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INTRODUCTION 

COPD is an important lung and airway disease 

with an increasing incidence particularly in 

developing countries. Worldwide, asthma and COPD 

affect the lives of ~300 and 200 million people, 

respectively (1). COPD is a chronic inflammatory 

disease for which smoking is the major risk factor in 

the developed world and is currently the fourth 

leading cause of death worldwide. It is predicted to 

become the third ranked disease by the year 2030 (2, 

3). Unfortunately, there are no effective treatments 

for severe asthma and COPD due to a lack of clarity 

in disease mechanisms.  However, new observations 

in the areas of signal transduction and epigenetics 

may provide new understanding of the pathogenesis 

of lung diseases. Understanding the pathways and 

mechanisms leading to mediator release may lead to 

better therapeutic approaches for these diseases.  The 

inflammatory mediators involved in COPD have not 

been clearly delineated but are thought to include 

many lipid mediators, inflammatory peptides, 

reactive oxygen species (ROS) and nitrogen species, 

chemokines, cytokines and growth factors. These are 
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all involved in orchestrating the complex 

inflammatory process that results in small airway 

fibrosis and alveolar destruction occurring in COPD 

(4-6). Cigarette smoke contains over 4,700 chemical 

compounds, and both the tar and gas phases contain 

numerous free radicals and other oxidants present in 

high concentrations which contribute to the 

pathogenesis of this condition (7-10).  Exposure to 

cigarette smoke activates an inflammatory cascade in 

the airways, resulting in the production of a number 

of potent cytokines and chemokines with 

accompanying damage to the lung epithelium leading 

to increased permeability and recruitment of 

macrophages and neutrophils (11).   Free radicals in 

cigarette smoke activate inflammatory cells which, in 

turn, generate high levels of ROS and other toxic 

metabolites. Activation of immune cells by these 

radicals leads to the production of oxidants and 

cytokines, such as IL-8, IL-6 and TNF-α (12-19). IL-

8 is a powerful chemotactic and paracrine mediator 

for neutrophils, and infiltration of activated 

neutrophils is the key in pulmonary 

inflammation and oxidative injury (20-23). Several 
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inflammatory cells and their mediators, both of the 

innate and adaptive immune system, participate in 

the inflammatory response in COPD.  Macrophages, 

neutrophils and CD8+ T cells are the cells usually 

considered the prime effector cells in pathogenesis of 

COPD (24, 25). The role of neutrophils and 

macrophages and their product IL-8 has been well 

established in the slow progression of the disease 

(26,27). Besides IL-8, it has been shown that 

fragments of the extracellular matrix, such as 

collagen fragments, have chemotactic properties to 

the cells (28, 29). One of these fragments is N-

acetylated Proline–Glycine–Proline (N-ac-PGP) and 

it is shown that injecting N-ac-PGP into the normal 

rabbit corneas resulted in rapid and severe neutrophil 

invasion and neutrophil infiltration in the injured eye 

(30). Interestingly, N-ac-PGP has been found in the 

sputum of COPD (31) and cystic fibrosis patients 

(32). Overbeek et al. demonstrated that N-ac-PGP 

stimulates the neutrophils to release IL-8, which in in 

vivo may lead to a self-perpetuating situation where 

N-ac-PGP and CXCL8 work in concert, leading to 

enhanced neutrophil inflammation and lung 

inflammation (33, 34).  

Recent findings concerning the innate and 

acquired immune responses in COPD have led to the 

suggestion of a possible autoimmune component 

contributing to its pathogenesis. This notion is 

supported by similar pathophysiology between 

COPD and some autoimmune diseases (35). In this 

line, the T lymphocyte subset TH17 was shown to 

play a role in regulating neutrophilic and macrophage 

inflammation of the lungs (35), suggesting a potential 

role for TH17 cells in severe, steroid-insensitive 

COPD (36-39). Thus, the nature of the immune 

reaction in COPD and increased amounts of IL-17 

raise the possibility of autoimmune hypothesis in its 

pathogenesis.  

