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Abstract: The Chinese Cobra (Naja atra) is an elapid snake of major medical importance in southern
China. We describe the in vitro neurotoxic, myotoxic, and cytotoxic effects of N. atra venom, as well
as examining the efficacy of three Chinese monovalent antivenoms (N. atra antivenom, Gloydius
brevicaudus antivenom and Deinagkistrodon acutus antivenom) and an Australian polyvalent snake
antivenom. In the chick biventer cervicis nerve-muscle preparation, N. atra venom (1–10 µg/mL)
abolished indirect twitches in a concentration-dependent manner, as well as abolishing contractile
responses to exogenous acetylcholine chloride (ACh) and carbamylcholine chloride (CCh), indicative of
post-synaptic neurotoxicity. Contractile responses to potassium chloride (KCl) were also significantly
inhibited by venom indicating myotoxicity. The prior addition of Chinese N. atra antivenom
(0.75 U/mL) or Australian polyvalent snake antivenom (3 U/mL), markedly attenuated the neurotoxic
actions of venom (3 µg/mL) and prevented the inhibition of contractile responses to ACh, CCh,
and KCl. The addition of Chinese antivenom (0.75 U/mL) or Australian polyvalent antivenom
(3 U/mL) at the t90 time point after the addition of venom (3 µg/mL), partially reversed the inhibition
of twitches and significantly reversed the venom-induced inhibition of responses to ACh and CCh,
but had no significant effect on the response to KCl. Venom (30 µg/mL) also abolished direct twitches
in the chick biventer cervicis nerve-muscle preparation and caused a significant increase in baseline
tension, further indicative of myotoxicity. N. atra antivenom (4 U/mL) prevented the myotoxic
effects of venom (30 µg/mL). However, G. brevicaudus antivenom (24 U/mL), D. acutus antivenom
(8 U/mL) and Australian polyvalent snake antivenom (33 U/mL) were unable to prevent venom
(30 µg/mL) induced myotoxicity. In the L6 rat skeletal muscle myoblast cell line, N. atra venom caused
concentration-dependent inhibition of cell viability, with a half maximal inhibitory concentration
(IC50) of 2.8 ± 0.48 µg/mL. N. atra antivenom significantly attenuated the cytotoxic effect of the venom,
whereas Australian polyvalent snake antivenom was less effective but still attenuated the cytotoxic
effects at lower venom concentrations. Neither G. brevicaudus antivenom or D. acutus antivenom were
able to prevent the cytotoxicity. This study indicates that Chinese N. atra monovalent antivenom is
efficacious against the neurotoxic, myotoxic and cytotoxic effects of N. atra venom but the clinical
effectiveness of the antivenom is likely to be diminished, even if given early after envenoming. The use
of Chinese viper antivenoms (i.e., G. brevicaudus and D. acutus antivenoms) in cases of envenoming
by the Chinese cobra is not supported by the results of the current study.
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1. Introduction

There are approximately 205 species of snakes in China, of which more than 50 species are
venomous [1]. The Chinese Cobra (Naja atra) is one of the top ten most venomous and clinically
important species in China [2]. In China, N. atra is mainly distributed south of the Yangtze River, but
is also found in Laos and Vietnam. Based on venomic data, Chinese N. atra venom contains a range
of toxins, with cardiotoxins and short-chain neurotoxins being the most abundant components [3–6].
We have previously isolated a short-chain neurotoxin, α-Elapitoxin-Na1a, from Chinese N. atra
venom [7]. However, it has been previously shown that short-chain neurotoxins dissociate readily
from human nicotinic acetylcholine receptors (nAChRs) and are unlikely to contribute substantially to
neurotoxicity in humans [7,8]. The major outcomes of envenoming by Chinese N. atra include severe
wound necrosis or chronic necrotic ulceration for which large doses of antivenom are administered.
Treatment also requires wound infection control and repeated surgical debridement, with the potential
for the eventual amputation of limbs. However, marked neurotoxicity including respiratory muscle
paralysis is relatively rare [2,9–11].

