome sequences (TAIR10) [48] using Bowtie version
0.12.8 (−a -m 10 –best –strata) [49] and selected reads
with up to 10 reportable alignments. Unaligned reads
from previous step are used to align to transcript se-
quences of Arabidopsis [61] using Bowtie version 0.12.8
(−a -m 100 –best –strata).
Tag to gene association is carried out using following

considerations. Reads aligning in sense orientation with
in each gene limits are assigned to that gene. A read
aligning to all splice variant of a gene is counted once,
and the reads uniquely aligning to various splice variants
of a gene are pooled. Reads aligning to genes with overlap-
ping gene limits are split equally between them. Reads
aligning to more than 10 genes are discarded. Reads align-
ing to up to 10 genes are split equally between them.
Reads aligning on the anti-sense strand of any gene are
tested for if the read falls within 500 bp from 3′ end of an-
other gene in sense direction. Otherwise reads are assigned
as antisense tags for the specific gene (see Additional file 1,
Figure S19). The tag assignment process was implemented
in perl and scripts are available on request. Our analysis
pipeline modules for implementation in Galaxy web-based
research platform are provided in Additional file 3.
Differential expression analysis was performed using

the R statistical language version 2.15.3 [82] with the
Bioconductor [83] package baySeq version 1.12.0 [65]
using 10000 iterations to estimate empirical distribution
on the parameters of the Negative Binomial distribution.
The Multi-Experiment Viewer software from the TIGR
website [84] was used to cluster similarly expressed
genes using Hierarchical clustering [85].
Eight samples were pooled and sequenced at 151 bp

paired end reads in a Miseq from each end of the
EXPRSS library. The insert size of the library was > =
150 bp and also to be comparable with other runs of
this manuscript sequence reads were truncated to 36 bp
and quality filtered and used for downstream analysis.
Paired end reads were aligned to Arabidopsis genome se-
quence (TAIR10) using Burrows-Wheeler Aligner (BWA)

[86] sampe with default parameters. Generated Sequence
Alignment/Map (SAM) format files are converted to
sorted bam files and indexed using SAMtools [87]. Sorted
bam files with index are loaded on to Integrative Genomics
Viewer (IGV) v2.3.8 [88] for visualization of paired reads.

Microarray data analysis
Microarray data cel files from flg22 treatment on the seed-
lings (NASCARRAYS-409) [67], mature leaves (NASCAR-
RAYS-122) [68] and leaf discs generated from mature
leaves (GEO accession number GSE17479) [41] were used.
Data analysis was performed using the R statistical lan-
guage with the Bioconductor packages limma [89] and affy
[90]. Robust multiarray average background-corrected,
quantile normalized, and log-transformed perfect match
only expression values were obtained using medianpolish
summary method [91]. Differentially expressed genes were
identified using the rank products method with a false
discovery rate of <0.05 [66].

Availability of supporting data
The sequence data discussed in this publication have been
deposited in NCBI’s Gene Expression Omnibus [92] and
are accessible through GEO Series accession number
GSE51721.

Additional files

Additional file 1: Supplemental Figures. Figure S1. Modified NlaIII-DGE
Tag-seq protocol. Figure S2. Transcription at rRNA loci observed with EXPRSS
and NlaIII-DGE tag sequencing. Figure S3. Correlation between sense and
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