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Abstract. We study the computational complexity of uniformly con-
verting the base-a expansion of an irrational numbers to the base-b
expansion. In particular, we are interested in subsets of the irrationals
where such conversion can be performed with little overhead. We show
that such conversion is possible, essentially with polynomial overhead,
for the set of irrationals that are not Liouville numbers. Furthermore, it
is known that there are irrational numbers x such that the expansion of
x in one integer base is efficiently computable, but the expansion of x in
certain other integer bases is not. We prove that any such number must
be a Liouville number.
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1 Introduction

Let a, b ≥ 1 be integers, and let prim(a) and prim(b) be the sets of prime
factors of a and b. If prim(b) ⊆ prim(a) there is an easily computable constant
k that only depends on the exponents in the prime decompositions of a and b
such that for any irrational number α with 0 < α < 1 and any n ∈ N, the first n
digits of the base-b expansion of α can be obtained efficiently knowing only the
first kn digits of the base-a expansion of α.

However, if prim(b) � prim(a), there are irrational numbers whose base-a
expansion can be computed efficiently (say, in polynomial time), but whose base-
b expansion cannot. Early partial results go back to Specker [21] and Mostowski
[16], while Lachlan [13] showed that the set of primitive recursive reals to base b
are a subset of the primitive recursive reals to base a iff prim(b) ⊆ prim(a), a
result recently extended by Kristiansen [12] to show that for each sufficiently
large subrecursive class S, there are irrationals with base-a expansion com-
putable in polynomial time, but whose base-b expansion is not S-computable.

The above phenomena all concern non-uniform complexity in the sense that
the complexity of expansions of single numbers are concerned. One can also
study a uniform version where the complexity of Turing machines provided with
a, b, and the base-a expansion of any irrational number from a well-behaved set
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must produce the digits of the base-b expansion without unbounded search. If
good subrecursive bounds on such uniform conversion exists for some subset T of
the irrational numbers, it follows that numbers exhibiting the “wild” behaviour
of [12,13,16,21] cannot be elements of T .

This paper is devoted to proving that set R \ (Q ∪ L) of irrational num-
bers that are not Liouville numbers is an example of such a set T —and thus
that any “wild” number must be Liouville. As almost all “naturally occurring”
irrational numbers (algebraic numbers, π, e, numbers with very slow-growing
partial quotients, etc.) are not Liouville, this shows that “wild” differences in
the computational complexity across integer bases is a somewhat artificial prop-
erty of irrationals. We believe that some of the machinery we introduce to prove
this result may be useful to reveal the connections between the computational
complexity of expansions to integer bases and traditional number theory beyond
what is already done in the literature (see, e.g. [3,4,8]).

1.1 Some Intuition

Converting a number from base a to base b is easy if the number of digits
that need to be examined is limited—colloquially, if the “lookahead” is small.
Consider a Turing machine converting an irrational number from base a to base
b using the standard schoolbook algorithm. Write 〈x〉a and 〈x〉b for the base-a
and base-b expansions of the irrational number x. To find the initial n digits
v1, . . . , vn ∈ {0, . . . , b − 1} of 〈x〉b amounts to finding a particular integer k =∑n

i=1 vib
n−i such that kb−n < x < (k + 1)b−n; the standard schoolbook method

of doing so is to write the rational number kb−n in base a and compare the result
to successive digits of the base-a expansion of x until a digit is found where the
two sequences differ sufficiently. The number of digits that the machine needs to
consider to find the nth digit of 〈x〉b is bounded above by some integer s(n) where
|x − kb−n| ≥ a−s(n)—because, roughly, if the base-a expansions of x and kb−n

did not differ in the s(n)th digit, we would have |x − kb−n| < a−s(n). Hence, for
efficient conversion from base a to base b, it is natural to consider real numbers x
where the “lookahead” function s(n) does not grow too rapidly. Furthermore, as
a−s(n) = b−(log a/ log b)s(n), we can rewrite the above inequality as |x − kb−n| ≥
b−(log a/ log b)s(n), and it is thus natural to consider a subset of real numbers
where the lookahead is not contingent on a, but efficient conversion to base b
from any integer base is possible, in which case the criterion above naturally
becomes |x − kb−n| ≥ b−t(n) where the function t(n) should be independent of
a (we call this criterion (b, t)-sanity, see Sect. 3).

