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Abstract

Background

T. spiralis aspartic protease has been identified in excretion/secretion (ES) proteins, but its

roles in larval invasion are unclear. The aim of this study was to characterize T. spiralis

aspartic protease-2 (TsASP2) and assess its roles in T. spiralis invasion into intestinal epi-

thelial cells (IECs) using RNAi.

Methodology/Principal findings

Recombinant TsASP2 (rTsASP2) was expressed and purified. The native TsASP2 of 43

kDa was recognized by anti-rTsASP2 serum in all worm stages except newborn larvae

(NBL), and qPCR indicated that TsASP2 transcription was highest at the stage of intestinal

infective larvae (IIL). IFA results confirmed that TsASP2 was located in the hindgut, midgut

and muscle cells of muscle larvae (ML) and IIL and intrauterine embryos of the female adult

worm (AW), but not in NBL. rTsASP2 cleaved several host proteins (human hemoglobin

(Hb), mouse Hb, collagen and IgM). The proteolytic activity of rTsASP2 was host-specific,

as it hydrolyzed mouse Hb more efficiently than human Hb. The enzymatic activity of

rTsASP2 was significantly inhibited by pepstatin A. The expression levels of TsASP2 mRNA

and protein were significantly suppressed by RNAi with 5 μM TsASP2-specific siRNA.

Native aspartic protease activity in ML crude proteins was reduced to 54.82% after transfec-

tion with siRNA. Larval invasion of IECs was promoted by rTsASP2 and inhibited by anti-

rTsASP2 serum and siRNA. Furthermore, cell monolayer damage due to larval invasion

was obviously alleviated when siRNA-treated larvae were used. The adult worm burden,

length of adult worms and female fecundity were clearly reduced in mice challenged using

siRNA-treated ML relative to the PBS group,

Conclusions

rTsASP2 possesses the enzymatic activity of native aspartic protease and facilitates T. spir-

alis invasion of host IECs.
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Author summary

Trichinellosis has been regarded as a re-emerging or emerging disease, and it is distrib-

uted worldwide. Studies investigating T. spiralis ES protein are beneficial to explore poten-

tial molecular targets for anti-T. spiralis vaccines. The functions of aspartic protease have

been studied in other parasites and demonstrated to be crucial for their parasitism in the

host. However, the functions of T. spiralis aspartic protease have not been reported. Here,

we expressed and purified a T. spiralis aspartic protease-2 (TsASP2). Our results showed

that TsASP2 was expressed in all T. spiralis developmental stages other than NBL and

located in the hindgut, midgut and muscle cells of ML and IIL, as well as in areas sur-

rounding embryos within the female uterus. The rTsASP2 possessed aspartic protease

activity and functioned to cleave hemoglobin, collagen and IgM. Silencing of the TsASP2
gene could significantly decrease the aspartic protease activity in muscle larva crude pro-

teins, larval invasion of IECs and worm development in the host. We conclude that

TsASP2 plays an important role in T. spiralis penetration into host intestinal epithelial

cells and could be a candidate vaccine target molecule against T. spiralis infection.

Introduction

As a pathogen of worldwide food-borne zoonosis, Trichinella parasite has been found to infect

more than 100 mammalian species [1]. Humans acquire trichinellosis through the ingestion of

raw or poorly cooked meat containing the infective larvae of Trichinella [2]. Outbreaks of tri-

chinellosis have been reported in many counties worldwide, especially in developing countries

[3,4]. In China, 15 outbreaks were recorded from 2004 to 2009 due to raw or undercooked

pork food [5]. Trichinellosis has not only become a public health concern but also threatened

porcine animal production and food safety [6]. Thus, trichinellosis has been regarded as a re-

emerging or emerging disease worldwide and has gained increasing attention [7]. These con-

cerns have promoted the exploration of anti-Trichinella vaccines, especially to identify mole-

cules that play key roles in T. spiralis invasion of intestinal epithelium [8].

Muscle larvae (ML) of T. spiralis dwell in skeletal muscles of hosts. When the contaminated

meat is ingested, the ML are liberated from the muscles by digestive enzymes in the stomach

[9]. After activation by bile and enteral contents, the larvae develop into intestine infective lar-

vae (IIL). The IIL invade the small intestinal epithelium where they undergo four molts to

mature into adult worms (AW). The newborn larvae (NBL) are shed by female AW after mat-

ing and then enter the venules and lymphatic vessels, eventually penetrating into the skeletal

muscle via the bloodstream [10]. The mechanism of T. spiralis penetration into intestinal epi-

thelium is critical for T. spiralis to complete its lifecycle in the host and seems to be orches-

trated by several T. spiralis protein molecules. Thus, studies on the characterization and

functions of these T. spiralis proteins will be very valuable for the development of an anti-Tri-
chinella vaccine.

Proteinases released by T. spiralis play an essential role in parasite invasion [11,12]. Several

serine proteinases have been identified and demonstrated to be involved in various adaptive

functions, such as tissue invasion and immune evasion, [13–15]. In another study, proteinases

produced by T. spiralis adult worms could cleave fibrinogen and plasminogen, and this hydro-

lytic activity might be related to the activity of a serine or aspartyl proteinase [16]. These stud-

ies revealed that the characterization of proteinases derived from T. spiralis would provide

critical information for explorations of anti-T. spiralis vaccines.
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Aspartic protease, classified as clan AA in the MEROPS database, was the first protease type

to be described [17]. The aspartic protease family, including pepsins, renins, cathepsins D and

E, and chymosins [18], is characterized by a typical Asp-Thr (Ser)-Gly sequence, and the pro-

tein hydrolytic activity is closely associated with an Asp residue in the clefts of the active sites

[19]. The proteolytic function of aspartic proteases is optimal under acidic conditions (pH

3.0–4.0) [12]. Many aspartic proteases have been demonstrated to play key roles in the degra-

dation of host hemoglobin and other proteins, especially in hematophagous parasites. An

aspartic protease named Na-APR-1/2 originating from hookworms can efficiently cleave

hemoglobin, collagen and serum albumin from human and dog [20,21]. A cathepsin D-like

aspartic protease from Opisthorchis viverrini has been shown to digest bovine serum albumin

(BSA) and hemoglobin [22]. The proteolytic activity and probable functions of other parasites

such as Schistosoma mansoni, Necator americanus and Onchocerca volvulus, which can also

secrete aspartic protease, have also been investigated [23–25]. An aspartic protease has been

identified in T. spiralis ES proteins [11], but its function in T. spiralis invasion into intestinal

epithelium is not clear.