Antivenoms form the mainstay treatment of systemic snake envenoming. Currently available
antivenoms in China include a monovalent N. atra antivenom, and a bivalent elapid (N. atra and Bungarus
multicinctus) antivenom in Taiwan [2,10]. However, there are a lack of animal studies or clinical trials
that demonstrate the efficacy of N. atra antivenom. Unfortunately, the use of non-specific antivenoms is
common in mainland China given there are only monovalent snake antivenoms available, i.e., two for
elapids: N. atra (Chinese Cobra) antivenom and Bungarus multicinctus (Chinese Krait) antivenom;
and two for vipers: Gloydius brevicaudus (Short-Tailed Mamushi) antivenom and Deinagkistrodon acutus
(Sharp-nosed Pit Viper) antivenom. G. brevicaudus or D. acutus antivenoms are advocated for the
treatment of local necrosis in patients envenomed by N. atra, when specific antivenom is unavailable.
However, there is no evidence for the cross-neutralizing ability of these antivenoms for myotoxicity or
cytotoxicity, although patients envenomed by these vipers may also experience local necrosis in severe
cases [2].

In this study, we examined the in vitro neurotoxic, myotoxic and cytotoxic effects of Chinese
N. atra venom and evaluated the efficacy of Chinese N. atra monovalent antivenom in comparison to a
polyvalent elapid antivenom (i.e., Australian polyvalent antivenom) and the possible protective effects
of Chinese G. brevicaudus and D. acutus antivenoms against the myotoxicity and cytotoxicity induced
by N. atra venom.

2. Experimental Section

2.1. Venom and Antivenoms

Freeze-dried N. atra venom was obtained from Orientoxin Co., Ltd. (Laiyang, Shandong, China).
Chinese N. atra monovalent antivenom (Batch number: 20181202; expiry date: 27/12/2021), Chinese
G. brevicaudus monovalent antivenom (Batch number: 20190605; expiry date: 18/06/2022), Chinese
D. acutus monovalent antivenom (Batch number: 20190101; expiry date: 21/01/2022) were purchased
from Shanghai Serum Biological Technology Co., Ltd. (Shanghai, China). Australian polyvalent snake
antivenom (Batch number: 055517501; expiry date: 04/2013) was purchased from Seqirus (Melbourne,
Australia). The amount of each antivenom required to neutralize in vitro neurotoxicity was based
on the quantity of venom in the organ bath. While for the myotoxicity study, in order to achieve a
sufficiently high concentration of antivenom for the venom, all antivenoms were tested at 40 µL/mL.
According to the manufacturer’s instructions: 125 U of N. atra antivenom neutralizes 1 mg of N. atra
venom; 1500 U of G. brevicaudus antivenom neutralizes 1–1.25 mg of G. brevicaudus venom; and 136 U of
D. acutus antivenom neutralizes 1–3 mg of D. acutus venom. For the Australian polyvalent antivenom,
1 U of antivenom neutralizes 10 µg of venom from the species of snake against which the antivenom is
raised (i.e., brown snake, death adder, mulga snake, taipan, tiger snake).
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2.2. Chemicals and Reagents

The following chemicals and drugs were used: acetylcholine chloride (ACh; Sigma-Aldrich,
St. Louis, MO, USA), carbamylcholine chloride (CCh; Sigma-Aldrich, St. Louis, MO, USA),
d-tubocurarine chloride (d-TC; Sigma-Aldrich, St. Louis, MO, USA), potassium chloride (KCl, Ajax
Finechem Pty. Ltd., Taren Point, Australia), bovine serum albumin (BSA; Sigma-Aldrich, St. Louis,
MO, USA), 0.5% Trypsin-EDTA (Gibco Thermofisher, Melbourne, Australia), Penicillin/Streptomycin,
Dulbecco’s Phosphate Buffered Saline, Dulbecco’s Modified Eagle Medium (DMEM) GlutaMAX TM,
DMSO (Merck; Darmstach, Germany), CellTire 96 Aqueous One Solution Cell Proliferation Assay
(MTS assay; Promega; Melbourne, Australia). All chemicals were dissolved or diluted in Milli-Q water
unless otherwise stated.

2.3. Chick Biventer Cervicis Nerve-Muscle Preparation

Chickens (male; aged 4–10 days) were killed by exsanguination following CO2 inhalation.
Two biventer cervicis nerve-muscle preparations were dissected from each chick and mounted in
separate organ baths on wire tissue holders under 1 g resting tension. Preparations were maintained
at 34 ◦C, bubbled with 95% O2 and 5% CO2, in 5 mL organ baths filled with physiological salt
solution consisting of (in mM): 118.4 NaCl, 4.7 KCl,1.2 MgSO4, 1.2 KH2PO4, 2.5 CaCl2, 25 NaHCO3,
and 11.1 glucose. Venom was dissolved in 0.05% (w/v) bovine serum albumin (BSA).