The reader should by now appreciate that the “lookahead” is a special case
of the more general phenomenon of the convergence speed of rapidly converging
sequences of rational approximations to x, that is, finding rational numbers p/q
with |x − p/q| < g(q) where g is a rapidly decreasing function. Indeed, for base-
a expansions q will always be a negative power of a, and we will always have
p/q < x if p/q is a truncation of the base-a expansion of x. Thus, the study of
finite truncations of base-a expansions is a limited special case of Diophantine
approximation (see, e.g. [7]). Consider creating an irrational number x such
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that its base-a expansion is not efficiently computable; a typical first attempt
would be to take a very rapidly growing function f : N −→ N such that f(n)
is known to not be computable within appropriate bounds, and consider the
irrational number x =

∑∞
i=1 a−f(i); this is essentially the same approach that

Liouville used when defining Liouville’s constant
∑∞

i=1 10−i! as the first irrational
number explicitly proven to be transcendent [14]. It is thus not surprising that
there should be strong connections between the wider class of Liouville numbers
and the problem of converting between integer bases.

2 Preliminaries

We assume familiary with standard computability theory and basic complexity
theory at the level of introductory textbooks (see, e.g. [2,9,20]). Familiarity with
basic computable analysis (e.g., [11,22]) will make the paper easier to read, but
is not needed.

Notation. We write N for the set of positive integers and Q for the set of rationals.
If f : N −→ N and j ≥ 1 is an integer, we write f◦j for the jth iterate of f , that
is, f◦1(n) = f(n) and f◦j(n) = f(f◦(j−1)(n)) for all n ∈ N. We write poly(n)
for an unspecified polynomial in n. For a ∈ N, we write Σa = {0, . . . , a − 1}.
We usually view Σa as an alphabet of a symbols and denote by Σ∗ the set of
finite, possibly empty, strings over Σ, by Σ+ the set of finite non-empty string
over Σ, by Σω the set of right-infinite strings over Σ, and set Σ≤ω = Σ∗ ∪ Σω.
The binary representation of a is denoted by abin. The open interval of all reals
between 0 and 1 is denoted by (0, 1), and if x ∈ (0, 1) is a real number and
a > 1 is an integer, we denote by 〈x〉a the greedy base-a expansion of x, that
is 〈x〉a = (en)n∈N where x =

∑∞
i=1 ei/ai such that each ei ∈ {0, . . . , a − 1}

and each successive ei is chosen as large as possible. We write 〈x〉a|≤n for the
length-n initial prefix of 〈x〉a, 〈x〉a|n for the nth element of 〈x〉a, and define
kx,a,n =

∑n
i=1 eia

n−i, i.e. kx,a,n · a−n =
∑n

i=1 eia
−i, so kx,a,na−n is the multiple

of a−n corresponding to the length-n prefix 〈x〉a|≤n of the base-a expansion of
x.

Turing Machines and Conversion Between Bases. Let a ≥ 2 be an integer and
f : N −→ {0, . . . , a − 1} be a map. A Turing machine M with input and output
alphabet {0, 1} is said to compute f if, for each positive integer n, M will, on
input nbin, output f(n)bin. We assume that if x is a real number and is given as
input to a Turing machine M , then (a binary encoding of the infinite sequence
of elements of) 〈x〉a is supplied to M on a particular input tape. All Turing
machines considered in this paper will thus be (type-2) Turing machines: Let
Σ be a finite alphabet with 0, 1 ∈ Σ. A type-2 Turing machine M is a Turing
machine with k read-only input tapes accepting infinite inputs (called ω-tapes),
m read-only input tapes accepting finite inputs, one (write-only, one-way) output
tape and finitely many additional work tapes. Such a machine computes a partial
function φM : (Σω)k × (Σ+)m ⇀ Σ∗ in the usual way (i.e., it has to reach a
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halting state in finite time, and the output is what is present on the output
tape at that time). Time and space-complexity will throughout the paper be
specified in terms of the content on the input tapes accepting finite inputs (if
a Turing machine runs in time at most T (n), then it can examine at most the
initial T (n) elements on the ω-tapes). Note also that we will typically give the
desired number of output symbols (e.g., the first n elements in 〈x〉b) as input
in binary nbin, hence using at most 1 + 	log n
 bits, but time complexities will
be specified as functions of n, not nbin. We assume that both the input ω-tapes
and the output tape has binary alphabet. Thus, 〈x〉a will be coded on the input
as an infinite sequence of binary representations of elements of {0, 1 . . . , a − 1}
(each taking space 1 + 	log a
); similarly, output in base b will be encoded as
elements of {0, . . . , b − 1} with each digit using 1 + 	log b
 bits of space.