Since it was first conducted in Caenorhabditis elegans [26], RNA interference (RNAi) has

been widely applied to identify gene function in parasites. The application of RNAi to downre-

gulate target molecules to reduce protein expression can affect specific gene functions during

some developmental stages of parasites. Recently, RNAi was used to identify some important

protein functions of parasites, such as Clonorchis sinensis enolase [27], ATPase RNA helicase

and trehalose-6-phosphate phosphatase in Brugia malayi [28,29], nematode Setaria digitata-

specific protein [30], and calcium-regulated heat-stable protein of 24 kDa and type V collagen

in Schistosoma japonicum [31,32]. Nevertheless, the functions of only a few T. spiralis genes

have been ascertained by RNAi, including the Nudix hydrolase, serine protease inhibitor

(TsSPI) and paramyosin genes [7,33,34].

Four aspartic proteases were identified in the draft genome of T. spiralis, all of which are

bilobal enzymes. The similarities among four aspartic proteases ranged from 15.6% to 81.8%.

However, only T. spiralis aspartic protease 2 (TsASP2; GenBank: 339237490) from a T. spiralis
muscle larva cDNA library has been demonstrated to be present in T. spiralis excretion/secre-

tion (ES) proteins [11]; however, its function has remained unclear. Since the proteases in ES

proteins are first exposed to host intestinal epithelium cells (IECs), they are likely to play a

major role or participate in larval invasion of IECs. Therefore, TsASP2 was selected and

expressed in the present study. We further investigated the functions of TsASP2 in T. spiralis
larval invasion of host IECs, and a specific TsASP2 siRNA sequence was designed and electro-

porated into muscle larvae to elucidate the gene functions.

Methods and materials

Ethics statement

This study was carried out according to the National Guidelines for Experimental Animal

Welfare (Minister of Science and Technology, People’s Republic of China, 2006). The animal

experiment procedure was approved by the institutional Life Science Ethics Committee,

Zhengzhou University (No. SCXK 2017–0001).

Parasites, experimental cells and animals

The T. spiralis isolate (ISS534) used in this study was originally obtained from domestic pigs in

Nanyang (Henan province, China) and maintained in our laboratory by serial passages in

BALB/c mice. Specific pathogen-free (SPF) BALB/c mice aged 5 weeks old were purchased

from the Experimental Animal Center of Henan Province. Normal IECs were obtained from
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mouse small intestines and used for the invasion assay at passage 8 [10]. The IECs were cul-

tured as previously described [35].

Worm collection and protein preparation

T. spiralis ML were collected from infected mice at 42 days post-infection (dpi) by digestion of

carcasses with 0.75% pepsin and 1% HCl as previously described [36]. The IIL were obtained

from small intestines of infected mice at 6 hours post-infection (hpi). AW were isolated from

duodenum and jejunum of infected mice at 3 and 6 dpi. The newborn larvae (NBL) were

obtained from female adult worms cultured as previously described [37]. The ML ES antigens

and crude soluble antigens of AW, NBL, ML and IIL were prepared as previously reported

[10]. Briefly, the worms were first homogenized using a high-speed tissue grinder (KZ-II Servi-

cebio) for 1 min, and the worm fragments were further homogenized by ultrasonication (99

3-s cycles, 100 W, 0˚C). The supernatant containing crude proteins was collected after centri-

fugation at 15,000 g for 1 h at 4˚C. To collect the ES proteins, the larvae were washed with ster-

ile saline and then cultured in RPMI-1640 medium at a density of 5000 worms/ml for 18 h at

37˚C in 5% CO2. After the media containing ES proteins were filtered with a 0.22-μm mem-

brane, the ultrafiltration tubes were used to concentrate the ES proteins. The concentration of

these proteins was measured using the Bradford method.

Expression of recombinant TsASP2 protein in Escherichia coli
The entire CDS sequence of TsASP2 encoding aspartic protease (spanning Gly-17 to Ser-406)

without the signal peptide was amplified by PCR and cloned into the expression vector

pQE80L (His tag) and pMAL-c2x (MBP tag) using the Bam HI and Hind III site. The recombi-

nant plasmids were transferred into BL21 (DE3). The rTsASP2 was induced with 0.1 mM

IPTG at 16˚C for 20 h. The Ni-NTA-Sefinose resin (for His-tagged protein) and Amylose Pre-

packed Column (for MBP-tagged protein) (NEB, China) were used to purify the rTsASP2. The

rTsASP2 with a His tag was purified under denaturing conditions and then refolded and used

in subsequent immunization experiments. The rTsASP2 with an MBP tag was used for its

functional characterization. SDS-PAGE was applied to analyze the purified rTsASP2, and the

Bradford method was used to determine the rTsASP2 concentration.

Preparation of anti-rTsASP2 serum

Fifteen BALB/c mice were used to produce anti-rTsASP2 serum. First, the mice were immu-

nized subcutaneously with 20 μg rTsASP2 emulsified with complete Freund’s adjuvant. Three

boost immunizations were further carried out every 2 weeks by injecting the same amount

rTsASP2 emulsified with incomplete Freund’s adjuvant. Blood samples were collected from

immunized mice on day 7 after last immunization, and sera were isolated.