For neurotoxicity experiments, indirect twitches were evoked by stimulating the motor nerve
at supramaximal voltage (0.1 Hz; 0.2 ms; 10–20 V) via an electronic stimulator. d-TC (10 µM) was
then added to the preparations with the subsequent abolishment of twitches indicating that they were
nerve-mediated. The twitches were then restored by washing the preparation with physiological
salt solution. Electrical stimulation was stopped and contractile responses to exogenous ACh (1 mM
for 30 s), CCh (20 µM for 60 s), and KCl (40 mM for 30 s) obtained. Electrical stimulation was then
recommenced for at least 30 min before the addition of venom or antivenom. To examine the efficacy of
antivenom to prevent venom-induced neurotoxicity, antivenom was added to the tissues 10 min before
venom. To examine the efficacy of antivenom to reverse venom-induced neurotoxicity, antivenom was
added to the tissues at the t90 time point (i.e., when the twitch height was inhibited by 90%). At the
conclusion of each experiment, ACh, CCh, and KCl were re-added as above.

For myotoxicity experiments, the biventer cervicis muscle was directly stimulated (0.1 Hz; 2 ms) at
supramaximal voltage (20–30 V). In these experiments the electrode was placed around the belly of the
muscle and d-TC (10 µM) remained in the organ bath for the duration of the experiment. Venom was
left in contact with the preparation until twitch blockade occurred, or for a maximum 3 h period. Venom
was considered to be myotoxic if it inhibited twitches elicited by direct stimulation and/or caused a
contracture of the skeletal muscle (i.e., increase in the baseline tension of the muscle). To examine the
ability of antivenom to neutralize venom-induced myotoxicity (i.e., myotoxicity prevention study),
tissues were equilibrated with antivenom for 10 min before venom was added.

Twitch responses and responses to exogenous agonists were measured via a Grass FT03 force
displacement transducer and recorded on a PowerLab system (ADInstruments Pty Ltd., Bella Vista,
Australia). Animal experiments were approved on 12 May 2017 by the Monash University Ethics
Committee application MARP/2017/147. All experiments were performed in accordance with relevant
guidelines and regulations.

2.4. Cell Culture Experiments

2.4.1. Venom

Freeze-dried venom was reconstituted in distilled water on the day of use. Protein content was
determined utilizing a BCA protein assay kit according to the manufacturer’s instructions. Briefly,
venom (25 µL) was added in triplicate to a 96-well micro-titer plate. BSA solutions, diluted from
1–0.025 mg/mL, were used as reference standards and distilled water was used as the blank. Absorbance
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was measured at 562 nm utilizing VERSAmax tunable microplate reader (Molecular Devices, San Jose,
CA, USA). Venom stock solutions were stored at 4 ◦C until required.

2.4.2. Heat Inactivation of Fetal Bovine Serum (hiFBS)

Fetal bovine serum was heated to 56 ◦C for 30 min. Following heat-inactivation, serum was
sterilized using a 0.22 µM Millipore filter (Sigma-Aldrch, North Ryde, Australia). Serum was dispensed
into sterile centrifuge tubes and stored at −20 ◦C.

2.4.3. Cells

The rat skeletal muscle myoblast cell line, L6, was purchased from The American Type
Culture Collection (ATCC, Manassas, VA, USA). L6 cells were grown in 175 cm2 flasks
(Nunc, Thermofisher, Melbourne, Australia) in culture media DMEM supplemented with 10% hiFBS
and 1% penicillin/streptomycin (10% DMEM). Flasks were maintained at 37 ◦C with 5% CO2 and media
was replenished every subsequent day. When the cells reached 80% confluence (assessed by eye using
a light microscope), trypsin was then used to lift the cells. Cells were centrifuged and the cell pellet was
re-suspended in culture media (35 mL). Cell suspension (100 µL/well) was aliquoted into four 96-well
cell culture plates (92 wells/plate) (Nunc, Thermofisher, Melbourne, Australia). Plates were maintained
at 37 ◦C in an atmosphere of 5% CO2. Media was replenished every second day until cells reached
90% confluence. For cell differentiation to occur (i.e., skeletal myoblast cells into skeletal myocytes),
10% DMEM was removed from wells and replaced with DMEM media supplemented with 2% hiFBS
and 1% penicillin/streptomycin (2% DMEM). Plates were subsequently maintained at 37 ◦C in an
atmosphere of 5% CO2. Media was replenished every second day, for one week, until cell differentiation
(i.e., appearance of long striated cells, assessed by eye using a light microscope) was observed.

To maintain L6 stock, cells at passage 2 were lifted using trypsin and centrifuged. Supernatant
was discarded and cell pellets were re-suspended in DMEM (20 mL) supplemented with 30% hiFBS
and 10% DMSO. Cell suspension was aliquoted into individual 1 mL cryovials and stored in liquid
nitrogen until required. Cells were passaged up to passage 12 before being discarded and a new vial of
cells thawed.