Liouville Numbers. The irrationality measure of a real number x, denoted μ(x),
is the infimum of the set of positive reals μ such that the inequality |x − p/q| <
1/qμ has only finitely many distinct solutions (p, q) ∈ Z × N (conversely, μ(x) is
the supremum of the set of positive reals such that the inequality has infinitely
many distinct solutions).

A real number x is a Liouville number [14] if it is irrational and for every
integer c ∈ N there are integers p and q with q ≥ 2 such that |x − p/q| < q−c.
We denote the set of Liouville numbers by L. Hence, L is the set of reals having
infinite (recall that inf ∅ = ∞ by convention) irrationality measure.

An Ancillary Result. The multiple of b−n that best approximates x is either
kx,b,n or kx,b,n + 1. We state this straightforward result explicitly as we shall
refer to it several times:

Proposition 1. Let x ∈ (0, 1) be irrational. Then, for all integers b ≥ 2 and
n ≥ 1, we have kx,b,nb−n < x < (kx,b,n + 1)b−n, and either (i) ∀k ∈ Z.|x −
kx,b,nb−n| ≤ |x − kb−n|, or (ii) ∀k ∈ Z.|x − (kx,b,n + 1)b−n| ≤ |x − kb−n|.

3 Rational Approximations and Sanity

The discussion in the paper’s introduction prompts the definition of sane num-
bers below.

Definition 1. Let x ∈ (0, 1) be a real number, and b ≥ 2 an integer. Then, x is
said to be: (b, t)-sane if there is a non-decreasing and unbounded map t : N −→ N

such that for all integers k, n with n ≥ 1 we have |x − k · b−n| ≥ b−t(n). The
map t is said to be a witness of (b, t)-sanity of x. Furthermore, x is said to be
uniformly sane if there exists a non-decreasing and unbounded map t : N −→ N

such that x is (b, t)-sane for all b. Again, t is said to be a witness of uniform
sanity of x.

Sane numbers are irrational: If p/q is rational, then it has a finite base-q
expansion, whence it cannot be q-sane witnessed by any unbounded map t.
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Observe that for every irrational x and every b, there is a non-decreasing
and unbounded function t such that x is (b, t)-sane: for each n ∈ N, there is
a k ∈ Z such that |x − kb−n| is minimal. Let k′ be such a k, define dn =
�−(log |x − k′b−n|)/ log b�, and define t(1) = d1, and t(n) = max{dn, t(n − 1)}
for n > 1. Note that this t is unbounded as x is irrational.

If there is no slow -growing function t such that x is (b, t)-sane, then–
intuitively–bounding x away from very good rational approximations is difficult,
and hence converting between bases may require large lookahead. As every irra-
tional x is (b, tb)-sane for at least one function tb depending on b (and x), it is
natural to consider the function t′ : N × N −→ N such that t′(b, n) = tb(n). Hav-
ing small lookahead in all bases b then intuitively corresponds to the function t′

not growing too fast in either of its arguments.

Proposition 2. Let x ∈ (0, 1) be irrational. If b ≥ 2 is an integer and t : N −→
N is a non-decreasing and unbounded map such that for all but finitely many
integer pairs (k, n) with n ≥ 1 we have |x − k · b−n| ≥ b−t(n), then there exists
an ex (which may depend on x) such that x is (b, n �→ ext(n))-sane.