Potential role of signal transduction pathways as 

putative therapeutic targets in pathogenesis of COPD 

Understanding the pathways and mechanisms 

leading to mediator release may lead to better 

therapeutic approaches for this disease.  With the 

complexity of inflammatory signaling networks and 

the cross talk that occurs between them, it is 

important to develop a greater understanding of these 

networks in the pathogenesis of disease. In terms of 

lung disease, it is still debatable whether these 

diseases occur as a result of excessive inflammatory 

drive or a lack of inhibitory feedback loops. 

However, it is clear that many of these 

pathways/networks are abnormally activated in 

COPD and that interference with these signaling 

pathways could shed light on disease processes and 

provide novel therapeutic approaches. Among 

signaling pathways involved in pathogenesis of 

COPD, Toll Like Receptors (TLRs) and 

Inflammasome NALP3 signal transduction activation 

have been described (40-42).  

In this regard, increased ROS production by 

cigarette smoke has been directly linked to oxidation 

of proteins, DNA, and lipids which may cause direct 

lung injury or induce a variety of cellular responses 

through the generation of highly reactive secondary 

metabolic entities. ROS may alter remodeling of 

extracellular matrix, apoptosis and mitochondrial 

respiration, cell proliferation, maintenance of 

surfactant and the antiprotease screen, effective 

alveolar repair response and immune modulation in 

the lungs (43, 44). ROS have also been implicated in 

initiating the lung inflammatory response through the 

activation of transcription factors such as NF-B and 

AP-1 and the regulation of the expression and 

activity of histone modifying enzymes and thereby 

enhancing inflammatory gene expression (45). 

Activation of ROS pathways in pathogenesis of 

asthma (46-48) and COPD has been described (49-

51).  
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Importantly, growing evidence indicates a role for 

ROS in the activation of TLR pathways (52-54) and 

NALP3 inflammasome (55- 57).   

Besides ROS, increased ATP levels in in-vitro, in-

vivo models and preclinical smoke-exposure models 

have been reported (58, 59). ATP can activate the 

NLRP3 Inflammasome through the P2X7 receptor 

(60-62) and, in addition, regulate neutrophil 

chemotaxis and activation through P2Y receptors 

(63, 64).  

Finally, the expression of the NLRP3 

Inflammasome-associated cytokines IL-1 and IL-18 

is increased in the lungs of COPD patients and 

animals exposed to cigarette smoke (65, 66). IL-1β 

levels are increased in airway secretions during 

COPD exacerbations (66) and correlate significantly 

with disease severity and other inflammatory 

mediators such as TNF-α and IL-8 (67). Furthermore, 

IL-1β can induce the release of M-CSF and GM-CSF 

from inflammatory cells (68) which in turn 

potentiates induction of chronic inflammatory 

diseases (Figure 1).  

 

GENERAL CONCLUSIONS 
Taken together, we conclude that a key process in 

the pathogenesis of COPD involves ROS/ATP-

mediated activation of the NALP3 inflammasome 

and TLRs leading to prolonged, inflammatory 

responses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Role of inflammasome and TLRs signaling in pathogenesis of COPD. An overview of the signalling cascade associated with the NLRP3 

Inflammasome and TLRs in pathogenesis of COPD. The Interactions between Epithelial cells (EP) and Dendritic cells (DC) in the airways and lungs 

when they exposed to allergen or cigarette smoke. DCs sample the airway lumen by forming dendritic extensions in between epithelial cells. 
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Abbreviations  
ATP, adenosine triphosphate 
COPD, Chronic Obstructive Pulmonary Disease 
CS, Cigarette smoke 
IgE, Immunoglobulin E 
IL-1β, Interleukin 1 beta 
IL-18, Interleukin 18 
NLR, Nod-like receptor 
NLRP3, NACHT, LRR and PYD domains-containing protein 3 
ROS, reactive oxygen species 
TLR, Toll-like receptor 
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