Western blot analysis

Western blot analysis was carried out according to previous studies [38]. First, ES protein and

crude protein samples from ML, IIL, AW and NBL were separated by SDS-PAGE on a 12%

acrylamide separation gel and subsequently transferred onto polyvinylidene difluoride

(PVDF) membrane. Second, the membranes were blocked with 5% skim milk in Tris-buffered

saline containing 0.05% Tween-20 (TBST). The membranes were washed three times with

TBST to remove the residual skim milk and then incubated with 1:100 dilutions of anti-

rTsASP2 serum at 37˚C for 1 h. Following another wash with TBST, the membranes were

incubated with 1:5 000 dilutions of HRP-conjugated goat anti-mouse IgG (Southern
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Biotechnology, USA) at 37˚C for 1 h. Finally, the membranes were stained with 3, 3’-diamino-

benzidine tetrahydrochloride (DAB; Sigma) as a substrate, which was terminated by washing

the membranes with deionized water [35,39].

qPCR

Total RNAs of different T. spiralis phases (ML, IIL, 3-day AW, 6-day AW and NBL) were

extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). All RNA samples were pre-

treated with DNase I (Thermo Fisher Scientific, San Francisco, CA, USA) before use. Tran-

scription of the TsASP2 gene at different worm stages was measured by qPCR as previously

described [40]. The qPCR experiment was performed on a 7500 Fast Real-time PCR System

(Applied Biosystems). The specific primers (across introns) for TsASP2 gene amplification

included forward 5’-AATTCAACCCGTCCGTCTCC-3’ and reverse 5’-TTCCAACTTGCG

GCCATAGT-3’. The TsASP2 transcription level was normalized by subtracting the transcrip-

tion level of GAPDH (GenBank: AF452239). The data were calculated according to the com-

parative Ct (2-ΔΔCt) method [40]. Each experiment was performed with three replicates of each

sample.

Immunofluorescent assay (IFA)

IFA was carried out to confirm the expression of TsASP2 at diverse T. spiralis stages. Various

T. spiralis worm stages (ML, IIL, AW and NBL) were fixed in paraformaldehyde and embed-

ded in paraffin. The 2-μm-thick sections were prepared using a microtome. After blocking

with 5% normal goat serum, the sections were incubated with anti-rTsASP2 serum (1:50 dilu-

tions) at 37˚C for 1 h. After washing with PBS, they were incubated with FITC-labeled goat

anti-mouse IgG (1:100 dilution, Santa Cruz, USA) and observed under a fluorescence micro-

scope (Olympus, Japan) [41].

Cleavage of Hb and other proteins by rTsASP2

Hemoglobin (Hb) from mice and human was collected by lysis of fresh erythrocytes as previ-

ously described [20]. Approximately 2 μg Hb was incubated with 0.8 μg rTsASP2 in pH 2.5–

5.5 buffer solution, and the hydrolysates were detected by SDS-PAGE and staining with Coo-

massie brilliant blue. To compare the hydrolysis efficiency of rTsASP2 for different Hb, hydro-

lysis experiments were further conducted with different incubation times (5 min, 30 min, 90

min and 4 h). Other proteins (collagen IV, human IgM and IgG) were also used as substrates

to evaluate the cleavage function and specificity of rTsASP2. Anti-rTsASP2 serum (heated at

56˚C for 35 min or not heated) at a 1:25 dilution or 0.8 μg pepstatin A was pre-incubated with

rTsASP2 for 1 h, followed by incubation with mouse Hb for 2 h to detect the enzyme activity.

Enzymatic activity of rTsASP2

The fluorescent substrate MCA-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys (DNP) -D-Arg-

amide (synthesized by Sangon, Shanghai) was used to assess the enzymatic activity of rTsASP2

[42]. The total reaction volume was 100 μl, including 20 μg/ml rTsASP2 and 5 μM fluorescent

substrate. After the enzyme and substrate were mixed for 30 min, the reaction termination

fluid (35% methyl alcohol, 30% ethyl alcohol, 35% ddH2O) was added, and the fluorescence

intensity was continuously detected by spectrophotofluorometry (Synergy H1, BioTek, USA)

using an excitation wavelength of 320 nm and emission wavelength of 390 nm, respectively.

To determine the optimal pH, the reaction was carried out using assay buffers with different

pH values: 0.2 mol/L Gly-HCl buffer (pH 2.0–3.0), 0.2 mol/L HAc-NaAc (pH 3.5–5.5), 0.2
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mol/L Na2HPO4-NaH2PO4 (pH 6.0). The relative enzymatic activity was calculated by setting

the highest enzyme activity as 100% relative activity. Different concentrations (1 mM, 10 mM,

100 mM, and 200 mM) of Fe2+, Zn2+, Cu2+, Mn2+ and Mg2+ were added to the assay buffer to

evaluate the influence of metal ions on rTsASP2 enzyme activity. Inhibitors (pepstatin A,

PMSF, 1, 10-phenanthrolin, AEBSF, EDTA and E-64) were pre-incubated with rTsASP2 for

30 min, and then the effects on rTsASP2 enzyme activity were evaluated. Reaction buffers

without addition of metal ions and inhibitors were used as respective controls.

Electroporation of T. spiralis ML with siRNA

The TsASP2-specific siRNA was designed using siDirect version 2.0 according to the complete

cDNA encoding TsASP2. Three siRNA sequences were used in the present study, including a

TsASP2-specific siRNA, a control siRNA carrying the scrambled sequence and another T. spiralis
aspartic protease-1 (TsASP1) siRNA sequence to control for specificity. All siRNAs were synthe-

sized by Sangon Biotech (Shanghai, China), and the sequence information is listed in Table 1.

The ML was obtained from infected mice at 35 dpi and washed three times with PBS.