2.4.4. Cell Proliferation Assay (MTS Assay)

For cell viability experiments, media were removed from wells of differentiated L6 cell culture
plates and the wells were washed once with pre-warmed PBS. Venom stock solution was diluted in 2%
DMEM culture media to a final concentration of 100 µg/mL. This was subsequently serially diluted
either 1.5-fold (100–0.016 µg/mL) or 1.3-fold (100–0.24 µg/mL). Dilutions (100 µL/well) were added
in quadruplicate to wells in a cell culture plate. Culture media controls (i.e., cells and media with
no venom) and media blanks (i.e., no cells) were also run in parallel. The plates were maintained at
37 ◦C with 5% CO2 for 24 h. Cell culture plates were subsequently removed from the incubator and
washed with pre-warmed PBS three times. DMEM culture media (2%; 50 µL/well) and MTS solution
(10 µL/well) were pre-mixed, and 60 µL added to each well. Plates were further incubated at 37 ◦C
with 5% CO2 for 1 h. Absorbance was measured at 492 nm utilizing a VERSAmax tunable microplate
reader (Molecular Devices, San Jose, CA, USA).

2.4.5. Examining the Efficacy of Antivenom

Media was removed from wells of L6 cell culture plates and the wells were washed once
with pre-warmed PBS. Venom stock solutions were diluted to a concentration of 0 (no venom),
2.5 (IC50 concentration range), 5 (twice IC50), 10 (initial concentration where 100% cell death occurs),
or 30 µg/mL (concentration used in myotoxic study) in 2% DMEM culture media containing either
no antivenom (venom only) or supplemented with N. atra monovalent antivenom (200 µL; 4 U/mL)
Australian polyvalent snake antivenom (200 µL; 33 U/mL), G. brevicaudus antivenom (200 µL; 24 U/mL),
or D. acutus antivenom (200 µL; 8 U/mL).
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Each of the dilutions were added in triplicate to L6 culture plates and incubated at 37 ◦C with
5% CO2 for 24 h. Culture plates were removed from the incubator and washed with pre-warmed
PBS three times. Fresh DMEM culture media (50 µL/well) and MTS solution (10 µL/well) were
pre-mixed, and 60 µL/well was added to each well. The plates were further incubated at 37 ◦C with 5%
CO2 for 1 h. Absorbance was measured at 492 nm utilizing VERSAmax tunable microplate reader
(Molecular Devices, San Jose, CA, USA).

2.5. Data Analysis

For both in vitro neurotoxicity and myotoxicity experiments, twitch height in the chick biventer
preparation was measured at regular time intervals and expressed as a percentage of the pre-venom
twitch height. In neurotoxicity studies, the time taken for 90% inhibition of the twitch response
(t90 value) was used to determine the potency of N. atra venom. Post-venom contractile responses
to ACh, CCh, and KCl were expressed as a percentage of their original responses. In myotoxicity
studies, the change in gram (g) of muscle baseline tension was measured every 10 min after venom
addition. The maximum change in tension (g) and time (min) to achieve the maximum change in
tension were also measured. Comparison of the effects of N. atra venom on twitch height, baseline
tension, or time to reach maximum change in tension were made using a one-way analysis of variance
(ANOVA). Comparison of responses to exogenous agonists before and after the addition of venom
or vehicle was made using a Student’s paired t-test. All ANOVAs were followed by a Bonferroni’s
multiple comparison post-hoc test. Data are presented as mean ± standard error of the mean (SEM)
of n experiments. All data and statistical analyses were performed using PRISM 8.0.2 (GraphPad
Software, San Diego, CA, USA, 2019).

For cell experiments, sigmoidal growth curves were graphed using Prism 8.0.2 as cell viability
(% of maximum) versus log concentration of venom, and IC50 concentrations determined. Bar graphs
displaying the efficacy of antivenoms were plotted as a percentage of cell viability. Cell viability was
compared in the presence and absence of antivenom using a one-way ANOVA, with Bonferroni’s
multiple comparisons test. For all statistical tests, p < 0.05 was considered statistically significant.
Data are presented as mean ± standard error of the mean (SEM) of n experiments.