To show that the growth rate of the functions witnessing sanity actually
matters, we now prove existence of a real number the sanity of which can be
witnessed by a fast-growing function, but not witnessed by functions that grow
slightly more slowly.

Proposition 3. Let b ≥ 2 be an integer. Furthermore, let t : N −→ N be a
map such that t(1) ≥ 3 and t(n) − t(n − 1) ≥ n + 1 for all n > 1. Then, for
any non-decreasing unbounded function s : N −→ N such that s(n) > t(n), the
number x =

∑∞
j=1 b−t◦j(1) is (b, s)-sane. However, if u : N −→ N is any function

such that u(n) < t(n) for all sufficiently large n, then x is not (b, u)-sane.

Proof. First observe that x is irrational as 〈x〉b is not finite. Observe also that the
requirement t(n) − t(n − 1) ≥ n + 1 for all n > 1 entails that t is non-decreasing
(in fact, strictly increasing) and unbounded. Furthermore, note that we must
have t(t(n)) > t(n+1) for all n ≥ 1, because the fact that t is strictly increasing
implies that t(t(n)) > t(t(n)− t(n−1)) > t(n+1). Finally, note that as t(1) ≥ 3
and t(n) ≥ t(n − 1) + n + 1 by assumption, it follows that t(n) ≥ n + 1 for all
n ∈ N.

For ease of notation, write z1 = t(1), z2 = t(t(1)), . . . , zj = t◦j(1), . . .. As t
is strictly increasing, 〈x〉b has ones at positions z1, z2, . . . , zj , . . ., and zeros at
all other positions. Observe, for j ≥ 1, that the number of zeros following the
occurrence of 1 at position zj is at least

zj+1 − zj − 1 = t(zj) − zj − 1 ≥ zj + 1 + t(zj − 1) − zj − 1 = t(zj − 1) > zj

For each n, let j be the largest integer such that zj ≤ n < zj+1 (such a j exists
because t is strictly increasing, so zj < zj+1 < n is only possible for finitely
many j). Then 〈x〉b has zeros at all positions zj + 1, . . . , zj+1 − 1, and we thus



Liouville Numbers and the Computational Complexity of Changing Bases 55

have |x − kx,b,nb−n| = |x − kx,b,zj
b−zj |. But as 〈x〉b also contains a 1 at position

zj+1, we have
kx,n,zj

b−zj + b−zj+1 = kx,n,zj+1b
−zj+1 (1)

Now, by the above, and by Proposition 1, we have kx,n,zj
b−zj < kx,n,zj+1b

−zj+1 <
x, and thus |x − kx,b,zj

b−zj | ≥ b−zj+1 . Therefore:

|x − kx,b,nb−n| = |x − kx,b,zj
b−zj | ≥ b−zj+1 = b−t(zj) ≥ b−t(n) > b−s(n)

where the last inequality follows from the fact that t is strictly increasing and
zj ≤ n. Hence, |x − kx,b,nb−n| ≥ b−s(n).

By Proposition 1, we have 0 < x − kx,b,zj+1b
−zj+1 , and thus:

0 <x − kx,b,nb−n = x − kx,n,zj
b−zj = x − (kx,b,zj+1b

−zj+1 − b−zj+1) =

x − kx,b,zj+1b
−zj+1 + b−zj+1 = x − (kx,b,zj+2b

−zj+2 − b−zj+2) + b−zj+1=

x − kx,b,zj+2b
−zj+2 + b−zj+2 + b−zj+1 < 2b−zj+2 + b−zj+1

Now, zj+1 ≥ t(t(1)) ≥ t(3) ≥ 4, and we thus have:

zj+2 = t(zj+1) ≥ zj+1 + 1 + t(zj+1 − 1) ≥ zj+1 + 1 + t(3) ≥ zj+1 + 5

Hence, b−zj+2 ≤ b−zj+1−5, and thus:

|x − (kx,b,n + 1)b−n)| = b−n − (x − kx,b,nb−n) ≥ b−n − (2b−zj+2 + b−zj+1)

≥ b−zj+1 − 2b−zj+2 ≥ b−zj+1 − 2b−zj+1−5

= (1 − 2/b5)b−zj+1 ≥ (15/16)b−zj+1

≥ b−1 · b−zj+1 = b−(1+zj+1)

= b−(1+t(zj)) ≥ b−(1+t(n))

≥ b−s(n)

where the first inequality in the second line above follows from the fact that
n < zj+1 and thus b−n ≥ b · b−zj+1 ≥ 2b−zj+1 . By Proposition 1, either kx,b,n or
kx,b,n + 1 is an integer that minimizes |x − db−n| among all d ∈ Z. Hence, for all
k ∈ Z, we have |x − kb−n| ≥ b−s(n), showing that x is (b, s)-sane, as desired.