Approximately 2500 ML worms were treated with 5 μM siRNA in electroporation buffer. The

siRNA was delivered into ML by electroporation (125 V, 20 ms) with a Gene Pulse Xcell Sys-

tem (Bio-Rad, USA), after which the worms were cultured in DMEM for 1–7 days.

Analysis of TsASP2 mRNA and protein expression after siRNA transfection

qPCR was performed to analyze TsASP2 mRNA transcription in siRNA-treated ML as

described above. The TsASP2 protein expression in treated worms was also evaluated by west-

ern blot analysis [34]. In brief, the crude proteins extracted from siRNA-treated ML were sepa-

rated by SDS-PAGE and then transferred onto a PVDF membrane. Anti-rTsASP2 serum

(1:100) was first used to recognize the membrane and then visualized using an enhanced

chemiluminescent kit (Beyotime Biotech, China). The membrane was washed with stripping

buffer (Beyotime Biotech, China) and then incubated with mouse anti-GAPDH IgG for quan-

titative protein control.

RNAi effect on the enzymatic activity of aspartic protease

Crude protein extracts were obtained from approximately 2000 ML treated with siRNA or

PBS. The enzymatic activity assay was carried out in a 100-μl reaction mixture with 100 μg

crude protein and a final concentration of 5 μM fluorogenic substrate in sodium format, pH

3.5 and incubated at 37˚C for 30 min. After the reaction was terminated, the fluorescence from

substrate hydrolysis was measured as described above.

RNAi effect on in vitro larval penetration

The effect of RNAi on in vitro IEC penetration by T. spiralis was also assessed. C2C12 was

insensitive to T. spiralis penetration and used as negative control. The rTsASP2 protein was

found to facilitate in vitro T. spiralis invasion of IEC. Briefly, the ML were activated into IIL

Table 1. The sequences of the siRNAs.

siRNA’ name sense(5’-3’) antisense(5’-3’)

TsASP1- siRNA GUCAACAUUCAAAGAAUAUTT AUAUUCUUUGAAUGUUGACTT

TsASP2- siRNA CAUGAUUGAGCAAAAUCUUTT AAGAUUUUGCUCAAUCAUGTT

Control siRNA AUCGGCUACCAAGUCAUACTT GUAUGACUUGGUAGCCGAUTT

https://doi.org/10.1371/journal.pntd.0008269.t001
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with 5% swine bile, and the IEC cell monolayers (grown to confluence in 6-well culture plates)

were overlaid with 100 IIL mixed with 2 ml of DMEM semisolid medium [10]. Different con-

centrations of rTsASP2 proteins were added to the medium to investigate the effects of the

rTsASP2 protein on larval invasion. The different dilutions (1:50–1:800) of anti-rTsASP2

serum, infection serum and normal serum were then added to the medium. The IILs that had

penetrated into the IECs were counted by microscopy after being cultivated for 2 h at 37˚C.

The penetrated and unpenetrated worms were examined and counted as previously reported

[10,34]. Subsequently, the IEC cell monolayer capped by 100 RNAi treated or untreated larvae

was also observed to evaluate the RNAi effect on larval invasion. The larval invasion rate was

compared between experiments, and the larval invasive ability was assessed.

To confirm the RNAi effect on larval invasion, dead or damaged cells were also counted [43].

Briefly, after incubation, monolayers were stained with 10 μg/ml propidium iodide (PI) for 10

min and washed three times with PBS. The numbers of dead or damaged cells (stained red) were

determined by fluorescence microscopy (Olympus, IX53, Japan) and NIH Image software. Dead

or damaged cells was counted for 3 monolayers for each group. A total of 10 microscope fields of

each monolayer were captured, and the mean number of dead (damage) cells was determined.

To detect the remaining TsASP2 in monolayers, the IECs were grown to confluence on cov-

erslips. Following incubation, the slide was first stained with PI and then fixed with 4% para-

formaldehyde for 15 min. The monolayers were probed using anti-rTsASP2 serum (1:20

dilutions) for 1 h at 37˚C. Positive and negative controls were also probed using infection

serum and normal serum instead of anti-rTsASP2 serum. After washing three times with PBS,

the coverslips were incubated with FITC-conjugated goat anti-mouse IgG (1:100) for 1 h at

37˚C. Next, the coverslips were rinsed three times with PBS and mounted for further fluores-

cence microscopy observation.

RNAi effect on larval development and survival

To evaluate the infectivity of siRNA-treated larvae, the larval challenge infection experiment

was performed. Thirty mice were equally divided into 3 groups, and each mouse in the differ-

ent groups was orally infected with 300 larvae treated with TsASP2 siRNA, control siRNA or

PBS. Adult worms at 6 dpi were collected from each group, and the parasite burden was ascer-

tained. The fecundity of female AW was assessed by counting the newborn larva production

by each female worm for 72 h. The morphology of AW and NBL was observed and imaged

under a microscope (OLYMPUS IX53), and the length of the worms was measured using the

measuring tool provided with the image software (CellSens Standard).

Statistical analysis

Data analysis was performed with the aid of SPSS 19.0 software. The data are presented as the

mean ± standard deviation (SD). The Chi square test was used to compare the percentage of larval

invasion in the different groups. One-way ANOVA was used to compare the data from different

groups in the following experiment: the relative TsASP2 transcription or expression levels, enzymatic

activity of aspartic protease from siRNA-treated larvae, length of worms and damaged cell numbers

of IEC destroyed by T. spiralis. P< 0.05 was regarded as a statistically significant difference.

Results

Expression of rTsASP2

The 1170-bp CDS sequence without a signal peptide of TsASP2 was amplified, which encodes

406 amino acids. After BL21 (DE3) containing the two different recombinant plasmids (pQE-
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80L/TsASP2 and pMAL-c2x/TsASP2) was induced with IPTG, the fusion protein was

expressed as 43.4 kDa (His tag) (S1 Fig) for the former recombinant protein and 86.4 kDa

(containing the 43 kDa MBP tag) for the other one (Fig 1).