3. Results

3.1. In Vitro Neurotoxicity

3.1.1. Concentration-Dependent Inhibition of Twitches and Exogenous Agonists Responses

N. atra venom (1–10 µg/mL) caused concentration-dependent inhibition of indirect twitches of
the chick biventer preparation, when compared to vehicle control (n = 6; one-way ANOVA, p < 0.05;
Figure 1a). The potency of the neurotoxic effect of venom was determined by calculating t90 or t50

(i.e., if the twitch height to decrease by 90% or 50%, respectively) with values as follows: 1 µg/mL
(t50 36 ± 2 min), 3 µg/mL (t90 43 ± 5 min), 10 µg/mL (t90 17 ± 1 min). Venom (1–10 µg/mL) also
abolished contractile responses to exogenous ACh (1 mM) and CCh (20 µM), indicating an action at
the post-synaptic nerve terminal, and significantly inhibited responses to KCl (40 mM), indicative of
myotoxicity (Figure 1b).
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Figure 1. (a) The concentration-dependent neurotoxic effects of N. atra venom (1–10 µg/mL)
on indirect twitches of the chick biventer cervicis nerve-muscle (CBCNM) preparation. (b) The
concentration-dependent effects of N. atra venom (1–10 µg/mL) on contractile responses to acetylcholine
chloride (ACh) (1 mM), carbachol (CCh) (20 µM), and potassium chloride (KCl) (40 mM) in the CBCNM.
* p < 0.05, significantly different from (a) control at 60 min or (b) pre-venom response to same agonist.
n = 6.

3.1.2. In Vitro Neurotoxicity Antivenom Prevention Study

The prior addition of Chinese N. atra monovalent antivenom (0.75 U/mL, 2× the recommended
titre), or Australian polyvalent snake antivenom (3 U/mL, 10× the recommended titre), markedly
attenuated the neurotoxic actions of venom (3 µg/mL) (Figure 2a,c) and prevented the inhibition of
contractile responses to ACh, CCh, and KCl (Figure 2b,d).
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Figure 2. (a) The effects of N. atra venom (3 µg/mL) alone or with pre-addition of Naja atra antivenom
(Naja AV; 0.75 U/mL) on indirect twitches of the CBCNM. (b) The effects of N. atra venom (3 µg/mL)
alone or with pre-addition of Naja AV (0.75 U/mL) on contractile responses to ACh (1 mM), CCh (20 µM),
and KCl (40 mM) in the CBCNM. (c) The effects of N. atra venom (3 µg/mL) alone or with pre-addition
of Australian polyvalent antivenom (Aus pvAV; 3 U/mL) on indirect twitches of the CBCNM. (d) The
effects of N. atra venom (3 µg/mL) alone or with pre-addition of Aus pvAV (3 U/mL) on contractile
responses to ACh (1 mM), CCh (20 µM), and KCl (40 mM) in the CBCNM. * p < 0.05, significantly
different compared to venom in the absence of antivenom at 60 min (a,c) or compared to pre-venom
response to same agonist (b,d). n = 5–6.
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3.1.3. In Vitro Neurotoxicity Antivenom Reversal Study

The addition of Chinese N. atra antivenom (0.75 U/mL, 2× the recommended titre), at the t90 time
point, after the addition of N. atra venom (3 µg/mL), partially restored the twitch height, i.e., reaching
42 ± 5% (n = 6) of the initial pre-venom twitch height (Figure 3a). Chinese N. atra antivenom also
significantly reversed the venom-induced inhibition of responses to ACh and CCh, while having no
significant effect on the response to KCl (Figure 3b).
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Figure 3. (a) The effects of N. atra venom (3 µg/mL) alone or with Naja atra antivenom (Naja AV;
0.75 U/mL) added at the t90 time point on indirect twitches of the CBCNM. (b) The effects of N. atra
venom (3 µg/mL) alone or with Naja AV (0.75 U/mL) added at the t90 time point on contractile responses
to ACh (1 mM), CCh (20 µM), and KCl (40 mM) in the CBCNM. (c) The effects of N. atra venom
(3 µg/mL) alone or with Australian polyvalent antivenom (Aus pvAV; 3 U/mL) added at the t90 time
point on indirect twitches of the CBCNM. (d) The effects of N. atra venom (3 µg/mL) alone or with
Aus pvAV (3 U/mL) added at the t90 time point on contractile responses to ACh (1 mM), CCh (20 µM),
and KCl (40 mM) in the CBCNM. * p < 0.05, significantly different compared to control at 230 min
(a,c) or compared to pre-venom response to same agonist (b,d). @ p < 0.05, significantly different
compared to venom in the absence of antivenom at 230 min (a,c) or compared to response to agonist in
the absence of antivenom (b,d), n = 5–6.