Now, pick any j ≥ 1 and set n = zj . Then by (1) above we have:

|x − kx,b,nb−n| = x − (kx,b,zj+1b
−zj+1 − b−zj+1)

= |x − kx,b,zj+1b
−zj+1 | + b−zj+1

< 2b−zj+1 = 2b−t(zj) = 2b−t(n)

≤ b−t(n)+1

But by assumption we have u(n) < t(n) for all sufficiently large n, whence
b−t(n)+1 ≤ b−u(n), and thus |x − kx,b,nb−n| < b−u(n) for infinitely many n
(because n = zj , and j ∈ N was chosen arbitrary). Hence, x is not (b, u)-sane. ��
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Functions t satisfying the assumptions of Proposition 3 are not hard to devise.
For example, any polynomial n �→ 2 + nq (for q ≥ 2) satisfies the requirements.

Proposition 3 shows that, for each b, there is a hierarchy of (b, t)-sane numbers
for successively faster-growing functions t, and there are numbers that require
arbitrarily fast-growing witnesses for (b, t)-sanity. It is natural to conjecture that
the same phenomena hold for uniform sanity, but–surprisingly–it turns out (see
Lemma 2) not to be the case.

We have the following key lemma:

Lemma 1. A number x ∈ (0, 1) is uniformly sane iff it is irrational and is not
a Liouville number.

Proof. Proceed as follows:

– Let x be uniformly sane witnessed by the map t. Then, for all integers b, k, n
with b ≥ 2 and n ≥ 1, we have |x − kb−n| ≥ b−t(n), in particular |x −
k/b| ≥ b−t(1). By the comments after Definition 1, x is irrational. Assume,
for contradiction, that x ∈ L. As t(1) is a positive integer, there are integers
b, k with b ≥ 2 such that |x − k/b| < b−t(1), and we obtain the contradiction.
Hence, x /∈ L.

– Let x /∈ L∪ Q. Assume, for contradiction, that x is not uniformly sane. Then
for each c ∈ N, the map n �→ cn does not witness uniform sanity, whence there
are integers bc, kc, nc with bc ≥ 2 and nc ≥ 1 such that |x − kcb

−nc
c | < b−cnc

c .
Setting q = bnc

c and p = kc we obtain |x−p/q| < q−c. As c ≥ 1 was arbitrary,
x ∈ L, a contradiction. Hence, x is uniformly sane.

��

Let E2 be the set of total functions on the naturals in the second level of the
Grzegorczyk hierarchy. A real number x is said to be E2-irrational if there is
f ∈ E2 such that for all integers p, q with q > 0 we have |x − p/q| > 1/f(q). By
a result of Georgiev, a real number is E2-irrational iff it is irrational and not a
Liouville number [10]; thus, by Lemma 1, the set of uniformly sane numbers is
exactly the set of E2-irrational numbers.

Lemma 1 has the surprising consequence that fast-growing functions t : N −→
N are never needed as witnesses for uniform sanity—uniform sanity can always
be witnessed by a linear map:

Lemma 2. A number x ∈ (0, 1) is uniformly sane iff uniform sanity can be
witnessed by a map of the form t(n) = cn, for some c ∈ N such that c ≥ μ(x).

Furthermore, no function t(n) = cn with c < μ(x) witnesses uniform sanity
of x.

Proof. If uniform sanity is witnessed by a linear map, then obviously x is uni-
formly sane.