Western blot and qRT-PCR analysis of TsASP2 expression in various stages

Western blot analysis showed that the native TsASP2 protein of 43 kDa was recognized by

anti-rTsASP2 serum (Fig 2A) in all worm stages except NBL, and the other bands that were

also recognized may have been protein isoforms of TsASP2. TsASP2 gene transcription in

these stages was further detected by qPCR. The results showed that the transcription level of

TsASP2 gene was highest at the IIL stage and lowest at the NBL stage (Fig 2B). The TsASP2

transcription level was significantly higher in the IIL stage than the other stages (F = 3.719,

P< 0.01), while the transcription level was significant lower in NBL stage than the other stages

(F = 4.007, P< 0.0001). The relatively low expression of the TsASP2 gene in the NBL stage

could explain why TsASP2 protein in NBL proteins was not recognized by anti-TsASP2 serum

by western blot analysis.

Fig 1. SDS-PAGE analysis of rTsASP2. M: protein marker; lane 1: lysates of recombinant bacteria incorporating pMAL-C2X/TsASP2 without induction; lane 2:

lysates of recombinant bacteria incorporating pMAL-C2X/TsASP2 after induction; lane 3: lysate supernatant of recombinant bacteria incorporating pMAL-C2X/

TsASP2 after induction; lane 4: sediment of recombinant bacteria incorporating pMAL-C2X/TsASP2 after induction; lane 5: purified rTsASP2. The arrow represents

the band of rTsASP2 (86.4 kDa).

https://doi.org/10.1371/journal.pntd.0008269.g001

PLOS NEGLECTED TROPICAL DISEASES Aspartic protease facilitates T. spiralis invasion of host enteral epithelium

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008269 April 27, 2020 8 / 23

https://doi.org/10.1371/journal.pntd.0008269.g001
https://doi.org/10.1371/journal.pntd.0008269


Expression and location of TsASP2 in different stages

The IFA results confirmed the expression of TsASP2 in different life cycle stages of T. spiralis.
Immunofluorescent staining of hindgut, midgut and muscle cells of ML and IIL was observed,

as well as around the embryos of AW, but not NBL (Fig 3).

Cleavage of different protein by rTsASP2

As Hb protein has frequently been used as a substrate to investigate the proteolytic roles of aspartic

protease, the enzymatic activity of rTsASP2 was first confirmed by the cleavage of Hb protein from

human and mouse. The results showed that human and mouse Hb were hydrolyzed by rTsASP2

at pH 2.5–5.5. Hb could be degraded by self-hydrolysis at an acidic pH, especially for mouse Hb at

pH 2.5–4.5. After comparison to the patterns of self-hydrolysis at the same pH, the optimal pH was

determined for the degradation of different Hbs. rTsASP2 could degrade mouse Hb most effi-

ciently at pH 2.5, while it degraded human Hb at an optimal pH of 4.5. Furthermore, the degrada-

tion efficiency of Hbs hydrolyzed by rTsASP2 was observed (Fig 4). Degradation of mouse Hb was

detected at 30 min (lane 4) after incubation with rTsASP2, and more cleavage fragments were

observed after 4 h of incubation (lane 8). However, cleavage of human Hb was not observed at 4 h

after incubation with rTsASP2 at the optimal pH 4.5 (S2 Fig). Both the heated anti-rTsASP2 serum

and pepstatin A could inhibit the hydrolytic activity of rTsASP2 on mouse Hb (Fig 4D).

To investigate the putative proteolytic activity of rTsASP2, several other proteins (collagen,

IgM, IgG and albumin) were used as the substrate for the enzymatic catalysis assay. Fig 5

shows that collagen (A) and IgM (B) were also hydrolyzed by rTsASP2 at pH 2.5–3.5, while no

degradation of IgG and albumin was observed (S3 Fig and S4 Fig).

The enzymatic activity of rTsASP2 was further assessed by using synthetic fluorogenic pep-

tide as a substrate (Fig 6). The maximum activity of rTsASP2 was detected at pH 3.0, although

the enzyme showed a relatively broad pH range (pH 2.0–5.5) for hydrolysis of the substrate.

Fig 2. Western blot (A) and qPCR (B) analysis of TsASP2 protein and mRNA expression in different T. spiralis stages. A: Anti-rTsASP2 serum recognized native

TsASP2 in different T. spiralis stage crude proteins, including ML (lane 1), 6-h IIL (lane 2), 3-d AW (lane 3), 6-d AW (lane 4), but not NBL (lane 5), and ML ES (lane 6)

and IIL ES (lane 7). B: The TsASP2 mRNA expression levels in different T. spiralis stages were assessed by qPCR. Asterisks indicate a statistically significant difference

compared with the ML stage (�P< 0.05).

https://doi.org/10.1371/journal.pntd.0008269.g002
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Fig 3. Immunofluorescent analysis of TsASP2 location in various worm phases. Intense green staining was observed in the midgut, hindgut and muscle cells of ML

and 6-h IIL, as well as around intrauterine embryos of female adults; no immuno-staining was observed in NBL; ML recognition by infection serum as a positive control

and normal serum as a negative control. The cell nuclei were stained red with propidium iodide (PI). Scale bars: 50 μm.

https://doi.org/10.1371/journal.pntd.0008269.g003
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Different metal irons have different effects on rTsASP2 catalytic activity. The enzymatic activ-

ity was clearly inhibited by the Fe2+ at 1 mM; it was also inhibited by Cu2+ in a dose-dependent

manner. However, no obvious changes in hydrolytic activity were observed following the addi-

tion of Zn2+ or Mn2+ to the assay environment. Conversely, Mg2+ could enhance the proteo-

lytic activity of rTsASP2, also in a dose-dependent manner. Under optimal assay conditions,

rTsASP2 enzymatic activity was significantly inhibited by pepstatin A.