The addition of Australian polyvalent antivenom, (3 U/mL, 10× the recommended titre), at the
t90 time point, after the addition of N. atra venom (3 µg/mL), partially restored the twitch height,
i.e., reaching 35 ± 4% (n = 6) of the initial pre-venom twitch height (Figure 3c). The addition of
Australian polyvalent antivenom also significantly reversed the inhibition of responses to ACh and
CCh, while having no significant effect on the response to KCl (Figure 3d).

3.2. In Vitro Myotoxicity

N. atra venom (30 µg/mL) significantly inhibited twitches in the directly-stimulated chick biventer
preparation, when compared to vehicle at 180 min (n = 5–6; one-way ANOVA, p < 0.05; Figure 4a).
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Figure 4. The myotoxic effects of Naja atra venom (30 µg/mL), in the presence and absence of different
antivenoms, as indicated by the (a) change in twitch height in chick biventer cervicis preparation over
180 min; (b) change in baseline tension of the chick biventer cervicis preparation over 60 min; (c) max
change in baseline gram tension achieved in 60 min; and (d) the time achieve max change in baseline
tension. * p < 0.05, significantly different compared to control (a) at 180 min. δ p < 0.05, significantly
different compared to venom alone at 180 min (a) or 60 min (b) or compared to venom in the absence of
antivenom (c,d). n = 5–6. Antivenoms were added 10 min prior to venom. N. atra antivenom (Naja AV);
G. brevicaudus antivenom AV (Gb AV); D. acutus antivenom AV (Da AV); Australian polyvalent AV
(Aus pvAV).

The prior addition of Chinese N. atra monovalent antivenom 200 µL (4 U/mL, 1× the recommended
titre) markedly attenuated, but did not prevent, twitch inhibition (n = 6; one-way ANOVA, p < 0.05;
Figure 4a) and abolished the venom-induced increase in baseline tension compared to venom (30µg/mL)
alone (n = 5–6; one-way ANOVA, p < 0.05; Figure 4b–d), indicating partial attenuation of the myotoxic
actions of N. atra venom.

In contrast, the prior addition of Australian polyvalent snake antivenom 200 µL (33 U/mL,
11× the recommended titre), G. brevicaudus antivenom 200 µL (24 U/mL, 0.5~0.7× the recommended
titre) or Chinese D. acutus monovalent antivenom 200 µL (8 U/mL, 2~6× the recommended titre),
failed to prevent or delay the venom-induced decrease in direct twitches(n = 5–6; Figure 4a) or
venom-induced increase in baseline tension (n = 5–6; Figure 4b–d), indicating a lack of efficacy against
the myotoxic actions of N. atra venom.

Control experiments (i.e., 200 µL of each antivenom alone) indicated the antivenoms had no direct
effect on tissue viability over a period of 180 min (n = 5–6 for each antivenom).

3.3. Cell Viability Assay

3.3.1. Venom Concentration–Response Curves

Treatment of L6 cells with N. atra venom resulted in a concentration-dependent inhibition of cell
viability (Figure 5), with an IC50 of 2.8 ± 0.48 µg/mL.
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Figure 5. Concentration-dependent venom-induced inhibition of cell viability in L6 cells.

3.3.2. Cell-Based Proliferation Assay-Efficacy of Antivenoms

L6 cells were treated with 2% DMEM media supplemented with venom at concentrations of 0,
2.5, 5, 10, or 30 µg/mL and further supplemented with either no antivenom (i.e., venom alone) or
with N. atra antivenom (200 µL; 4 U/mL), Australian polyvalent snake antivenom (200 µL; 33 U/mL),
G. brevicaudus antivenom (200 µL; 24 U/mL), or D. acutus monovalent antivenom (200 µL; 8 U/mL).

N. atra venom caused a significant decrease in cell viability at all concentrations examined when
compared to cells treated with media alone (p < 0.05; Figure 6). N. atra antivenom significantly
attenuated the cytotoxic effect at all venom concentrations compared to control (p < 0.05; Figure 6).
Australian polyvalent snake antivenom was less effective but still attenuated the cytotoxic effects at
lower venom concentrations (i.e., 2.5–10 µg/mL; p < 0.05; Figure 6). Neither G. brevicaudus antivenom
or D. acutus antivenom were able to prevent the cytotoxicity at any venom concentration examined
(Figure 6).Biomedicines 2020, 8, x FOR PEER REVIEW 10 of 14 
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Figure 6. The effects of N. atra venom (0–30 µg/mL), in L6 cells, in the presence and absence of N. atra
antivenom (Naja AV, 4 U/mL), G. brevicaudus antivenom AV (Gb AV, 24 U/mL), D. acutus antivenom AV
(Da AV, 8 U/mL) or Australian polyvalent AV (Aus pvAV, 33 U/mL). * p < 0.05, significantly different
from control (i.e., 0 venom); + p < 0.05, significantly different from same concentration of venom in the
absence of antivenom.
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4. Discussion