Conversely, assume that x is uniformly sane and, for contradiction, that there
is no map t of the form t(n) = cn that witnesses this. Then, for every c ∈ N there
are integers k, b,m with b ≥ 2 and m ≥ 1 such that |x−kb−m| < b−cm = (bm)−c.
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Set p = k and q = bm; thus, for each integer c ≥ 1, there are p, q with q ≥ 2
such that |x − p/q| < q−c, whence x ∈ L, contradicting Lemma 1; hence, some
map of the form t(n) = cn witnesses uniform sanity of x. Further assume, for
contradiction, that c < μ(x). Then, by uniform sanity, we have for all integers
b, k, n with b ≥ 2 and n ≥ 1 that |x − kb−n| ≥ b−cn. Setting n = 1, we thus
have for any real number d with c ≤ d ≤ μ(x) and any integers p, q with q ≥ 2
that |x − p/q| ≥ q−c ≥ q−d ≥ q−μ(x). Thus, the inequality |x − p/q| < q−d

has only finitely many solutions in integers p, q (namely the case q = 1 where
|x − p| < 1−c = 1 might have the solutions p = 0 or p = 1 as x ∈ (0, 1)). Thus,
as there are infinitely many d with c ≤ d < μ(x), the number μ(x) cannot be
the supremum of the set of numbers d such that |x − p/q| < q−d has infinitely
many solutions in integers p, q, a contradiction. ��

We do not know whether it is always possible to choose n �→ �μ(x)�n as a witness
of uniform sanity.

Lemma 1 furnishes a method for proving that concrete real numbers are
(uniformly) sane: the set of Liouville numbers is exactly the set of real num-
bers having irrationality measure infinity. Thus: if a real number has finite irra-
tionality measure it is uniformly sane. By the Thue-Siegel-Roth theorem [18], all
algebraic irrational numbers have irrationality measure 2 and are thus uniformly
sane, as are numbers with continued fractions whose partial quotients grow very
slowly as o(n), for example e. Further examples of specific uniformly sane num-
bers can be found where finite upper bounds on their irrationality measure have
been proven. For example, π (the first bound by Mahler, μ(π) ≤ 30 [15], has
been improved on many occasions; at the time of writing, the best known bound
is μ(π) ≤ 7.60630852 · · · [19]), and Apéry’s constant [1]. Similarly, all Martin-
Löf random reals are not Liouville [8], hence are uniformly sane. Lemma 1 also
implies that almost all real numbers are uniformly sane: By standard results,
the set of Liouville numbers has Lebesgue measure zero [17] (and has Hausdorff
dimension zero, hence d-dimensional Hausdorff measure zero for all positive inte-
gers d > 0 [17]). Likewise, the set of uniformly sane numbers is a Gδ-set, hence
co-meagre.

3.1 A Digression: Normal Numbers

Recall that a real number x is b-normal [5] if every string of symbols s ∈
{0, . . . , b−1}+ occurs in 〈x〉b with limiting frequency b−|s|, and b-simply normal
if every element of {0, . . . , b − 1} occurs in 〈x〉b with limiting frequency 1/b.
Clearly, a b-normal number is b-simply normal. We have:

Proposition 4. Let x ∈ (0, 1) be irrational and let b ≥ 2 be an integer. If x is
b-simply normal, then there is cx ∈ N such that x is (b, n �→ cxn)-sane.

Recall also that x is said to be absolutely normal if it is b-normal for every
b ≥ 2. Proposition 4 yields the following corollary:

Corollary 1. For any absolutely normal number x ∈ (0, 1) and any integer
b ≥ 2, there is cb,x ∈ N such that x is (b, n �→ cb,xn)-sane.
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By a result of Bugeaud [6] there are uncountably many absolutely normal
Liouville numbers, hence, by Lemma 1 there are uncountably many absolutely
normal numbers that are not uniformly sane. By Corollary 1 each of these normal
numbers are (b, n �→ cb,xn)-sane for each b with some constant cb,x dependent
on b and x. However, for each absolutely normal Liouville number, the sequence
c2,x, c3,x, . . . must grow unboundedly as otherwise the numbers would be uni-
formly sane. Examples of computable absolutely normal Liouville numbers can
be found in [4]. Another consequence of Proposition 4 is that every b-normal
number has a very tame witness for sanity—and that numbers requiring fast-
growing witnesses (such as the ones constructed in Proposition 3) cannot be
b-normal for any b.