TsASP2 mRNA and protein expression level after silencing the TsASP2 gene

After 5 μM TsASP2 siRNA was delivered into worms for 5 days, the relative expression of

TsASP2 mRNA and protein was reduced by 36.42% and 35.21% compared with the PBS

group, respectively (Fig 7) (P< 0.05). Another siRNA of T. spiralis aspartic protease (TsASP1

siRNA) did not reduce the TsASP2 expression. Likewise, no obvious changes in TsASP1

expression were detected in worms treated with TsASP2 siRNA (S5 Fig).

RNAi-mediated reduction of aspartic protease activity

After silencing the TsASP2 gene in T. spiralis ML, we investigated the activity of aspartic prote-

ase in crude protein from siRNA treated-ML using the synthetic fluorogenic peptide as the

Fig 4. Hemoglobin degradation. A-B Hydrolysis of Hb by rTsASP2 at different pH values. A: human Hb; B: mouse Hb; M: protein marker; lanes 1, 3, 5 and 7: Hb

alone; lanes 2, 4, 6 and 8: Hb+ rTsASP2; lanes 1 and 2: pH 2.5; lanes 3 and 4: pH 3.5; lanes 5 and 6: pH 4.5; lanes 7 and 8: pH 5.5. C: Hydrolysis efficiency effect of

rTsASP2 on mouse Hb (pH 2.5). M: protein marker; lanes 1, 3, 5 and 7: Hb alone; lanes 2, 4, 6 and 8: Hb+ rTsASP2; lanes 1 and 2: 5 min; lanes 3 and 4: 30 min; lanes 5

and 6: 90 min; lanes 7 and 8: 4 h. D: Inhibition effect of anti-rTsASP2 serum and pepstatin A on rTsASP2 hydrolysis of mouse Hb (pH 2.5). M: protein marker; lane 1:

rTsASP2; lane 2: anti-rTsASP2 serum; lane 3: heated anti-rTsASP2 serum; lane 4: Hb; lane 5: Hb +rTsASP2; lane 6: anti-rTsASP2 serum pre-incubated with rTsASP2

+Hb; lane 7: heated anti-rTsASP2 serum pre-incubated with rTsASP2+ Hb; lane 8: pepstatin A pre-incubated with rTsASP2 + Hb. The arrow represents the band of

rTsASP2 (86.4 kDa).

https://doi.org/10.1371/journal.pntd.0008269.g004
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substrate. The results showed that the enzymatic activity was reduced in the TsASP2 siRNA-

treated group by 54.82% compared with the PBS group. However, the enzymatic activity in the

control siRNA-treated group was similar to the PBS group, suggesting that TsASP2 expression

was closely related to aspartic protease in crude protein from ML (Fig 8).

RNAi effect on larval penetration of IEC

After incubation with IEC cell monolayers in semisolid medium for 2 hours, IIL invasion and

migration in the monolayers were assessed (Fig 9A). The percentage of larval penetration was

dose-dependently related to rTsASP2, exhibiting an increasing trend along with the increasing

concentration of rTsASP2 protein (F = 353.945, P< 0.0001) (Fig 9B). When the medium was

replenished with 1:100 dilutions of anti-rTsASP2 serum, infection serum or normal serum and

incubated for 2 hours, the invasion rate was 35.66, 34.33 and 50.17%, respectively (χ2 = 29.085,

P< 0.0001). The anti-rTsASP2 serum (1:50 to 1:100 dilutions) inhibited larval penetration

into the monolayer to a greater extent than normal serum (P< 0.0001) (Fig 9C).

Additionally, silencing of TsASP2 with TsASP2 siRNA significantly suppressed larval inva-

sion of IEC, exhibiting a 62.54% decrease when the worms were treated with 5 μM TsASP2--

siRNA (χ2 = 13.926, P< 0.0001) (Fig 9D). No apparent reduction of larval penetration was

observed when the worms were treated with control siRNA.

TsASP2 protein is present in damaged cells invaded by larvae

After the invasion assay, TsASP2 protein was detected in remnants of damaged cells (stained

with PI) using anti-rTsASP2 serum. In addition, secreted proteins from T. spiralis IIL larvae

were also recognized in damaged cells using infection serum but not normal serum (Fig 10).

RNAi effect of cell damage on the IEC monolayer

Larvae treated with TsASP2 siRNA, control siRNA or PBS were used in the invasion assay.

Compared with the PBS or control siRNA group, the damaged cells were significant reduced

Fig 5. Digestion of collagen IV and IgM. The substrate including collagen IV (A) and IgM (B) was incubated with rTsASP2. The band of approximately 98-kDa

collagen IV was degraded (arrow), and degraded IgM fragments were observed compared with untreated IgM. M: protein marker; lanes 1 and 3: substrates in buffer

alone; lanes 2 and 4: substrate + rTsASP2; lane 5: purified rTsASP2; lanes 1 and 3: pH 2.5; lanes 2 and 4: pH 3.5.

https://doi.org/10.1371/journal.pntd.0008269.g005
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in each monolayer of the TsASP2 siRNA group, implying an important role of TsASP2 in

invading IECs (P< 0.0001) (Fig 11).