We have shown that N. atra venom from China displays potent in vitro neurotoxic, myotoxic
and cytotoxic activity. The neurotoxic and cytotoxic effects of the venom were almost completely
abolished by the prior addition of specific N. atra antivenom, whereas the myotoxic effects were only
partially prevented. Interestingly, an Australian polyvalent antivenom, which is raised against the
venoms from a range of Australian elapids (i.e., Acanthophis antarcticus, Notechis scutatus, Oxyuranus
scutellatus, Pseudechis australis, and Pseudonaja textilis) and does not contain specific antibodies against
N. atra venom, displayed similar activity against the neurotoxic effects of N. atra venom but was less
effective against the cytotoxic effects and ineffective against the myotoxic effects. The Australian
polyvalent antivenom was included in our study as the venoms of the Australian elapids contain
a range of post-synaptic, pre-synaptic, and myotoxic components. These components are likely to
have close structural similarities with some of the components in the venom of the Chinese cobra
given we have previously shown that Australian Tiger snake (N. scutatus) antivenom prevents the
in vitro neurotoxicity induced by N. haje (Egyptian cobra) venom [12], and Australian polyvalent snake
antivenom prevents the in vitro neurotoxicity induced by N. kaouthia (monocled cobra) venom [13].

The two Chinese monovalent viper antivenoms (i.e., G. brevicaudus antivenom and D. acutus
antivenom antivenom) had no efficacy against the myotoxic or cytotoxic effects of N. atra venom.
We did not examine the efficacy of the Chinese viper antivenoms against the neurotoxic effects of
N. atra venom as this is not a clinical outcome of envenoming by this species, and the antivenoms
are used in China to treat the myotoxic symptoms of N. atra envenoming. Four monovalent snake
antivenoms are available in mainland China, and cross-neutralization by using nonspecific antivenoms
for snakebite is recommended in the Chinese 2018 Expert Consensus on snakebites [2]. However, it
appears as though the two viper antivenoms have no efficacy against N. atra venom.

We used the chick biventer cervicis nerve–muscle preparation, which contains both focally- and
multiply-innervated skeletal muscle fibers, to examine neurotoxicity and myotoxicity. This preparation
enables the determination of the site of action of venoms/toxins, i.e., either at the pre-synaptic nerve
terminal, post-synaptic nerve terminal or underlying skeletal muscle [14,15]. The time taken to
cause 90% (i.e., t90) inhibition of nerve-mediated twitches can be used to compare the neurotoxic
potency of venoms/toxins. N. atra venom abolished indirect twitches in a time-dependent and
concentration-dependent manner, as well as inhibiting contractile responses to exogenous ACh and
CCh, while reducing responses to KCl, indicating that it acts post-synaptically and has myotoxic
effects on the tissue. The Chinese N. atra antivenom was highly efficacious when added prior to
venom and was also able to partially reverse the inhibitory effects of the venom when added at the
t90 time point. The failure to fully reverse the decline in twitch height is likely to be due to a number
of factors including the contribution of myotoxins and the lack of reversibility of some neurotoxins.
Indeed, we have previously shown that the short-chain post-synaptic neurotoxin α-Elapitoxin-Na1a,
which accounts for approximately 9% of N. atra venom, displays pseudo-irreversible antagonism at
the skeletal muscle nicotinic acetylcholine receptor and is only partially reversed by antivenom [7].
Interesting, the Australian polyvalent snake venom displayed similar efficacy against the neurotoxic
effects of the venom indicating that the antigenic components in this antivenom, which is raised
against a number of venoms from Australian elapid snakes containing postsynaptic and/or presynaptic
neurotoxins, are able to recognize the neurotoxic components of N. atra venom.