4 Uniform Conversion with Subrecursive Overhead
Between Arbitrary Integer Bases

The following theorem shows that sanity implies that changing bases can be done
without using unbounded search, indeed polynomial-time overhead is sufficient:

Theorem 1. There is a (type-2) Turing machine M and a polynomial P with
positive integer coefficients satisfying the following:

For any integers a, b ≥ 2, any non-decreasing and unbounded t : N −→ N,
any (b, t)-sane number x ∈ (0, 1), and any n ∈ N, M will on input abin,
bbin, nbin, and 〈x〉a (on an ω-tape) output 〈x〉b|≤n in time T (a, b, x)(n) ≤
P (t(n) log(max{a, b})).

Proof. The proof is essentially just an application of the schoolbook algorithm for
changing the base of an irrational number. We first describe M and subsequently
bound its running time.

(Start of Description of M)
M works in n stages, with each stage outputting the next digit of 〈x〉b until the
entire sequence 〈x〉b|≤n has been output. For 1 ≤ i ≤ n, at the beginning of the
ith stage, M has on its work tapes the (binary representations of) (i) i, (ii) the
string 〈x〉b|≤i−1 = s1 · · · si−1 of the first i− 1 digits of 〈x〉b, and (iii) the number
zi−1 = s1b

−1 + · · · si−1b
−(i−1) = kx,b,i−1b

−(i−1) in base b. Initially, i = 0, and
〈x〉b|≤0 = ε, and z0 = 0.

In stage i, M finds the ith digit, si = 〈x〉b|i, as follows: M uses binary search
in {0, . . . , b − 1} to find the largest s ∈ {0, . . . , b − 1} such that

zi−1 + sb−i = s1b
−1 + · · · + si−1b

−(i−1) + sb−i < x

By definition, the largest such s is si = 〈x〉b|i, and M increments i and sets
〈x〉b|≤i = 〈x〉b|≤i−1s and zi = zi−1 + sb−i.

For each s, checking whether zi−1+sb−i < x is done by inspecting sufficiently
many digits of 〈x〉a. For ease of notation, define r = �(log b)/(log a)�t(i). As x
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is (b, t)-sane, we have |x − kb−i| ≥ b−t(i) = a− t(i) log b
log a for all integers k, so in

particular for the number

zi + sb−i = kx,b,i−1b
−(i−1) + sb−i = (bkx,b,i−1 + s)b−i

we have:

|x − (zi + sb−i)| = |x − (bkx,b,i−1 + s)b−i| ≥ a− t(i) log b
log a ≥ a−r

By Proposition 1 we have:

x − a−r < kx,a,ra
−r < x < (kx,a,r + 1)a−r < x + a−r

and thus we have either
zi + sb−i < kx,a,ra

−r (2)

or
zi + sb−i > (kx,a,r + 1)a−r (3)

Clearly, if (2) holds, si = 〈x〉b|i ≥ s, and if (3) holds, si = 〈x〉b|i < s. Thus,
M needs only scan the initial r base-a elements of 〈x〉a (and compute the
rational numbers above) to compute 〈x〉b|i; each of these elements are repre-
sentable in at most (1 + 	a
) bits, hence can be read in time O(r log a) =
poly(t(i) log(max{a, b})). Observe that M does not need to know t or even
compute r: it can simply compute zo + sb−i and then brute-force scan enough
digits of 〈x〉a until either (2) or (3) holds.

(End of Description of M)
By the above it is clear that M does not use unbounded search to output 〈x〉b|≤n,
and indeed the search in 〈x〉a is limited to the r initial symbols of it, whence
subrecursive conversion is obviously possible. We now show that the conversion
is indeed efficient by establishing the existence of the polynomial P .