RNAi effect on larval infectivity and female worm fecundity

Compared with the PBS group, mice that were orally infected with larvae treated with TsASP2

siRNA displayed a 56.36% reduction in adult worm burden (F = 260.322, P< 0.0001) (Fig

12A). The female worms collected from the TsASP2 siRNA-treated group produced fewer

NBL within 72 h than those from the other two groups (F = 195.828, P< 0.0001) (Fig 12B). In

addition, the adult worms and NBL from the three groups were morphologically observed

under a microscope and their lengths measured. The length of adult worms was significantly

Fig 6. Enzymatic activity assay via cleavage of fluorescence substrate. A: The optimal pH of rTsASP2 enzymatic activity. B: The enzymatic activities were assayed at

15–55˚C: The effects of metal ions on enzymatic activities. The assays were carried out under different metal ion concentrations. D: The effects of various inhibitors on

enzymatic activities, where the concentration of inhibitors was 1 mM of PMSF, 1 mM of 1,10-phenanthrolin, 1 mM of AEBSF, 10 μM of E64, 1 mM of EDTA, and

10 μM of pepstatin A. All the enzymatic activities were expressed as the relative activity of the highest reaction in each experiment.

https://doi.org/10.1371/journal.pntd.0008269.g006
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Fig 7. Effects of TsASP2 RNAi on TsASP2 mRNA expression (A) and TsASP2 protein expression (B). qPCR (A) and western blot (B) analysis of relative

TsASP2 expression levels after T. spiralis muscle larvae were transfected with 5 μM TsASP2 siRNA for 1–7 d. Asterisks indicate a statistically significant difference

compared with the control siRNA and PBS groups (�P< 0.05).

https://doi.org/10.1371/journal.pntd.0008269.g007

Fig 8. Effects of TsASP2 RNAi on aspartic protease enzymatic activities of ML. Aspartic protease activity in crude proteins of T. spiralis ML treated

with siRNA was detected with a fluorogenic substrate. Asterisks indicate a statistically significant difference compared with the control siRNA and PBS

groups (�P< 0.05).

https://doi.org/10.1371/journal.pntd.0008269.g008
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shorter compared with the PBS group (Ffemale = 58.706, Fmale = 41.308, P< 0.0001), and the

length of NBL showed no significant differences among the three groups (Fig 13).

Discussion

Aspartic proteases have been found in many nematodes [24,44,45] and shown to play a key

role in worm invasion and survival. Park et al. [11] characterized a T. spiralis aspartic protease

of 45 kDa, but its function remained unclear.

In the present study, rTsASP2 was expressed using two different plasmids (pQE-80L and

PMAL-C2X) in a prokaryotic expression system. The rTsASP2 carrying a His-tagged protein

was expressed in pQE-80L as an inclusion body (S1 Fig) and did not show any protease activ-

ity, so it was used only to immunize mice to obtain anti-rTsASP2 serum. In contrast, the

rTsASP2 co-expressed with the MBP tag was mainly used to investigate its enzymatic activity

and biological function.

The expression of TsASP2 in various developmental stages of T. spiralis was obviously dif-

ferent. Native TsASP2 protein in crude proteins of all the worm stages except NBL was

detected by anti-rTsASP2 serum. Furthermore, no immuno-staining was observed in NBL by

IFA, which confirmed the low level of TsASP2 expression in this stage, suggesting that TsASP2

protein expression in the NBL stage was too low to be detected by Western blotting and IFA.

The IFA results revealed that TsASP2 was located in the hindgut, midgut and muscle cells of

ML and IIL, suggesting that TsASP2 might participate in nutrient intake. The aspartic prote-

ases of other parasites are also located in the intestine and have been suggested to have essential

Fig 9. The invasion process of IECs by T. spiralis worms and RNAi inhibition on larval invasion of IEC. A1: The larva that invaded the IEC monolayer was

mobile, and its migrating trail was observed. A2: The non-invaded larva was coiled. A3: Non-invaded larva in the C2C12 monolayer. B: Promotion of larval

penetration of IECs by different concentrations of rTsASP2 protein, where significant differences (P< 0.05) are marked with asterisks (�) relative to the blank

control group without rTsASP2. C: Inhibition of larval invasion of IECs by different dilutions of anti-rTsASP2 serum and infection serum, where significant

differences (P< 0.05) are marked with asterisks (�) relative to the normal serum group. D: Larval penetration of IECs by worms treated with siRNA. Scale bar:

1 mm.

https://doi.org/10.1371/journal.pntd.0008269.g009
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functions in parasite nutrition [21,23]. The strong staining encircling the embryos suggested

that TsASP2 might also be involved in female reproduction.

The primary function of aspartic protease is to digest hemoglobin [46]. In our study,

rTsASP2 hydrolyzed human and murine Hb. Similar to other aspartic proteases, rTsASP2 also

cleaves Hbs at an acidic pH (pH 2.5–4.5), with diverse pH values for different Hbs. The different

optimal pH of aspartic protease activity could be related to different substrates [47,48]. The

host-specific cleavage of Hbs by aspartic protease has been verified in previous studies [20,21].

Similarly, rTsASP2 cleaved mouse Hbs more efficiently than human Hbs. The high degradation

efficiency of murine Hbs was likely due to the passaging of the T. spiralis in mice in our labora-

tory for more than 30 years. In addition, rTsASP2 could also hydrolyze IgM and collagens at an

acidic pH, which may be associated with immune evasion, degradation of host proteins and lar-

val migration through host tissues [49,50]. Given the highest TsASP2 expression level in the IIL

stage, TsASP2 might play a key role in T. spiralis invasion of intestinal epithelium.

Fig 10. Microscopy of damaged cells following larval penetration. The IEC monolayer was stained with PI (red), and the antigen present on the damaged cells was

detected with anti-rTsASP2 serum and infection serum and visualized as green fluorescence. No immunostaining was observed with normal serum. Scale bar: 50 μm.

https://doi.org/10.1371/journal.pntd.0008269.g010
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The enzymatic activity of rTsASP2 was further characterized by hydrolyzing the fluorescent

substrate at various condition (as shown in Fig 6). The optimal pH for rTsASP2 was 3.0, which

suggested that rTsASP2 had hydrolytic activity under acidic conditions similar to its optimal

pH for cleaving Hb. The enzymatic activity of rTsASP2 was inhibited by Fe2+ and Cu2+ but

enhanced by Mg2+, and it was not sensitive to Zn2+ and Mn2+. Previous studies have demon-

strated that the activity of aspartic protease (ASP) from parasites is sensitive to copper, such as

ASP from Trichomonas vaginalis (TV-CatD) and Plasmodium falciparum (plasmepsin II AP)

[51,52]. In another study on Metschnikowia pulcherrima ASP [53], the cations Fe2+ and Mg2+

were found to be insensitive to ASP, while Mn2+ and Zn2+ had a slight inhibitory effect on

enzymatic activity. The distinct properties of TsASP2 from other ASPs were likely due to their

origination from different organism species. Nevertheless, elucidation of the effects of metal

ions on enzymatic activity of ASP requires further investigation.