Despite possible geographical differences in venom composition, the percentage of cardiotoxins
and neurotoxins reported in N. atra venom ranges from 52–68% and 11–23%, respectively [3,4,6].
Cardiotoxins, which target cell membranes, are likely to be the main components contributing to the soft
tissue necrosis and myotoxicity [16–20]. Indeed, N. atra venom has been shown to display high levels
of cytotoxicity [21]. Although, as indicated above, N. atra venom is highly neurotoxic in vitro, it is only
mildly neurotoxic in humans. This is most likely due to the neurotoxic components being short-chain
neurotoxins which readily dissociate from human muscle nAChRs [7]. Interestingly, a recent study
found that the post-synaptic α-neurotoxins in N. atra venom bind to the alpha-1 nAChR orthosteric site
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with selectivity towards the amphibian mimotope over lizard, avian and rodent mimotopes indicative
of prey selectivity [22]. Despite the early usage and administration of large doses of N. atra antivenom
in envenomed patients, severe wound necrosis or chronic necrotic ulceration causing extensive local
tissue injuries are commonly reported [9–11]. Although subsequent wound infection due to heavy
bacterial load introduced by the fangs [23,24] might contribute to this clinical dilemma, there is the
possibility of a lack of efficacy of the specific antivenom against the myotoxic effect of the venom.

As N. atra venom significantly inhibited responses to KCl in the indirectly stimulated chick
biventer experiments, the presence of myotoxic activity in the venom was further examined in the
directly stimulated chick biventer preparation. N. atra venom abolished direct twitches and induced
an increase in baseline tension indicative of myotoxicity [14,15]. Prior addition of N. atra antivenom
delayed, but did not prevent, inhibition of direct twitches, but abolished the increase in baseline tension.
However, the inability of N. atra antivenom to fully prevent myotoxicity may not indicate a lack of
full efficacy of the antivenom. Given that the myotoxic effects were studied at 10× the concentration
at which the neurotoxic effects were studied (i.e., 30 µg/mL compared to 3 µg/mL), a ratio which is
in line with many of our previous neurotoxic/myotoxic studies [25–27], it is likely that increasing the
antivenom concentration, e.g., at least double the manufacturer’s recommended amount, may full
prevent the myotoxic effects. Indeed, we needed to add 2× the manufacturer’s recommendation
to abolish venom neurotoxicity. However, we limited the maximum amount of antivenom used in
the myotoxicity study given that excessive amounts of antivenom can alter the osmolarity of the
physiological salt solution in the organ bath and affect tissue viability. The Australian polyvalent snake
antivenom and the two Chinese monovalent viper antivenoms failed to significantly inhibit either the
decrease in twitch height or increase in baseline tension.

N. atra antivenom also neutralized the potent cytotoxic effects of N. atra venom in L6 rat skeletal
muscle cells. It is worth noting that the antivenom was protective against 30 µg/mL of venom in
this assay, further supporting that the lack of full efficacy in the chick biventer myotoxic study was
due to an insufficient concentration of antivenom. This problem did not occur in the cell assay
given the much lower volumes used. The Australian polyvalent snake antivenom was protective at
lower concentrations of venom in the cytotoxicity assay, whereas the two viper antivenoms had no
significant protective effect. Although the venoms from these Chinese viper species (i.e., G. brevicaudus
and D. acutus) can cause local tissue swelling and necrosis in envenomed humans, their venom
proteomes and the relative abundance of major components are quite different to the Chinese elapid
N. atra venom [3,5]. Therefore, it is not surprising that these antivenoms were unable to prevent
the myotoxicity and cytotoxicity induced by N. atra venom. Our results strongly suggest that these
viper antivenoms are unlikely to neutralize the effects of venom in patients envenomed by N. atra.
Interestingly, the Australian polyvalent snake antivenom, which is raised against the venoms from five
species of highly venomous terrestrial Australian elapids, failed to prevent N. atra venom induced
myotoxicity in vitro while showing capability of fully preventing and even partially reversing N. atra
venom induced neurotoxicity and cytotoxicity. This divergence has not been previously reported and
could be explained by further venomic comparison studies between the species in the future.

5. Conclusions

In summary, we have, for the first time, examined the in vitro neurotoxic, myotoxic, and cytotoxic
effects of N. atra venom and the ability of specific Chinese N. atra monovalent antivenom, non-specific
Australian polyvalent snake antivenom, and Chinese G. brevicaudus monovalent antivenom and
Chinese D. acutus monovalent antivenom to neutralize these effects. Our studies indicate that Chinese
N. atra venom causes potent in vitro neurotoxicity, myotoxicity, and cytotoxicity, which is, largely,
neutralized by N. atra antivenom. While the Australian polyvalent antivenom was equally efficacious
against the neurotoxic effects, indicating the presence of similar antigenic neurotoxins, it was ineffective
against the myotoxicity and only partially protective against the cytotoxic effects. The Chinese viper
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antivenoms were ineffective and do not appear to display any cross-reactivity against the myotoxic
and cytotoxic components of N. atra venom.
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