Time Use of M: In stage i, all computations are performed on integer argu-
ments smaller than max{bi, ar}, or on rational numbers p/q where p, q ≤
max{bi, ar}. All exponentiation involves only computing powers of a and b,
respectively, and all exponents involve negative powers of magnitude at most
max{i, r}; by repeated squaring each power can be computed in time at most:

poly(max{i, r} log(max{a, b})) = poly(t(i) log(max{a, b}))

Apart from squaring, all multiplications and divisions involve at most two num-
bers, and by schoolbook arithmetic are thus computable in time polynomial in
the logarithm of the largest integer involved, hence in time at most:

poly(log(max{bi, ar}) = poly(t(i) log(max{a, b}))

The remaining arithmetical operations are sums of at most max{i, r} rational
numbers with numerators and denominators that are positive integers bounded
above by max{bi, r}. By schoolbook arithmetic, this can be done in time at most:

max{i, r} · poly(log(max{bi, ar}) = poly(t(i) log(max{a, b}))
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As there are n stages 0, . . . , i, . . . , n, and each stage–by the above analysis–takes
time at most poly(t(i) log(max{a, b})), the total time use of M to print 〈x〉b|≤n is
at most O(npoly(t(n) log(max{a, b}))) = poly(t(n) log(max{a, b})), as desired.

��

Observe in Theorem 1 that the polynomial P is independent of x, a, and b.
However t(n) will in general depend on both b and x. If we consider a class of
reals for which t(n) is bounded above by a slow-growing function, we can obtain
stronger results, to wit the following theorem for numbers that are not Liouville:

Theorem 2. There is a Turing machine M and a polynomial P with the fol-
lowing property: For any x ∈ (0, 1) \ (Q ∪ L), there exists mx ∈ N such that for
all integers a, b ≥ 2 and n ∈ N, M will on input abin, bbin, nbin, and 〈x〉a (on
an ω-tape) output 〈x〉b|≤n in time T (a, b, x)(n) ≤ mx · P (n log(max{a, b})).

Proof. Let M and P be the Turing machine and polynomial of Theorem 1. By
Lemma 1, every x ∈ (0, 1)\ (Q∪L) is uniformly sane, and by Lemma 2, uniform
sanity is witnessed by some function t(n) = cxn for some cx ∈ N that depends on
x. By Theorem 1, M outputs 〈x〉b|≤n in time at most P (cxn log(max{a, b})) ≤
cd
x · P (n log(max{a, b})) (for some d ∈ N). Setting mx = cd

x now furnishes the
result. ��

Inspection of the proof of Theorem 1 reveals that the Turing machine M
reads at most r = �(log b)/(log a)�t(n) base-a symbols of 〈x〉a, and thus for a
non-Liouville number x at most �(log b)/(log a)�cxn base-a symbols for some
cx ≥ μ(x). If we fix x, we can absorb the constant mx in Theorem 2 into the
polynomial characterising the running time, and we obtain the following:

Corollary 2. Let x ∈ (0, 1) \ (Q ∪ L). There is a polynomial R such that if
a, b ≥ 2, and 〈x〉a|≤n is computable in time at most T (n) for all n, then there is
a constant cx such that 〈x〉b|≤n is computable in time at most R(T (cxn)) for all
n.

Thus in particular, every real number x where finite prefixes of 〈x〉a can be
computed in polynomial time in n, but the finite prefixes of 〈x〉b cannot, must
be a Liouville number.

5 Future Work

This paper has concerned the connection between Liouville numbers and the con-
struction of real numbers with great disparity in the computational complexity
needed to compute their expansion in different bases, and more generally the
computational complexity needed to obtain “good” rational approximations to
irrationals—indeed, the notion of expansion to integer bases is an example of a
very particular kind of approximation, but we expect the results of this paper to
hold, mutatis mutandis for other approximations with rationals as well. Further-
more, the set of Liouville numbers is almost certainly an over -approximation
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of the set of “poorly behaved” irrationals where conversion with polynomial
overhead is not in general possible; it is interesting to pinpoint a proper sub-
set of the Liouville numbers—hopefully connected to existing areas of number
theory—that precisely contain those numbers having egregious differences in the
complexity of their various integer base expansions.

Acknowledgments. We are grateful to Siddharth Bhaskar and the referees for useful
feedback, and to one referee in particular for pointing out the connection between
uniform sanity and E2-irrationality.
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