The enzymatic activity of rTsASP2 was clearly inhibited by pepstatin A (a common ASP

inhibitor), suggesting that TsASP2 is a kind of typical aspartic protease [52]. Additionally,

PMSF could also suppress 68.5% of the enzymatic activity, which differed from ASP purified

form Plasmodium vivax. No obvious inhibition was detected using other enzyme inhibitors,

Fig 11. The number of damaged cells. The number of damaged cells caused by larvae treated with TsASP2 siRNA, control siRNA or PBS is expressed as the

mean ± SD in an area of 3.02 mm2 (10×objective) for three monolayers. Asterisks indicate a statistically significant difference compared with the control siRNA

and PBS groups (�P<0.05).

https://doi.org/10.1371/journal.pntd.0008269.g011
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similar to other aspartic proteases [54,55]. The proteolytic activities of TsASP2 were further

confirmed by the RNAi assay. At five days after the ML were treated with 5 μM TsASP2

siRNA, the TsASP2 mRNA and protein expression levels were significantly reduced, suggest-

ing that the TsASP2 gene was successfully silenced. Furthermore, aspartic protease activity was

significantly reduced in siRNA-treated worm crude proteins, demonstrating that TsASP2 pro-

tein expression was associated with the proteolytic activities of T. spiralis aspartic protease.

In previous studies, protease enzymatic activities have been suggested to play key roles in T.

spiralis infection, especially larval invasion of host IECs. The results of the larval in vitro inva-

sion assay demonstrated that TsASP2 promoted larval penetration of IECs, and the percent of

invaded larvae was dose-dependent on rTsASP2. It has been reported that anti-serum against

Na-APR-2 (a hookworm aspartic protease) can inhibit the migration of the parasite through

skin [20]. Similarly, larval invasion of IECs was significant inhibited when anti-rTsASP2

serum was added to the medium, supporting a facilitating function of TsASP2 in T. spiralis
invasion into IECs. Our previous studies have shown that recombinant serine proteases also

Fig 12. Adult worm burdens (A) and newborn larva produced by females (B) recovered from mice infected with worms treated with TsASP2 siRNA. Asterisks

indicate a statistically significant difference compared with the control siRNA and PBS groups (�P<0.05).

https://doi.org/10.1371/journal.pntd.0008269.g012

Fig 13. The lengths of different T. spiralis stage worms in mice infected with muscle larvae treated with TsASP2 siRNA. A: Male adults; B: female adults; C: NBL.

Asterisks indicate a statistically significant difference compared with the control siRNA and PBS groups (�P<0.05).

https://doi.org/10.1371/journal.pntd.0008269.g013
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have a promoting role in larval invasion of IECs, whereas antibodies against serine protease

have an inhibitory effect, suggesting that various proteases participate in T. spiralis larval inva-

sion and development [15, 56–59].

RNAi is commonly applied to downregulate target molecules and investigate the biological

functions of target proteins [27,34]. After downregulating TsASP2 in the ML stage, and then acti-

vating the knockdown ML into IIL, the transfected larvae showed a 62.54% reduction of larval

invasion. After larval invasion, the damaged cells could be clearly detected by PI staining and then

counted by microscopy. The damaged cells were significantly reduced when IECs were co-incu-

bated with larvae treated with TsASP2 siRNA. Previous studies have suggested that the evaluation

of cell damage after invasion is an objective indicator for assessing the invasion efficiency [43,60].

Our results revealed that silencing TsASP2 expression could impede T. spiralis invasion into IECs

in vitro, validating that TsASP2 participated in larval penetration of host intestinal epithelium.

The TsASP2 function in T. spiralis penetration of IECs was further confirmed by silencing

the TsASP2 gene with RNAi. Previous results have demonstrated that silencing of some T. spiralis
genes with RNAi can impair T. spiralisworm viability [7] or inhibit its development and reproduc-

tive capacity [33, 34,61]. Silencing of the expression of these genes in T. spiralis results in reduced

parasite viability and infectivity, such as impaired T. spiralis molting or invasion. Our results

revealed low enteral adult worm burdens, and NBL production of female worms was reduced

when TsASP2 was silenced, indicating that enteral larval growth, development and female fecun-

dity were suppressed. Silencing of the TsASP2 gene also impeded other T. spiralis developmental

stages, as adult worms recovered from mice infected with siRNA-treated larvae were shorter than

those recovered from the control and PBS groups. Specific gene silencing by RNAi has been widely

applied for gene function identification in other parasites [62,63], and the results of the present

study indicated that TsASP2 played a crucial role in T. spiralis invasion of IEC, and silencing of

the TsASP2 gene significantly reduced larval infectivity and development in mice.

In conclusion, TsASP2 was highly expressed in the IIL stage of T. spiralis, mainly located in

hindgut, midgut and muscle cells of ML and IIL and around intrauterine embryos of female

adults. The TsASP2 has the native aspartic protease activities to cleave Hbs, IgM and collagen

under acidic condition, and the proteolytic activity was host-specific. Silencing of TsASP2

gene by RNAi could significantly reduce the TsASP2 protein expression, which inhibited the

native aspartic protease activities and larval invasion of host’ enterocytes. The results indicated

that TsASP2 plays an important role in the T. spiralis invasion and it could be a candidate vac-

cine target molecular against T. spiralis infection.
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